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SUMMARY Divisible Load Theory (DLT) is an established mathemat-
ical framework to study Divisible Load Scheduling (DLS). However, tradi-
tional DLT does not address the scheduling of results back to source (i.e.,
result collection), nor does it comprehensively deal with system hetero-
geneity. In this paper, the dlsrchets (DLS with Result Collection on HET-
erogeneous Systems) problem is addressed. The few papers to date that
have dealt with dlsrchets, proposed simplistic lifo (Last In, First Out) and
fifo (First In, First Out) type of schedules as solutions to dlsrchets. In
this paper, a new polynomial time heuristic algorithm, sport (System Pa-
rameters based Optimized Result Transfer), is proposed as a solution to
the dlsrchets problem. With the help of simulations, it is proved that the
performance of sport is significantly better than existing algorithms. The
other major contributions of this paper include, for the first time ever, (a)
the derivation of the condition to identify the presence of idle time in a fifo
schedule for two processors, (b) the identification of the limiting condition
for the optimality of fifo and lifo schedules for two processors, and (c) the
introduction of the concept of equivalent processor in DLS for heteroge-
neous systems with result collection.
key words: divisible load scheduling, heterogeneous systems, result col-
lection

1. Introduction

Divisible loads form a special class of parallelizable appli-
cations, which if given a large enough volume, can be ar-
bitrarily partitioned into any number of independently- and
identically-processable load fractions. Examples of appli-
cations that satisfy this divisibility property include massive
data-set processing, image processing, signal processing,
computation of Hough transforms, database search, simu-
lations, and matrix computations. Divisible Load Theory
(DLT) is the mathematical framework that has been estab-
lished to study Divisible Load Scheduling (DLS) [1]–[22].

DLT has gained popularity because of its simplicity and
deterministic nature. In a star connected network where the
center of the star acts as the master and holds the entire load
to be distributed, and the points of the star form the set of
slave processors, the basic principle of DLT to determine an
optimal schedule is the AFS (All nodes Finish Simultane-
ously) policy [17]. This states that the optimum schedule is
one in which the load is distributed such that all the nodes
involved in the computation finish processing their individ-
ual load fractions at the same time.
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In the AFS policy, after the nodes finish computing
their individual load fractions, no results are returned to the
source. In most practical applications this is an unrealis-
tic assumption, and the result collection phase contributes
significantly to the total execution time, unless each node
returns a floating point or boolean value. This is not that
uncommon, but the other cases need due consideration. All
papers that have addressed result collection to date, have ad-
vocated simplistic lifo (Last In, First Out) and fifo (First
In, First Out) sequences or variants thereof as solutions [1],
[16], [17], [23]–[26]. It has been proved in [23] that lifo
and fifo are not always optimal, and as this paper shows, the
performance of these algorithms varies widely depending on
whether it is the network links that are heterogeneous, or the
processor speeds, or both.

Several papers have dealt with DLS on heterogeneous
systems to date [1], [4], [23]–[26]. As far as can be judged,
no paper has given a satisfactory solution to the schedul-
ing problem where both the network bandwidth and com-
putation capacities of the nodes are different, and the re-
sult transfer to the source is explicitly considered, i.e., to
the DLS with Result Collection on HETerogeneous Systems
(dlsrchets) problem. Along with the AFS policy, there are
two assumptions that have implicitly pervaded DLT liter-
ature to date: (a) load is allocated to all processors, and
(b) processors are never idle. The presence of idle time in
the optimal schedule, which is a very important issue, has
been overlooked in DLT work on result collection and het-
erogeneity. For the first time, [24], [25] proved that the opti-
mal fifo schedule can have a single processor with idle time,
and that this processor can always be chosen to be the one
to which load is allocated last.

In this paper, the completely general form of dlsrchets
is tackled, with no assumptions being made regarding the
number of processors allocated load, the network and node
heterogeneity, or on the presence (or absence) of idle time.
The main contribution of this paper is the establishment of
the theoretical base for the sport (System Parameters based
Optimized Result Transfer) algorithm, and the proof of its
performance through simulation. This paper includes for the
first time ever, (a) the derivation of the condition to identify
the presence of idle time in a fifo schedule for two proces-
sors, (b) the identification of the limiting condition for the
optimality of fifo and lifo schedules for two processors, and
(c) the introduction of the concept of an equivalent proces-
sor in DLS for heterogeneous systems with result collection.
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sport does not necessarily use all processors and de-
termines the number of processors to be used based on the
system parameters (computation and communication capac-
ities). sport simultaneously finds the sequence of load allo-
cation and result collection, and the load distribution (i.e.,
the load fractions to be allocated to the processors). Given
processors sorted in the order of decreasing network link
bandwidth, the complexity of sport is, where m is the num-
ber of available processors O(m).

The rest of the paper is as follows. In Sect. 2, the sys-
tem model and the dlsrchets problem is described. The ba-
sic two processor system, the manner of evaluation of its op-
timum schedule, and the process of combination of the pro-
cessors into an equivalent processor are given in Sect. 3. In
Sect. 4, the sport algorithm is proposed. Simulation results
are presented in Sect. 5. Section 6 provides the conclusion
and future work.

2. System Model and Problem Definition

The divisible load J is to be distributed and processed on
a heterogeneous star network H = (P,L,E,C) as shown in
Fig. 1, where P = {p0, . . . , pm} is the set of m + 1 proces-
sors, and L = {l1, . . . , lm} is the set of m network links that
connect the master scheduler (source) p0 at the center of the
star, to the slave processors p1, . . . , pm. E = {E1, . . . , Em} is
the set of computation parameters of the slave processors,
and C = {C1, . . . ,Cm} is the set of communication parame-
ters of the network links. Ek is the reciprocal of the speed
of processor pk, and Ck is the reciprocal of the bandwidth
of link lk. Both are defined in time units per unit load, i.e.,
pk takes Ek time units to process a unit load transmitted to
it from p0 in Ck time units over the link lk, and Ek,Ck ≥ 0,
Ek,Ck not simultaneously zero, for k ∈ {1, . . . ,m}.

The values in E and C are assumed to be deterministic
and available at the source. Based on these parameter val-
ues, the source p0 splits J into parts (fractions) α1, . . . , αm

and sends them to the respective processors p1, . . . , pm for
computation. Each such set of m fractions is known as a load
distribution α = {α1, . . . , αm}. The source does not retain
any part of the load for computation. If it does, then it can
be modeled as an additional slave processor with computa-
tion parameter E0 and communication parameter C0 = 0.

All processors follow a single-port and no-overlap
communication model, implying that processors can com-
municate with only one other processor at a time, and com-
munication and computation cannot occur simultaneously.
The processors are continuously and exclusively available
during the course of execution of the entire process and
have sufficient buffer capacity to receive the entire load frac-
tion in a single installment from the source. The time taken
for computation and communication is a linearly increasing
function of the size of data.

The execution of the divisible load on each processor
comprises of three distinct phases — the allocation phase,
where data is sent to the processor from the source, the com-
putation phase, where the data is processed, and the result

Fig. 1 Heterogeneous star networkH .

