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Automatic Scale Detection for Contour Fragment Based on
Difference of Curvature
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SUMMARY Scale-invariant features are widely used for image re-
trieval and shape classification. The curvature of a planar curve is a fun-
damental feature and it is geometrically invariant with respect it the coor-
dinate system. The curvature-based feature varies in position when multi-
scale analysis is performed. Therefore, it is important to recognize the scale
in order to detect the feature point. Numerous shape descriptors based on
contour shapes have been developed in the field of pattern recognition and
computer vision. A curvature scale-space (CSS) representation cannot be
applied to a contour fragment and requires the tracking of feature points.
In a gradient-based curvature computation, although the gradient compu-
tation considers the scale, the curvature is normalized with respect to not
the scale but the contour length. The scale-invariant feature transform algo-
rithm that detects feature points from an image solves similar problems by
using the difference of Gaussian (DoG). It is difficult to apply the SIFT al-
gorithm to a planar curve for feature extraction. In this paper, an automatic
scale detection method for a contour fragment is proposed. The proposed
method detects the appropriate scales and their positions on the basis of the
difference of curvature (DoC) without the tracking of feature points. To
calculate the differences, scale-normalized curvature is introduced. An ad-
vantage of the DoC algorithm is that the appropriate scale can be obtained
from a contour fragment as a local feature. It then extends the application
area. The validity of the proposed method is confirmed by experiments.
The proposed method provides the most stable and robust scales of fea-
ture points among conventional methods such as curvature scale-space and
gradient-based curvature.
key words: curvature, scale invariance, planar curve, shape description,
pattern recognition

1. Introduction

Scale-invariant features are widely used for image retrieval
and shape classification. The scale-invariant feature trans-
form (SIFT) algorithm for an image is one of the most suc-
cessful techniques in content-based image retrieval and clas-
sification [1]. The SIFT algorithm is invariant with respect
to an image’s scaling and rotation. On the other hand, shape
retrieval and classification use several features such as con-
tour, color, region, texture, and so on. These features and
descriptions are standardized in MPEG-7, also called “Mul-
timedia Content Description Interface [2]–[4].” This paper
focuses on the planar curves obtained from the contours of
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2D shapes.
The curvature of a planar curve is a fundamental fea-

ture and it is geometrically invariant with respect it the co-
ordinate system. The curvature of a continuous planar curve
is scale-independent since the differential of the curve is
uniquely determined. The curvature of a discrete planar
curve, in contrast, is scale-dependent since the differential of
the curve has one degree of freedom. For example, the dif-
ferential of a discrete planar curve is derived from the con-
volution between the curve and a derivative Gaussian func-
tion with a standard deviation. In either curve, curvature-
based feature point of multi-scale analysis varies in position.
Therefore, it is important to recognize the scale in order to
detect the feature point.

Scale detection for contour fragment extends the appli-
cation area. For example, the shape that is not the whole
is accepted as a query of CBIR. Layout of feature points
is also accepted. The meaning of the layout is that feature
points are extracted from not only a single shape but also
plural shapes, and that distance of them can be described
by the scale. For more specific situation, occlusion gener-
ally occurs in the real world. Single object boundaries are
divided by another one. In this case, not a whole but a par-
tial object boundary is obtained. Naturally, the application
is not limited to the contour fragments. When plural and
partial shapes become single shape, some feature points can
be extracted without the influence of the composition. It is
noted that a description method for feature points is out of
the scope of this paper.

Numerous shape descriptors based on contour shapes
have been developed in the field of pattern recognition and
computer vision. Initially, Witkin et al. proposed scale-
space filtering for 1D planar curves [5]. The function f (x)
of the planar curve is convolved with a Gaussian function,
where its variance σ2 varies from small to large. The zero-
crossings of the second derivative of each convolved func-
tion are extracted and marked in the x–σ plane. The re-
sulting plane is the scale-space image of the function. Al-
though this technique is effective for structure detection of
the planar curve, tracking, describing, and comparing fea-
ture points are complex problems.