Fig. 2 A feasible schedule for m = 3.

collection phase, where the processor sends the processed
data back to the source. The computation phase begins only
after the entire load fraction allocated to that processor is re-
ceived from the source. Similarly, the result collection phase
begins only after the entire load fraction has been processed,
and is ready for transmission back to the source. This is
known as a block based system model, since each phase
forms a block on the time line (see Fig. 2). The source starts
receiving results from the child processors only after the en-
tire load is distributed to the child processors first.

For the divisible loads under consideration, such as im-
age and video processing, Kalman filtering, matrix conver-
sions, etc., the computation phase usually involves simple
linear transformations, and the volume of returned results
can be considered to be proportional to the amount of load
received in the allocation phase. This is the accepted model
for returned results in literature to date, [4], [17], [23]–[26].
If the allocated load fraction is αk, then the returned result is
equal to δαk, where 0 ≤ δ ≤ 1. The constant δ is application
specific, and is the same for all processors for a particular
load J . For a load fraction αk, αkCk is the transmission
time from p0 to pk, αkEk is the time it takes pk to perform
the requisite processing on αk, and δαkCk is the time it takes
pk to transmit the results back to p0.

Let σa and σc be two permutations of order m that
represent the allocation and collection sequences respec-
tively, i.e., σa[k] and σc[k] denote the processor number
that occurs at index k ∈ {1, . . . ,m}. Let σa(l) and σc(l) be
two lookup functions that return the index of the processor
l ∈ {1, . . . ,m} in the allocation and collection sequences re-
spectively. The dlsrchets problem is defined as follows:

dlsrchets (DLS with Result Collection on HETeroge-
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neous Systems)

Given a heterogeneous network H = (P,L,E,C), and a di-
visible loadJ , find the sequence pair (σa, σc), and load dis-
tribution α = {α1, . . . , αm} that

Minimize ζ = 0α1 + . . . + 0αm + T ,
Subject To:

σa(k)∑

j=1

ασa[ j]Cσa[ j] + αkEk +

m∑

j=σc(k)

δασc[ j]Cσc[ j] ≤ T

k = 1, . . . ,m (1)
m∑

j=1

ασa[ j]Cσa[ j] +

m∑

j=1

δασc[ j]Cσc[ j] ≤ T (2)

m∑

j=1

α j = J (3)

T ≥ 0, αk ≥ 0 k = 1, . . . ,m (4)

In the above formulation, for a pair (σa, σc), (1) im-
poses the no-overlap constraint. The single-port communi-
cation model is enforced by (2). The fact that the entire load
is distributed amongst the processors is ensured by (3). This
is known as the normalization equation. The non-negativity
of the decision variables is ensured by constraint (4).

A linear programming problem in this form for a pair
(σa, σc) can be solved using standard linear programming
techniques in polynomial time [27]. There are m! possible
permutations each of σa and σc, and the linear program has
to be evaluated (m!)2 times to determine the globally optimal
solution (σ∗a, σ∗c, α∗). Clearly, this is impractical to do for
more than a few processors.

3. Analysis of Two Slave Processors

As mentioned in Sect. 1, traditional DLT assumes that load
is always distributed to all the processors in a network, and
that a processor is idle only up to the point where it starts
receiving its load fraction. In the case of a heterogeneous
network with result collection, this may not always be true.
As shown in Fig. 2, idle time xi may potentially be present in
each processor i because it has to wait for another processor
to release the communication medium for result transfer. In
[24], [25] it has been proved that in the optimal solution to
dlsrchets, ∀i ∈ {1 . . .m}, xi = 0, if and only if y > 0, and
that there exists a unique xi > 0 if and only if y = 0, where y
is the intervening time interval between the end of allocation
phase of processor σa[m] and the start of result collection
from processor σc[1]. For the fifo schedule in particular,
processor σa[m] can always be selected to have idle time
when y = 0, i.e., in the fifo schedule, xσa[m] > 0 if and
only if y = 0. In the lifo schedule, since y > 0 always, no
processor has idle time, i.e., ∀i ∈ {1 . . .m}, xi = 0 always
[23].

In the general case considered in this paper, for a pair
(σa, σc), the solution to the linear program defined by (1)
to (4) is completely determined by the values of δ, E, C,

Fig. 3 Two-slave network and its equivalent network.

and it is not possible at this stage to predict which proces-
sor is the one that has idle time in the optimal solution. In
fact, it is possible that not all processors are allocated load
in the optimal solution (in which case some processors are
idle throughout). The processors that are allocated load for
computation are known as the participating processors (or
participants).

Thus any heuristic algorithm for dlsrchets must find
both — the number of participants, and the load fractions
allocated to them. A polynomial time heuristic algorithm,
sport is proposed in this paper that does this simultaneously.
The foundation of the sport algorithm is laid first by analyz-
ing the case of a network with two slave processors.

3.1 Optimal Schedule in Two-Slave Network

The heterogeneous network H = (P,L,E,C) with m = 2
is shown in Fig. 3. It is defined as in Sect. 2 by P =
{p0, p1, p2}, L = {l1, l2}, E = {E1, E2}, and C = {C1,C2}.
Without loss of generality, it is assumed that J = 1 and
C1 ≤ C2. No assumptions are possible regarding the
relationship between E1 and E2, or C1 + E1 + δC1 and
C2 + E2 + δC2 (or equivalently C1 + E1 and C2 + E2).

An important parameter, ρk, known as the network pa-
rameter is introduced, which shows how fast (or slow) the
processor computation parameter Ek is with respect to the
communication parameter Ck of its network link:

ρk =
Ek

Ck
k = 1, . . . ,m

The master p0 distributes the load J between the two
slave processors p1 and p2 so as to minimize the processing
time T . Depending on the values of δ, E and C, there are
several possibilities:

1. Load is distributed to p1 only with processing time

T 1 = C1 + E1 + δC1 = C1(1 + δ + ρ1) (5)

2. Load is distributed to p2 only with processing time

T 2 = C2 + E2 + δC2 = C2(1 + δ + ρ2) (6)

3. Load is distributed to both p1 and p2. From [23]–[25],
it can be proved that as long as C1 ≤ C2, only the sched-
ules shown in Figs. 4(a), 4(b), and 4(c) can be optimal
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Fig. 4 Relevant schedules for network with m = 2.

for a two-slave network. These schedules are referred
to as Schedule f , Schedule l, and Schedule g respec-
tively. Superscripts f , l, and g are used to distinguish
the three schedules. The processing times are given
in Appendix.

A few lemmas to determine the optimal schedule for a
two-slave network are now stated.

Lemma 1: It is always advantageous to distribute the load
to both the processors, rather than execute it on the individ-
ual processors (for the system model under consideration).