Mokhtarian et al. introduced a curvature scale-space
(CSS) representation for 2D planar curves [6]. The para-
metric representation of a contour shape is convolved with
a Gaussian function. The zero-crossings of the curvatures
from the resulting curves are extracted and marked in the t–
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σ plane, where t is a parameter. The CSS representation is
essentially invariant with respect to rotation, uniform scal-
ing, and translation of the contour. This representation was
further extended and optimized during the MPEG-7 devel-
opment phase [3]. In the contour shape descriptor of MPEG-
7, the number of passes of a low-pass filter is nonlinearly
normalized with respect to the contour length. The scale
value is defined by the normalized value in order to guaran-
tee scale invariance. Consequently, this method cannot be
applied to a contour fragment. CSS approaches are contin-
uously improved. Zhong et al. proposed Direct Curvature
Scale Space (DCSS), which is defined as the CSS that re-
sults from convolving not the planar curve but the curvature
of it with a Gaussian kernel [7]. Awrangjeb et al. proposed
an improved CSS corner detector using not the arc-length
parameterization but the affine-length parameterization [8].
These methods are also not independent to the arc-length of
the whole shape or to the transformation of a partial shape.

Daliri et al. proposed a gradient-based curvature (GbC)
computation [9]. According to the definition of the curva-
ture for the planar curve—the rate of change in the tan-
gent vector with respect to the contour length—, the deriva-
tives of the tangent vector for the x- and y-directions should
be computed. The tangent vectors of the planar curve are
orthogonal to the gradient vectors, which are obtained by
the convolution between an intensity image and a derivative
Gaussian function. Although the gradient vectors are com-
puted at the best scales along the contour, the curvature is
normalized with respect to the contour length. The appro-
priate scales for the curvature are not detected.

Conventional shape descriptors cannot be applied to a
contour fragment, as mentioned above. Further, in the CSS
representation, the tracking of feature points is required.
The SIFT algorithm solves similar problems using the dif-
ference of Gaussian (DoG), which approximates the scale-
normalized Laplacian of Gaussian.

In this paper, an automatic scale detection method for a
contour fragment is proposed. The proposed method detects
the appropriate scales and their positions on the basis of the
difference of curvature (DoC) without the tracking of feature
points. In other words, instead of the Gaussian in the DoG,
a scale-normalized curvature is employed for the DoC. An
advantage of the DoC algorithm is that the appropriate scale
can be obtained from a contour fragment as a local feature.

The remainder of the paper is organized as follows.
Section 2 presents an overview of the CSS representation,
the SIFT algorithm, and the gradient-based curvature. Sec-
tion 3 describes the proposed automatic scale detection
method. Section 4 provides several experiments and con-
siderations. Finally, Sect. 5 presents the conclusions of this
work.

2. Conventional Methods

2.1 Curvature Scale-Space

A curvature scale-space (CSS) representation detects the

structure of a contour shape in multi-scale analysis [2], [4].
This representation has been successfully used for image re-
trieval and classification.

To create the CSS representation of the contour shape,
N equidistant points are selected from the contour. The x-
and y-coordinates of the selected N points are grouped into
X and Y. The contour is then gradually smoothed by the
repetitive application of a low-pass filter to the X and Y.
As a result of the smoothing, concave parts of the contour
gradually flatten out, until the contour becomes convex.

A so-called CSS image can be associated with the
contour evolution process. The horizontal- and vertical-
coordinates correspond to the indices of the contour points
and the number of passes of the filter. Each horizontal line in
the CSS image corresponds to the smoothed contour result-
ing from k-passes of the filter. For each smoothed contour,
the zero-crossings of its curvature function are computed.
Curvature zero-crossing points separate concave and con-
vex parts of the contour. Each zero-crossing point is marked
on the horizontal line.