Proof. From (A· 4), (A· 5), (A· 16), (A· 17), (A· 24), and
(A· 25), it can be concluded that:

1. δC2 ≤ C1(1 + δ + ρ1) ⇒ T f ≤ T 1

2. C1 ≤ C2 ⇒ T f ≤ T 2

3. E1 ≥ 0 ⇒ T l ≤ T 1

4. C1 ≤ C2 ⇒ T l ≤ T 2

5. δC2 ≤ C1(1 + δ + ρ1) ⇒ T g ≤ T 1

6. C1 ≤ C2 ⇒ T g ≤ T 2

By assumption, C1 ≤ C2. Hence, from points 2, 4, and
6 above, execution time of Schedules f , l, and g is always
smaller than T 2.

By definition, E1 > 0. From points 1, 3, and 5 above, as
long as δC2 ≤ C1(1+δ+ρ1), execution time of Schedules f ,
l, and g is less than T 1.

Finally, if δC2 > C1(1 + δ + ρ1), then T f and T g are
greater than T 1, but since T l is always less than T 1, load can
be distributed in Schedule l to reduce the processing time.

Thus, it is always advantageous to distribute load to
two processors instead of one under the system model under
consideration.

Lemma 1 is important because it helps sport determine
the number of participants in a general schedule. Details are
given in Sect. 4.1.

From Lemma 1, if δC2 ≤ C1(1 + δ + ρ1), then any
of the Schedules f , g, or l could be optimal. The limiting
condition between Schedule f and Schedule g is stated in

the following lemma.

Lemma 2: ρ1ρ2 ≤ δ is a necessary and sufficient condition
to indicate the presence of idle time in the fifo schedule (i.e.
Schedule g).

Proof. If the values of δ, E, and C, are such that they ne-
cessitate the presence of idle time in a fifo schedule, then
the schedule can be reduced to one similar to that shown in
Fig. 4(c).

In that case, idle time in processor p2 occurs only when
α
g
2E2 ≤ δαg1C1. From (A· 22), this condition reduces to
ρ1ρ2 ≤ δ.

The simplicity of the condition to detect the presence of
idle time in the fifo schedule is both pleasing and surprising,
and as far as can be judged, has been derived for the first
time ever. Further confirmation of this condition is obtained
in Sect. 3.2.

The following theorem can now be stated.

Theorem 1 (Optimal Schedule Theorem): The optimal
schedule for a two-slave network can be found as follows:

1. If δC2 > C1(1 + δ + ρ1), then Schedule l is optimal.
2. If δC2 ≤ C1(1 + δ + ρ1), and both (A· 22) and (A· 26)

hold, then Schedule g is optimal. Else if (A· 26) does
not hold, then Schedule l is optimal.

3. If δC2 ≤ C1(1+ δ+ρ1), (A· 22) does not hold, and con-
dition (A· 18) holds, then Schedule f is optimal. Else
if (A· 18) does not hold, then Schedule l is optimal.

Proof. The proof follows directly from Lemmas 1 and 2,
and (A· 18) and (A· 26).

All the conditions use only the data provided in the def-
inition of the problem, with the exception of (A· 18) which
requires the computation of T f .

It can be argued that the optimal schedule can be de-
termined by directly computing the values of T f , T l, and
T g using (A· 3), (A· 14), and (A· 23) respectively. While
this fact cannot be denied, it defeats the ultimate purpose of
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this research, which is to identify relationships between the
system parameters that influence the optimality of different
schedules.

Another very interesting insight into the problem is
provided by (A· 18). The value C1C2/(C2−C1) forms a lim-
iting condition between the optimality of Schedules f and l.
It can be seen that as long as T f is smaller than this value, it
is also smaller than T l.

As the network links become homogeneous, the dif-
ference (C2 − C1) becomes small, and Schedule f is likely
to be optimal because T f would be less than the large value
C1C2/(C2−C1). Similarly, as the network links become het-
erogeneous, the value C1C2/(C2 − C1) becomes small, and
Schedule l would tend to be optimal because T f can easily
exceed this value.

Rosenberg reached a similar conclusion with the help
of simulations [26]. However this condition is analytically
derived for the first time in DLT literature.

Once the optimal schedule (i.e., σ∗a and σ∗c) is known,
it is trivial to calculate the optimal load distribution α∗ using
the equations in Appendix.

The optimal solution to dlsrchets, (σ∗a, σ∗c, α∗), for a
network with two slave processors is a function of the sys-
tem parameters and the application under consideration, be-
cause of which, no particular sequence of allocation and col-
lection can be defined a priori as the optimal sequence. The
optimal solution can only be determined once all the param-
eters become known.

3.2 Equivalent Processor and Equivalent Network

To extend the above result to the general case with m slave
processors, the concept of an equivalent processor is intro-
duced. Consider the system in Fig. 3. The processors p1

and p2 are replaced by a single equivalent processor p1:2

with computation parameter E1:2, connected to the root by
an equivalent link l1:2 with communication parameter C1:2.
The resulting network is called the equivalent network. The
values of the equivalent parameters for the three schedules
are given below.

In Fig. 5(a), the top half shows Schedule f for the two
processors in the original network, while the bottom half
shows the corresponding schedule for the equivalent net-
work. Similarly Figs. 5(b) and 5(c) show the equivalent net-
works for Schedules l and g respectively. If the initial load
distribution is α = {α1, α2}, and the processing time is T ,
then the equivalent network satisfies the following proper-
ties:

• The load processed by p1:2 is α1:2 = α1 + α2 = 1.
• The processing time is unchanged and equal to T .
• The time spent in load distribution and result collec-

tion is unchanged, i.e., α1:2C1:2 = α1C1 + α2C2 and
δα1:2C1:2 = δα1C1 + δα2C2.

• The time spent in load computation is equal to the in-
tervening time interval between the end of allocation
phase and the start of result collection phase, i.e.,

– For Schedule f , α1:2E f
1:2 = α1E1−α2C2 = α2E2−

δα1C1.
– For Schedule l, α1:2El

1:2 = α2E2 = α1E1 − α2C2 −
δα2C2.

– For Schedule g, α1:2Eg1:2 = 0.

This leads to the following theorem:

Theorem 2 (Equivalent Processor Theorem): In a hetero-
geneous networkH with m = 2, the two slave processors p1

and p2 can be replaced without affecting the processing time
T , by a single (virtual) equivalent processor p1:2 with equiv-
alent parameters C1:2 and E1:2, such that C1 ≤ C1:2 ≤ C2 and
E1:2 ≤ E1, E2.

Proof. From (A· 6), the processing time of Schedule f can
be written as,

T f = α1:2C f
1:2 + α1:2E f

1:2 + δα1:2C f
1:2

where

α1:2 = α
f
1 + α

f
2 = 1

C f
1:2 =

C1C2(r f
1 + r f

2 )

C1r f
1 + C2r f

2

(7)

E f
1:2 =

C1C2(ρ1ρ2 − δ)
C1r f

1 +C2r f
2

(8)

Similarly, from (A· 19), the processing time of Schedule l
can be written as,

T l = α1:2Cl
1:2 + α1:2El

1:2 + δα1:2Cl
1:2

where

α1:2 = α
l
1 + α

l
2 = 1

Cl
1:2 =

C1C2(rl
1 + rl

2)

C1rl
1 +C2rl

2

(9)

El
1:2 =

C1C2ρ1ρ2

C1rl
1 + C2rl

2

(10)

From (A· 23), the processing time of Schedule g can be writ-
ten as

T g = α1:2Cg1:2 + α1:2Eg1:2 + δα1:2Cg1:2

where,

α1:2 = α
g
1 + α

g
2 = 1

Cg1:2 =
C1C2(1 + ρ1)

C1ρ1 +C2
(11)

Eg1:2 = 0 (12)

It can be easily verified that these representations satisfy the
properties of equivalent processor mentioned above.

For Schedule f , l, and g, α1:2C1:2 = α1C1 + α2C2,
α1 = 1 − α2, and α1:2 = 1, so the equivalent communica-
tion parameter can be written as C1:2 = C1 + α2(C2 − C1).
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Fig. 5 Timing diagrams for equivalent processor.

Since by definition, 0 ≤ α2 ≤ 1, it immediately follows that
C1 ≤ C1:2 ≤ C2.

Similarly, from the definition of equivalent network,
E f

1:2 = α1E1 − α2C2 = α2E2 − δα1C1 and El
1:2 = α2E2 =

α1E1 − α2C2(1 + δ). Since 0 ≤ (α1, α2) ≤ 1, it follows that
E f

1:2 ≤ E1, E2 and El
1:2 ≤ E1, E2.

Finally, Eg1:2 = 0 ⇒ Eg1:2 ≤ E1, E2, since by definition,
E1, E2 > 0.

The equivalent processor for Schedule f provides ad-
ditional confirmation of the condition for the presence of
idle time in a fifo schedule (i.e. use of Schedule g). It is
known that idle time can exist in a fifo schedule only when
the intervening time interval y = 0. According to the defini-
tion of equivalent processor, this interval corresponds to the
equivalent computation capacity E f

1:2. From (8), this value
becomes zero only when ρ1ρ2 − δ = 0. Thus, if ρ1ρ2 < δ,
then idle time must exist in the fifo schedule.

The equivalent processor enables replacement of two
processors by a single processor with communication pa-
rameter with a value that lies between the values of com-
munication parameters of the original two links. Because
of this property, if the processors are arranged so that C1 ≤
C2 ≤ . . . ≤ Cm, and two processors are combined at a time
sequentially, then the resultant equivalent processor does not
disturb the order of the sequence. This property is exploited
in the sport algorithm, which is described next.

4. Proposed Algorithm

The proposed sport algorithm is as follows.

Algorithm 1 (sport):

1: Arrange p1, . . . , pm s.t. C1 ≤ C2 ≤ . . . ≤ Cm

2: σa ← 1, σc ← 1, α1 ← 1
3: for k := 2 to m do
4: C1←C1:k−1, E1←E1:k−1, C2←Ck, E2←Ek

5: if δC2 > C1(1 + δ + ρ1) then
6: /* T l < T f , T g, use Schedule l */
7: call schedule lifo(C1,C2, E1, E2)
8: else
9: /* Need to check other conditions */

10: if ρ1ρ2 ≤ δ then
11: /* Possibility of idle time */

12: if C2 ≤ C1

(
1 +

(1 + ρ1)ρ2

δ(1 + δ + ρ2)

)
then

13: /* T g < T l, use Schedule g */
14: call schedule idle(C1,C2, E1, E2)
15: break for
16: else
17: /* T l < T g, use Schedule l */
18: call schedule lifo(C1,C2, E1, E2)
19: end if
20: else
21: /* No idle time present */

22: if T f ≤ C1C2

C2 −C1
then

23: /* T f < T l, use Schedule f */
24: call schedule fifo(C1,C2, E1, E2)
25: else
26: /* T l < T f , use Schedule l */
27: call schedule lifo(C1,C2, E1, E2)
28: end if
29: end if
30: end if
31: end for
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32: n← numberOfProcessorsUsed
33: /* Find load fractions */
34:

αk ←
⎧⎪⎪⎨⎪⎪⎩
αk ·∏n

j=2 α1: j if k = 1

αk ·∏n
j=k α1: j if k = 2, . . . , n

35: T ← C1:n + E1:n + δC1:n

procedure schedule idle(C1,C2, E1, E2)

1: α1:k−1 ← C2

C1ρ1 +C2

2: αk ← C1ρ1

C1ρ1 + C2
3: /* Update sequences for fifo */
4: σa ← [σa k]
5: σc ← [σc k]
6: /* Compute equivalent processor parameters */

7: C1:k ← C1C2(1 + ρ1)
C1ρ1 +C2

8: E1:k ← 0
9: numberOfProcessorsUsed ← k

10: return

end procedure

procedure schedule lifo(C1,C2, E1, E2)

1: rl
1 ← ρ1

2: rl
2 ← 1 + δ + ρ2

3: α1:k−1 ←
C2rl

2

C1rl
1 +C2rl

2

4: αk ←
C1rl

1

C1rl
1 + C2rl

2
5: /* Update sequences for lifo */
6: σa ← [σa k]
7: σc ← [k σc]
8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(rl

1 + rl
2)

C1rl
1 + C2rl

2

10: E1:k ← C1C2ρ1ρ2

C1rl
1 + C2rl

2
11: numberOfProcessorsUsed ← k
12: return

end procedure

procedure schedule fifo(C1,C2, E1, E2)

1: r f
1 ← δ + ρ1

2: r f
2 ← 1 + ρ2

3: α1:k−1 ←
C2r f

2

C1r f
1 + C2r f

2

4: αk ←
C1r f

1

C1r f
1 +C2r f

2
5: /* Update sequences for fifo */
6: σa ← [σa k]
7: σc ← [σc k]
8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(r f

1 + r f
2 )

C1r f
1 +C2r f

2

10: E1:k ← C1C2(ρ1ρ2 − δ)
C1r f

1 +C2r f
2

11: numberOfProcessorsUsed ← k
12: return

end procedure

4.1 Algorithm Explanation

If m = 2, finding the optimal schedule and load distribu-
tion is trivial. In the following, it is assumed that m ≥ 3.
At the start, the processors are arranged so that C1 ≤ C2 ≤
. . . ≤ Cm, and two processors with the fastest communi-
cation links are selected. The optimal schedule and load
distribution for the two processors are found according to
Theorem 1. If Schedule f or l is found optimal, then the
two processors are replaced by their equivalent processor.
In either case, since C1 ≤ C1:2 ≤ C2, the ordering of the
processors does not change. In the subsequent iteration, the
equivalent processor and the processor with the next fastest
communication link are selected and the steps are repeated
until either all processors are used up, or Schedule g is found
to be optimal. If Schedule g is found to be optimal in any
iteration, then the algorithm exits after finding the load dis-
tribution for that iteration.

An example of how the sport algorithm works for a
network with m = 3 is given in Fig. 6. In Fig. 6, Schedule l
is found to be optimal for processors p1 and p2, and Sched-
ule f is optimal for their equivalent processor p1:2 and the
processor p3. The resulting timing diagrams are as shown.