The CSS image is characterized by peaks. The coor-
dinate values of the prominent peak (xcss, ycss) in the CSS
image are extracted. Peaks are arranged according to ycss

value in descending order. The value of ycss is transformed
and quantized. The transformation is nonlinear and defined
by

peak = 3.8
(ycss

N2

)0.6
, (1)

where a peak is truncated into [0, 1.7].
The CSS representation has some problems in order to

detect the appropriate scales. The peak value indicates a
scale of feature points, which is invariant with respect to the
shape size since the number of samples is constant in our
experiments. Consequently, the CSS algorithm cannot be
applied to a contour fragment. The appropriate scale is also
not detected. Further, curvature values are not used since
feature points indicate the disappearance of concave or con-
vex parts.

2.2 Laplacian of Gaussian

The scale-invariant feature transform (SIFT) algorithm ex-
tracts feature points from an image and describes features.
The detected feature points are generally located on corners
based on the gradient of intensities and they are robust to an
image rotation and scale.

In order to extract an appropriate scale, the scale-
normalized Laplacian of Gaussian (sLoG) operator is uti-
lized. Since the sLoG operator has a high computation cost,
it is approximated by the difference of Gaussian (DoG) op-
erator as follows:

sLoG ≈ G(x, y, kσ) −G(x, y, σ)
k − 1

, (2)

where k is the ratio between adjacent scales and G is a 2D
Gaussian function with a standard deviation σ as the scale.
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When the value of DoG is the local maximum at σ = σmax,
the appropriate scale is defined as σmax. By downsampling
the image, the computation cost of DoG is dramatically re-
duced. An appropriate scale is used to normalize the fea-
tures. In other words, scale invariance is achieved by detect-
ing the appropriate scale.

It is difficult to apply the SIFT algorithm to a planar
curve for feature extraction. A bitmap image obtained by
rasterizing the planar curve can be applied to the SIFT ap-
proach indirectly, as described in the Sect. 2.3.

2.3 Gradient-Based Curvature

Daliri et al. proposed the use of the tangent vectors along
the contours for the computation of the curvature [9]. The
tangent vector is orthogonal to the gradient vector. Lx and
Ly are defined as the convolution between an image and the
derivative Gaussian function. The local scale is determined
by computing the normalized derivatives of the image as fol-
lows:

Gλ = tλ/2
√

L2
x + L2

y , (3)

λ =
1
2
. (4)

When the value of G1/2(t) is the local maximum at t = tmax,
the best scale is defined by 2π

√
tmax. When the value of

Gλ(t) increases monotonically, the maximum value of t is
considered as the best scale. This scale can be computed
for every point of the image along the contour. The gradient
G = (Gx,Gy) is then computed at the best scale using a 2D
Gaussian function in x- and y-directions. Since the tangent
vector is orthogonal to the gradient vector, the tangent vector
at the best scale is defined by

T = (Tx,Ty) = (Gy,−Gx). (5)

The curvature κ is related to the rate at which the tan-
gent vector is changing with respect to the arc length s. The
derivatives of the tangent vector for the x- and y-directions
should be computed. This can be done by using simply the
convolution of each component of the tangent vector by the
first derivative of the 1D Gaussian function.

Since different shapes have different contour lengths,
an adaptive σ1 for the Gaussian function is utilized. Stan-
dard deviation σ1 of the Gaussian function is related to the
contour length,

σ1 = σ0
l
l0

(6)

where l is the contour length. According to the Daliri et al.,
l0 = 200 and σ0 = 3 are used [9]. Having the two derivative
components of the tangent vector, the value of the curvature
can be computed as follows:

||κ|| =
√(
∂Tx

∂s

)2

+

(
∂Ty

∂s

)2

. (7)

Unfortunately, the gradient-based curvature cannot be
applied for a contour fragment. Although the tangent vector
appears to be invariant with respect to the scale, the cur-
vature depends on the contour length. The best scale for
the gradient computation is not the appropriate scale for the
curvature computation. The appropriate scale cannot be ob-
tained. In our experiments, the obtained curvature values
are assumed to be the scale and used for the evaluation of
the scale invariance as a matter of convenience. Further,
consideration to a structure of a coarse contour shape is also
insufficient because multi-scale analysis is not realized.