Now assume that this network has several more proces-
sors. Since sport adds processors one by one to the set of
participants, Lemma 1 implies that the addition should be
greedy, i.e. as many processors as possible should be used
to minimize the processing time. If in the third iteration,

Fig. 6 An example of sport algorithm.
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Schedule g is found to be optimal for the processors p1:3

and p4, then in that case, the intervening time interval be-
tween the end of load allocation to p4 and the start of result
collection from p2 would be zero. Since additional proces-
sors are always inserted (allocated load) within this interval,
it would not be possible to allocate load to any more pro-
cessors, and the algorithm exits. Thus Schedule g forms
the logical termination criterion for the algorithm unless all
processors in the network are used. When Schedule g is
found to be the optimal schedule, all remaining processors
are allocated zero load, and their index in the allocation and
collection sequence is assigned zero value.

The computation of the allocation and collection se-
quences is straightforward. The allocation sequence σa is
maintained in the order of decreasing communication link
bandwidth of the processors. Irrespective of the schedule
found optimal in iteration k, k is always appended to σa.
The collection sequence σc is constructed in the following
manner:

• If Schedule f or g is found optimal in iteration k, k is
appended to σc.

• If Schedule l is found optimal in iteration k, k is
prepended to σc.

The calculation of load distribution to the processors
occurs simultaneously with the search for the optimal sched-
ule. As shown in Fig. 7, the algorithm creates a binary tree
of load fractions. If the number of processors participating
in the computation is n, 2 ≤ n ≤ m, the root node of the
binary tree is α1:n and the leaf nodes represent the final load
fractions allocated to the processors. The value of the root
node need not be calculated as it is equal to one. The in-
dividual load fractions, αk, are initially assigned value α′k
(say), and then updated at the end as:

αk =

⎧⎪⎪⎨⎪⎪⎩
α′k ·
∏n

j=2 α1: j if k = 1

α′k ·
∏n

j=k α1: j if k = 2, . . . , n
(13)

This is equivalent to traversing the binary tree from the root
to each leaf node and taking the product of the nodes en-
countered (see Fig. 7). This calculation can be easily imple-
mented in O(m) time by starting with the computation of αn,
and storing the values of the product terms (i.e.

∏
α1: j) for

each processor and then using that value for the next proces-
sor.

Once the sequences (σa, σc) and load distribution α are
found, calculating the processing time is trivial. The pro-
cessing time is simply the sum of the (equivalent) parame-
ters of the equivalent processor p1:n, i.e., T = C1:n + E1:n +

δC1:n.

4.2 Complexity and Discussion

In sport, defining the allocation sequence by sorting the val-
ues of Ck requires O(m log m) time, while finding the collec-
tion sequence and load distribution requires O(m) time in the
worst case. Thus, if sorted values of Ck are given, then the

Fig. 7 Calculating the load fractions.

overall complexity of the algorithm is polynomial in m and
is equal to O(m).

The equivalent processor method works because:

• The equivalent processor maintains the positions of the
processors in the allocation sequence in order of de-
creasing communication bandwidth (increasing value
of communication parameter).

• Two processors in each iteration are kept immediately
successive in the final ordering.

• All equations are linear. So irrespective of the final
time interval T , the respective positions and load frac-
tions are not changed.

It follows that if latencies are considered (i.e. computation
and communication costs are affine functions of the size
of data) in the system model, then the equivalent proces-
sor method may not work. However most applications of
DLS where result collection is important, involve transfers
of large volumes of data, and latencies can be safely ignored.

As noted earlier in Sect. 3.1, when result collection
phase is considered along with heterogeneous networks, at
this stage at least, it is not possible to a priori define any
single sequence as the optimum sequence for allocation or
collection. Nor is it possible to determine a criterion for
the optimal number of processors to be used in the com-
putation. The number of processors used and the optimal
sequences depend on the communication and computation
parameters of the processors and the application under con-
sideration (δ). Because of this, it is also not possible to de-
rive closed-form equations for the load fractions or the total
processing time.
sport does not guarantee a globally optimal solution

to the dlsrchets problem. For example, if C = {10, 20, 30},
E = {5, 15, 25}, and δ = 0.5, the globally optimal solution
is σ∗a = {1, 2, 3}, σ∗c = {2, 3, 1}, and α∗ = {0.88, 0.08, 0.04},
while the solution found by sport is σa = {1, 2, 3}, σc =
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{3, 2, 1}, and α = {0.88, 0.1, 0.02}. However, since the solu-
tion (sport) is built on locally optimal values by considering
two processors at a time, the error as compared to the global
optimum is reduced to some degree.

Finding the conditions for the minimization of the error
is a part of the future work.

5. Simulation Results and Analysis

In the simulations, all Ek and Ck are defined in the same
time units. On open networks such as the Internet, and
Grid computing platforms, it is not unusual for processors
to have widely varying values of Ek and Ck, with the ra-
tios min(Ek) : max(Ek) and min(Ck) : max(Ck) reaching
1:100 [28]. Further, they can appear in any combination.
For example, a fast processor may have a very slow network
connection, while a processor with a fast link may be over-
loaded and not have enough computation speed. Along with
system heterogeneity, it is important to verify the effect of
the application on the algorithms. To rigorously test the per-
formance of sport, several simulations were performed with
different ranges for Ek, Ck, and δ.

5.1 Simulation Set A

The performance of sport was compared to four algorithms,
viz. opt, fifoc, lifoc, and iterlp, each of which is described
below.

The globally optimal schedule opt is obtained after
evaluation of the linear program for all possible (m!)2 per-
mutations of (σa, σc). The MATLABTM linear program
solver linprog is used to determine the optimal solution
to the linear program defined by constraints (1) to (4) for
each permutation pair. The processing time for each pair is
calculated, and the sequence pair and load distribution that
results in the minimum processing time is selected as the opt
solution. This ensures that the minimal set of processors is
used and the optimal processing time is found.
lifoc and fifoc heuristics are as follows. In fifoc, pro-

cessors are allocated load and result are collected in the or-
der of decreasing communication link bandwidth of the pro-
cessors. In lifoc, load allocation is in the order of decreas-
ing communication link bandwidth of the processors, while
result collection is the reverse order of increasing communi-
cation link bandwidth of the processors.

For example let C = {20, 10, 15}, E = {5, 15, 10}.
The processors are first sorted in the order of decreasing
communication link bandwidth (i.e. by increasing value of
Ck). The sorted processor numbers give the allocation se-
quence σa = {2, 3, 1} for both fifoc and lifoc. For fi-
foc, the result collection sequence, is the same as σa, i.e.
σc

∣∣∣
fifoc
= {2, 3, 1}, and for lifoc, the result collection se-

quence is the reverse of σa, i.e. σc

∣∣∣
lifoc
= {1, 3, 2}. For fifoc,

the sequence pair (σa, σc) so obtained, along with the sets
C and E, and δ, are used to construct the linear program de-
fined by constraints (1) to (4), which is passed to the linear
program solver linprog, that determines the optimal fifoc

solution. For lifoc, using the transformation explained in
[23], the optimal solution is found by using the closed form
equations given in [14].

The iterlp heuristic finds a solution by iteratively solv-
ing linear programs as follows. Processors are first sorted by
increasing value of Ck (i.e., decreasing value of communi-
cation link bandwidth). The first two processors are selected
and the optimal (σa, σc) pair (the one with the lowest pro-
cessing time for the two processors) is determined by solv-
ing the linear program defined by the constraints (1) to (4)
four times for each permutation of the σa and σc. The next
processor in the sequence is added in the next iteration. The
new processor can be interleaved at any position in (σa, σc),
but with an additional constraint that the relative positions
of processors already determined are maintained. By con-
straining the number of possible sequences in this manner,
if the number of processors in an iteration is k, k ≤ m, then
k2 linear programs are solved in that iteration instead of the
possible (k!)2.

For example, if the optimal sequences at the end of the
first iteration are σ1

a = {1, 2} and σ1
c = {2, 1}, then in the

second iteration, the set of possible allocation sequences is
Σ2

a = {(3, 1, 2), (1, 3, 2), (1, 2, 3)}, and the set of possible col-
lection sequences is Σ2

c = {(3, 2, 1), (2, 3, 1), (2, 1, 3)}. In any
iteration, if processor k is allocated zero load, then the algo-
rithm terminates and does not proceed to the next iteration
with k + 1 processors. This is similar to sport, except for
the fact that equivalent processor cannot be used, and in the
worst case,

∑m
k=1 k2 = O(m3) linear programs have to be

solved. It is computationally much too expensive to be used
practically for large values of m, but can be used to compare
the performance of other heuristic algorithms because of its
near-optimal performance.

Preliminary simulations for other heuristic algorithms,
viz. fifo, lifo, fifoe, lifoe, and sumce, revealed large errors
in favor of sport, and it was decided not to pursue them fur-
ther. The solutions to fifo and lifo are calculated similar to
fifoc and lifoc except for the fact that the processors are not
initially sorted. fifoe and lifoe distribute load fractions in
the order of decreasing computation speed (i.e., increasing
value of computation parameter, Ek). sumce distributes and
collects load fractions in the order of increasing value of the
sum Ck+Ek+δCk (equivalent to sorting by the sum Ck+Ek).

To explore the effects of processor parameter values on
the performance of the algorithms, several types of simula-
tions were carried out as follows:

A1. C homogeneous, E homogeneous
Twenty-five different cases are considered, and the val-
ues for C and E in each case are obtained from the
intervals [Cmin,Cmax] and [Emin, Emax] defined in Ta-
ble 1. In each case, the intervals are partitioned into m
equal-sized, contiguous, non-overlapping sub-intervals
of size (Cmax − Cmin)/m and (Emax − Emin)/m. If
these sub-intervals are represented as Ic1, . . . , Icm and
Ie1, . . . , Iem, then for each case, m2 sub-cases can be
defined by taking the Cartesian product of the inter-
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Table 1 Parameters for simulation set A.

Case Ck ∈ Ek ∈ Case Ck ∈ Ek ∈
1 [1,10] [1,10] 14 [10,100] [1,100]
2 [1,10] [10,100] 15 [10,100] [10,1000]
3 [1,10] [100,1000] 16 [10,1000] [1,10]
4 [1,10] [1,100] 17 [10,1000] [10,100]
5 [1,10] [10,1000] 18 [10,1000] [100,1000]
6 [1,100] [1,10] 19 [10,1000] [1,100]
7 [1,100] [10,100] 20 [10,1000] [10,1000]
8 [1,100] [100,1000] 21 [100,1000] [1,10]
9 [1,100] [1,100] 22 [100,1000] [10,100]
10 [1,100] [10,1000] 23 [100,1000] [100,1000]
11 [10,100] [1,10] 24 [100,1000] [1,100]
12 [10,100] [10,100] 25 [100,1000] [10,1000]
13 [10,100] [100,1000]

vals, i.e. {(Ic1, Ie1), (Ic1, Ie2), . . . , (Icm, Iem)}. For each
sub-case, the intervals are uniformly sampled to gen-
erate the communication and computation parameters.
Sampling the sub-intervals in this manner not only gen-
erates a homogeneous system, but also it is possible to
compare a “fast” and (comparatively) “slow” homoge-
neous system.

A2. C homogeneous, E heterogeneous
Similar to Set A1, m sub-intervals Ic1, . . . , Icm are used
for the communication parameters, but the computa-
tion parameters are generated by sampling the interval
Ie = [Emin, Emax]. This creates m sub-cases with inter-
vals {(Ic1, Ie), . . . , (Icm, Ie)}, such that in each sub-case,
the communication parameters are homogeneous, but
the computation parameters are heterogeneous.

A3. C heterogeneous, E homogeneous
This is the complement of Set A2, and the m sub-
cases have intervals {(Ic, Ie1), . . . , (Ic, Iem)}, where Ic =

[Cmin,Cmax], such that the computation parameters are
homogeneous and the communication parameters are
heterogeneous.

A4. C heterogeneous, E heterogeneous
Similar to the previous sets, the sub-intervals
Ic1, . . . , Icm and Ie1, . . . , Iem for each case are found.
Each sub-interval is sampled once to generate a total of
m values each for the communication and computation
parameters. The values undergo a random permutation
first before being assigned to the processors. Sampling
the sub-intervals in this manner minimizes the possibil-
ity of two processors being allocated similar communi-
cation or computation parameters and generates a truly
heterogeneous system. There are no sub-cases here.

For each set A1 to A4 mentioned above, simulations were
carried out for m = 4, 5 and δ = 0.2, 0.5, 0.8. For each vari-
ant algorithm, viz. opt, sport, iterlp, lifoc, and fifoc, at
each value of m and δ, 100 simulation runs were carried out
for each of the sub-cases in sets A1 to A3, and the 25 cases
in Set A4. Let v = 1, . . . , 4 represent the four variant algo-
rithms sport, iterlp, lifoc, and fifoc. The total processing
time for each variant, Tv, was calculated in each run and the
percentage deviation from the optimal processing time, ΔTv,

for each variant was calculated as:

ΔTv =
Tv − Topt

Topt
∗ 100% v = 1, . . . , 4

Further processing and analysis is explained individually for
each set below. Plots are to log-scale to magnify the values
close to zero. Not all plots are shown on account of space
considerations.