3. Proposed Algorithm

3.1 Scale-Normalized Curvature

An automatic scale detection method, which can be applied
to a contour fragment, is proposed in order to involve the
scale invariance of the features. The curvature of the para-
metric planar curve (x(t), y(t)) is defined by

κ =
x′y′′ − x′′y′

(x′2 + y′2)3/2
, (8)

where x′ and x′′ are the first and second order derivatives of
x with respect to t. The derivative is calculated by a convolu-
tion between the parametric curve and the derivative Gaus-
sian function. The Gaussian function is defined by

G(t, σ) =
1√

2πσ2
exp

(
− t2

2σ2

)
, (9)

where t and σ are the parameter and standard deviation.
The proposed method defines a scale as the standard

deviation. The derivative of the parametric curve depends
on the scale and it is computed by

x′ = x′[t, σ] = G′[t, σ] ∗ x[t], (10)

y′ = y′[t, σ] = G′[t, σ] ∗ y[t], (11)

where “∗” is the convolution operator with respect to t.
Scale-normalized curvature is realized to introduce a

scale-normalization factor. It is assumed that the curvature
operator is defined by

Ĉp =
G′xG′′y −G′′x G′y
(G′2x +G′2y )3/2

, (12)

where G′ and G′′ are the first and second derivatives of the
Gaussian function. This operator can be applied to paramet-
ric curves. Now, the curvature operator is simplified in order
to derive the scale-normalization factor, i.e. y[t] = constant.
In this case, the curvature operator is simply given by

Ĉ1 =
G′′

(1 +G′2)3/2
. (13)

The waveform of this operator is shown in Fig. 1. The four
regions A0, A1, A2, and A3 have the same area. This area
is employed as a scale-normalization criterion, i.e. this area
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remains constant whenever the scale varies. For example,
one area is calculated by

A2 =

∫ σ

0

−G′′(t, σ)
(1 +G′(t, σ)2)3/2

dt =
1√

1 + 2πeσ4
. (14)

The scale-normalization factor is then defined as√
1 + 2πeσ4. In the following section, a scale-normalized

curvature based on Eq. (12) and its factor is used in order to
calculate the difference between the curvature values.

It should be noted that the scale-normalization factor
does not contain the contour length. The detected curva-
ture is independent of the entire shape size. The scale-
normalized curvature can then be obtained from the contour
fragment as a local feature.

3.2 Difference of Curvature

By using the proposed scale-normalized curvature, a scale
detection method is proposed based on the difference of

Fig. 1 Shape of curvature operator [10].

Fig. 2 The procedure to construct difference of curvature.

curvature (DoC), which is an analogous to the difference
of Gaussian in the SIFT algorithm. The procedure to con-
struct the DoC is shown in Fig. 2. The initial planar curve is
convolved with the derivative Gaussian functions of chang-
ing scale parameters σ. The curvatures of them are then
calculated to obtain the set of curvature scale-space shown
in the left-hand side of Fig. 2. Scale-normalized curvatures
with adjacent scales are subtracted to obtain the difference
of curvature shown in the right-hand side of Fig. 2. The ra-
tio between adjacent scales is constant so that the scale is a
geometrical progression.

The local maximum or minimum points are detected as
feature points among the DoC. The comparison points of
curvatures are shown in Fig. 3. The horizontal axis indicates
the position based on the parameter t, and the vertical axis
indicates the DoC. Each series corresponds to the differ-
ent scale. The point (marked by x) is compared to its eight

Fig. 3 Comparing points of difference of curvature.
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Fig. 4 An example of the detected scales from two contours that one is
expanded to twice the other.

neighbors (marked by circles).
The feature point as the local maximum or minimum is

refined by the interpolation of the linear function. Finally, an
accurate feature point can be detected without the tracking
of feature points in the DoC. An example of the proposed
scale detection is shown in Fig. 4, where the ratio between
adjacent scales is defined as 21/3 from preliminary experi-
ments. The local maximum scales are detected from two
contours that one is expanded to twice the other. The values
of σ1 and σ2 are interpolated by using three adjacent points.
The value of σ2 is twice of the value of σ1 as expected. Ad-
ditional experiments are described in Sect. 4.

In practice, the resampling or downsampling tech-
niques have some advantages for noisy contours or large
contours [1], [6]. However, the resampling technique, which
is utilized in the MPEG-7 contour shape descriptor, is not
used in the proposed method. A few adjustments to the posi-
tional difference caused by the resampling or downsampling
techniques need a high computation cost because the com-
putation of DoC should be performed at the same position
on the difference scales.

3.3 Curvature Description with the Scale Invariance

In this paper, a description method for feature points is not
specified. Since the description strongly depends on ap-
plications such as shape classification, shape retrieval, and
computer vision described in Sect. 1.

Some approaches to the shape description are sug-
gested instead. Beginning at the position of the feature
point, a series of curvature is described along the contour,
which is normalized by the appropriate scale of the feature
point. This approach is similar to the SIFT descriptor. An-
other approach is to describe the relationship between two
feature points. In this case, by using one of the two appro-
priate scales, curvature values and/or the distance between
them are normalized. Feature points are extracted from the
single shape but not limited to, i.e. arbitrary combinations
of feature points from plural shapes are permitted.

Fig. 5 Example of test shapes; key, hammer, and apple.

4. Experimental Results and Discussion

4.1 Experimental Conditions

In this paper, we use the analogy between the difference of
Gaussian on an image and the difference of curvature on a
planar curve. The validity of the proposed method is con-
firmed by two experiments. One is the scale detection sta-
bility of the varying size of shape. The other is robustness
of contour fragment.

The test sequence of shapes is a subset of MPEG-7
Core Experiment CE-Shape-1 [3]. In this paper, 70 shapes
are used. Some shapes of them are shown in Fig. 5.

Two conventional methods are compared. One is the
MPEG-7 contour shape descriptor that is based on the cur-
vature scale-space. The other is the gradient-based curvature
that is based on the intensity image of contour [9], [11]. In
the following, these conventional methods are called CSS
and GbC, whereas the proposed method is called DoC.

4.2 Scale Detection Stability

First experiment shows the scale detection stability of the
varying size of shape. In this experiment, it is expected that
detected scale value of feature point which is located at the
same position among the given varying scales is proportion
to the given scale or constant. The procedure of this exper-
iment is described. A shape is shrunk/enlarged at different
given scales in order to obtain a set of contours. A set of
appropriate scale is normalized by the given scale and/or
average scale value at the same position. Normalized scale
values become almost 1.00. Finally, the standard deviations
of the set of normalized scales are then calculated, which is
defined as the stability.

The shrinkage and enlargement are performed through
a vector representation, which is produced by the con-
ventional vectorization tool [12]. This vectorization tool
converts the contour obtained from the binary image into
smooth Bézier curves. The scale of the Bézier curve is
changed and the resulting curves are rasterized to the binary
images again. The given scale value varies from 0.1 to 10.0.

The scale values detected by the proposed method
(DoC) have following characteristics. The scale value is
proportion to the given scale while each scale at the different
position on the same shape has different value. Therefore, a
set of scale value is normalized by the given scale and by the
average from scale values among the given varying scales.
The scale value detected by CSS is independent to a given
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Fig. 6 The re-normalized scales detected by the proposed method (DoC).

Fig. 7 The normalized scales detected by CSS.

Fig. 8 The re-normalized scales detected by GbC.

scale. They are normalized by the average from the scale
values among the given varying scales. The scale value de-
tected by GbC has same characteristics to the one by DoC.

The results of normalized scale value at the same posi-
tion of some feature points are shown in Figs. 6–8. The X-
and Y-axis indicate the given and detected scales which are
normalized. Each series indicates the set of feature points at
the same position from the shapes of different given scales.
The absence of points in the series implies that feature points
are not detected. Further, the standard deviations of the nor-
malized scales from 70 shapes are shown in Table 1.