A1. C homogeneous, E homogeneous
In this set, for each case in Table 1, there are 16 and 25
sub-cases for m = 4 and 5 respectively. The first sub-
case represents a system with fast network links and
high computation speed, while the last sub-case repre-
sents a system with slow network links and low com-
putation speed. The intermediate sub-cases represent
various other combinations of network and computa-
tion speed.
The cases in Table 1 are defined with intervals differ-
ing in both interval width (ratio) as well as the abso-
lute values of the communication and computation pa-
rameters. To aggregate the performance obtained over
all the intervals, the error values of the individual sub-
cases should be averaged over the 25 cases in Table 1
to give the final mean percent error for each sub-case.
Let i = 1, . . . , 25 represent the cases in Table 1, and j =
1, . . . ,m2 represent the sub-cases in each case. Then
for case i, sub-case j, 100 simulation runs generate 100
values ΔT i

v jk, k = 1, . . . , 100. These are averaged to get

the mean error with respect to optimal, ΔT
i
v j, for each

variant:

ΔT
i
v j =

∑100
k=1 ΔT i

v jk

100
i = 1, . . . , 25,

j = 1, . . . ,m2, v = 1, . . . , 4

Finally, for each variant, the values ΔT
i
v j are averaged

over the 25 cases in Table 1, to compute the final mean
percent error, 〈ΔT v j〉 for that variant in each sub-case:

〈ΔT v j〉 =
∑25

i=1 ΔT
i
v j

25
j = 1, . . . ,m2, v = 1, . . . , 4

These values of 〈ΔT v j〉 are plotted in Figs. 8 and 9 for
(m, δ) pairs (4, 0.2) and (5,0.8) respectively.
Because the network links are homogeneous, fifoc is
expected to perform well. It is observed that sport per-
forms almost exactly the same as fifoc, with error be-
tween 0.1% and 0.01% ≈ 0. iterlp performance is
even better, while lifoc has comparatively large error,
and the error increases with increase in value of δ.

A2. C homogeneous, E heterogeneous
In this set, for each case in Table 1, there are 4 and 5
sub-cases for m = 4 and 5 respectively. The first sub-
case represents a system with fast network links, while
the last sub-case represents a system with slow network
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Fig. 8 〈ΔT 〉 in set A1 for m = 4, δ = 0.2.

Fig. 9 〈ΔT 〉 in set A1 for m = 5, δ = 0.8.

Fig. 10 〈ΔT 〉 in set A2 for m = 4, δ = 0.5.

links. The computation speed is heterogeneous. The
values of 〈ΔT v j〉 for the sub-cases are calculated as ex-
plained in set A1 by averaging over the 25 cases in Ta-
ble 1. The only difference is that the value of j ranges
from 1, . . . ,m instead of from 1, . . . ,m2 as in set A1.
Figs. 10 and 11 show the plots for (m, δ) pairs (4, 0.5)
and (5,0.2) respectively.
Again it is observed that as long as the network links

Fig. 11 〈ΔT 〉 in set A2 for m = 5, δ = 0.2.

Fig. 12 〈ΔT 〉 in set A3 for m = 4, δ = 0.8.

are homogeneous, sport, iterlp, and fifoc are insen-
sitive to the heterogeneity in the computation speed
of the processors with average error between 0.1% to
0.001% ≈ 0. On the other hand, errors in lifoc persist
and increase with δ.

A3. C heterogeneous, E homogeneous
As in set A2, this set too has 4 and 5 sub-cases for m =
4 and 5 respectively. The first sub-case represents a
system with fast computation speed, while the last sub-
case represents a system with slow computation speed.
The network links are heterogeneous. The values of
〈ΔT v j〉 are calculated analogous to set A2. The plots for
(m, δ) pairs (4, 0.8) and (5, 0.5) are shown in Figs. 12
and 13 respectively.
This simulation set clearly shows the adaptiveness of
sport. fifoc, which had almost zero error in the previ-
ous two sets, now has large error as compared to the op-
timal schedule. sport however, continues to have low
error values around 0.1% along with lifoc and iterlp.

A4. C heterogeneous, E heterogeneous
Since there are no sub-cases in this set, for each case
i = 1, . . . , 25, in Table 1, 100 simulation runs generate
100 values ΔT i

vk, k = 1, . . . , 100. These 100 values are
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Fig. 13 〈ΔT 〉 in set A3 for m = 5, δ = 0.5.

Fig. 14 〈ΔT 〉 in set A4 for m = 4.

averaged to compute the mean error from optimal ΔT
i
v:

ΔT
i
v =

∑100
k=1 ΔT i

vk

100
i = 1, . . . , 25, v = 1, . . . , 4

The final error values for each variant 〈ΔT v〉 are calcu-
lated by averaging over the 25 cases in Table 1.

〈ΔT v〉 =
∑25

i=1 ΔT
i
v

25
v = 1, . . . , 4

The values of 〈ΔT v〉 for δ = 0.2, 0.5, 0.8 at m = 4 and 5
are shown in Figs. 14 and 15 respectively.
sport, lifoc, and iterlp are seen adapt to the hetero-
geneity in the processor computation and network link
speeds. The percent error of fifoc increases with the
increase in δ, but there is a reduction in the error of the
other three variants.

Though not strictly applicable, some trends can be identi-
fied:

• In set A1, for the same value of δ, errors for “fast” ho-
mogeneous systems are higher than “slow” homoge-
neous systems.

Fig. 15 〈ΔT 〉 in set A4 for m = 5.

• In sets A2 and A3, for the same value of δ, errors for
the “fast” and heterogeneous systems are higher than
the “slow” and heterogeneous systems.

• In sets A1, A2, and A3, where either one or both of the
variables are homogeneous, the average error increases
with increase in δ. However, in set A4, error reduces
with δ, for the better performing algorithms.

The minimum and maximum mean error values of each al-
gorithm are tabulated in Tables 2 and 3. Scientific notation
is used to enable a quick comparison of the algorithms in
terms of orders of magnitude. It can be observed that over-
all in sets A1 and A2, the minimum and maximum errors
in lifoc are 2 orders of magnitude higher than sport, iterlp,
and fifoc. On the other hand in sets A3 and A4, fifoc er-
ror is 2 to 3 orders of magnitude higher than the other three
algorithms.

The extensive simulations carried out in Set A clearly
show that:

• If network links are homogeneous, then lifoc perfor-
mance suffers for both homogeneous and heteroge-
neous computation speeds.

• If network links are heterogeneous, then fifoc perfor-
mance suffers for both homogeneous and heteroge-
neous computation speeds.

• sport performance is also affected to a certain degree
by the heterogeneity in network links and computation
speeds, but since sport does not use a single predefined
sequence of allocation and collection, it is able to better
adapt to the changing system conditions.

• iterlp performance is somewhat better than sport, but
is expensive to compute. sport generates similar sched-
ules at a fraction of the cost.

5.2 Simulation Set B

To evaluate the performance of the algorithms with the in-
crease in number of nodes, the processing times of fifoc and
lifoc were compared with sport. This is because, opt and
iterlp cannot be practically carried out beyond m = 5 and
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Table 2 Minimum statistics for simulation set A.