These results indicate three important facts. The first
is that the proposed method detects the appropriate scales

Table 1 The standard deviation of the normalized scales.

DoC CSS GbC
0.0396 0.0573 0.0651

Fig. 9 The deteced scales from a contour fragment by the proposed
method (DoC).

Fig. 10 The deteced scales from a contour fragment by CSS.

Fig. 11 The deteced scales from a contour fragment by GbC.

from shapes of different sizes without the contour length.
The second is that the proposed method detects only fea-
ture points with correct scales. In other words, some of fea-
ture points detected by the conventional method have wrong
scale, which is away from 1.00, where the given scale val-
ues are too small. The last is that the proposed method re-
duces the standard deviation of the normalized scales by 30–
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Fig. 12 Example results of the detected feature points with dotted lines and the original contour with
heavy line. Detection methods are sequentially DoC, CSS, and GbC from the left.

Fig. 13 Example results of the detected feature points with dotted lines and the original contour with
heavy line for diverse shape. Detection methods are sequentially DoC, CSS, and GbC from the left.

40%. Consequently, the proposed method is the most stable
among all methods.

4.3 Robustness for Contour Fragment

Second experiment is robustness of contour fragment. Com-
paring the conventional methods, which are difficult to be
applied to contour fragment, a part of shape is dilated such
that whole contour length becomes short. In the followings,
the ratio of short length to whole length is called “fractional
length.” In addition, all methods are applied to the same
contour fragments. For some feature points, the relation be-
tween fractional length and detected scale, which are raw
data obtained by each method, are shown in Figs. 9–11.

The proposed method provides the entirely constant
scale values for each feature point. On the other hand, the
scales values detected by the conventional methods are vary-
ing. In the result of GbC method, detected scale values tend
to be proportion to the given fractions. Whenever the de-
tected scale values are normalized by one scale value in the
same contour fragment, stability is lower than one by the
proposed method.

This result indicates that the proposed method is the
most robust for the contour fragment where the feature point
is remained on the fragment.

4.4 Layout Characteristics of Detected Feature Points

An example of detected feature points for two shapes are
show in Figs. 12 and 13. In this figure, detected scale points
by three methods are drawn with dotted lines, which are su-
perimposed on the original contour with heavy line. The
radius of each circle is proportional to the detected scale,

whereas the center of each circle indicates the position of
the feature point.

These experiments indicate two trends. The one is
that the proposed method detects feature points with vary-
ing scales, compared to the CSS method. The other is that
the position of feature point does not correspond to the lo-
cation where the curvature is visually large, compared to the
GbC method. These detected scales can finally be used to
describe the scale-invariant features of shapes.

Curvature-based feature detection methods has disad-
vantage to diverse shape or a part of the smooth curve. In
other word, feature points are not defined when varying cur-
vature is monotone. An example of this is shown in Fig. 13.
There are no feature points on a part of the smooth curve by
three methods. This observation implies that the feature of
smooth curve should be characterized by other techniques.

5. Conclusion

In this paper, we propose the automatic scale detection
method for a contour fragment based on the difference of
curvature. The appropriate scales and their positions are de-
tected by analogy to the difference of Gaussian in the SIFT
algorithm. To calculate the differences, scale-normalized
curvature is introduced. Validity of the proposed method
is confirmed by the experiments. The proposed method pro-
vides the most stable scales of feature points among conven-
tional methods such as curvature scale-space and gradient-
based curvature. It is also confirmed that the proposed
method is robust to the contour fragments.

Compared to a curvature scale-space method like the
MPEG-7 contour shape descriptor, the proposed method as
a local feature has the following advantage. The tracking of
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feature points in different scales is not required. The appro-
priate scales are detected without the contour length. Fea-
ture points can then exist on the contour fragments or the
plural contours, which extends the application area.

There are many directions for further research based
on the appropriate scale detection. A feature description and
systematic testing are required for specific applications such
as contour fragment retrieval of a contour, classification, and
so on. Another direction is the analysis and definition of an
appropriate scale for visually large curvatures.
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