Set m
δ = 0.2 δ = 0.5 δ = 0.8

sport iterlp lifoc fifoc sport iterlp lifoc fifoc sport iterlp lifoc fifoc

A1
4 5.73e-03 4.32e-03 8.08e-01 5.76e-03 2.20e-02 1.06e-02 1.07e+00 2.21e-02 3.58e-02 1.78e-02 1.16e+00 3.66e-02
5 7.89e-04 6.90e-04 7.21e-01 7.89e-04 5.40e-03 4.21e-03 9.63e-01 5.30e-03 1.67e-02 9.13e-03 8.47e-01 1.67e-02

A2
4 1.01e-02 5.78e-03 8.41e-01 1.01e-02 2.37e-02 1.43e-02 1.15e+00 2.40e-02 3.59e-02 2.06e-02 1.22e+00 3.71e-02
5 3.34e-03 2.10e-03 7.93e-01 3.34e-03 1.06e-02 8.92e-03 1.10e+00 1.07e-02 2.01e-02 1.69e-02 1.06e+00 2.02e-02

A3
4 2.03e-01 1.80e-03 1.05e-01 1.61e+00 1.12e-01 5.13e-03 9.59e-02 4.43e+00 2.01e-02 4.01e-02 2.01e-02 7.11e+00
5 3.96e-01 1.90e-01 8.90e-02 1.75e+00 5.34e-02 9.32e-02 5.13e-02 4.74e+00 5.14e-02 4.98e-03 5.14e-02 7.42e+00

A4
4 4.95e-06 1.97e-16 4.92e-06 1.05e+00 3.09e-02 2.77e-15 3.09e-02 3.23e+00 6.15e-02 4.01e-03 6.15e-02 5.58e+00
5 1.08e-02 5.81e-04 2.75e-06 1.15e+00 5.84e-02 2.18e-03 5.84e-02 3.74e+00 9.43e-11 0.00e+00 7.05e-11 6.38e-01

Table 3 Maximum statistics for simulation set A.

Set m
δ = 0.2 δ = 0.5 δ = 0.8

sport iterlp lifoc fifoc sport iterlp lifoc fifoc sport iterlp lifoc fifoc

A1
4 5.34e-02 3.09e-02 3.11e+00 5.61e-02 1.84e-01 7.57e-02 4.20e+00 2.02e-01 2.57e-01 1.13e-01 3.39e+00 3.08e-01
5 8.24e-02 4.87e-02 3.00e+00 8.79e-02 2.26e-01 1.19e-01 3.91e+00 2.30e-01 4.10e-01 2.19e-01 3.17e+00 4.37e-01

A2
4 3.03e-02 1.69e-02 1.83e+00 3.06e-02 9.35e-02 4.93e-02 3.10e+00 1.10e-01 2.44e-01 1.10e-01 2.91e+00 2.79e-01
5 3.66e-02 2.61e-02 2.24e+00 3.68e-02 1.15e-01 8.34e-02 2.75e+00 1.26e-01 2.72e-01 1.27e-01 2.84e+00 2.89e-01

A3
4 4.01e-01 3.42e-01 4.66e-01 2.02e+00 4.03e-01 2.22e-01 4.03e-01 5.44e+00 2.57e-01 2.85e-01 2.57e-01 8.53e+00
5 5.31e-01 3.86e-01 4.84e-01 2.30e+00 5.45e-01 3.80e-01 4.16e-01 6.05e+00 2.55e-01 4.37e-01 2.55e-01 9.22e+00

A4
4 1.32e+00 6.50e-01 8.84e-01 4.47e+00 8.02e-01 7.11e-01 4.00e-01 1.12e+01 1.56e-01 6.26e-01 1.56e-01 1.64e+01
5 1.56e+00 7.66e-01 4.34e-01 4.85e+00 9.35e-01 8.97e-01 4.24e-01 1.15e+01 1.36e+00 2.04e+00 1.36e+00 1.63e+01

m = 10 respectively. Using the procedure used in sim-
ulation Set A4, 100 simulation runs were carried out for
sport, lifoc, and fifoc, at m = 10, 50, 100, . . . , 300, 350, and
δ = 0.2, 0.5, 0.8 for each of the 25 cases listed in Table 1.
ΔTv, for each variant v (lifoc := 1 and fifoc := 2) was found
as:

ΔTv =
Tv − Tsport

Tsport
∗ 100% v = 1, 2

Mean error, ΔT
i
v, for each case i = 1, . . . , 25 in Table 1 was

calculated by averaging ΔT i
vk, k = 1, . . . , 100, over the 100

simulation runs and plotted.

Figure 16 shows the plots for ΔT
i
v at m = 10, δ =

0.2, 0.5, 0.8. First of all, fifoc is seen to always have a posi-
tive error with respect to sport. This is to be expected since
the system is heterogeneous. The value of error increases
with increase in the value of δ.

Secondly, lifoc has a negative error with respect to
sport for several cases at δ = 0.2, i.e. the processing time
of lifoc is smaller than sport. This is also to be expected
since lifoc uses all available processors and every processor
added reduces the processing time by some amount. This
ends up distributing very tiny load fractions (smaller than
1 × 10−6) to a large number of tail-end processors. As the
value of δ increases, the error between lifoc and sport be-
comes insignificant.

This pattern of results is repeated even for higher val-
ues of m as can be seen in Figs. 17 and 18 for m = 100
and 300 respectively. It can be observed that as the number
of processors increases, fifoc performance in case numbers
11–15 and 21–25 becomes almost equal to that of sport.
These ranges correspond to the intervals Ic = [10, 100] and
Ic = [100, 1000] respectively, i.e., a ratio of Cmin : Cmax =

1 : 10. Because of the methodology used to perform the

simulations, with a large number of processors, the values
of Ck tend to become similar to each other. Consequently,
(C2 − C1) in (A· 18) becomes small, and Schedule f always
tends to be optimal for each pair of processors being com-
pared. If Schedule f is optimal for all processors in sport,
the resulting σa and σc are the same as fifoc. However, sur-
prisingly, cases 1–5, with Ic = [1, 10] do not show this trend.
This leads us to hypothesize, that the performance of the al-
gorithms not only depends on the range (ratio) of parame-
ters but also on the absolute values of the parameters. This
belief is reinforced by the fact that in case numbers 21–25,
lifoc also has comparable performance to sport, especially
at higher values of δ and m.

Consider Table 4 that gives the minimum error of li-
foc with respect to sport, the case number when it occurs,
along with the mean error of lifoc averaged over all 25 cases
(i.e., 〈ΔT v〉 in set A4) for different values of δ and m. The
minimum error for lifoc is −5.76% for m = 100, δ = 0.8,
case number 2, but the minimum average error is −2.12%
for m = 300, δ = 0.5. It can be observed that the average
error values at δ = 0.5 are all smaller than those at δ = 0.2,
while the average error values at δ = 0.8 are again greater
than those at δ = 0.5 (except for m = 250). We hypothe-
size that initially as δ increases, the error increases, but as
δ → 1, i.e., size of result data approaches the size of allo-
cated load, performance of sport and lifoc becomes similar.
This is supported by the results of set A4, where the 〈ΔT v〉
of sport and lifoc is almost equal for δ = 0.8 (see Figs. 14
and 15).

There is a significant downside to lifoc because of its
property to use all available processors — the time required
to compute the optimal solution (CPU time) is more than
an order of magnitude greater than that of sport as seen
in Fig. 19. These values were obtained separately from the
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Fig. 16 Simulation set B, m = 10.

Fig. 17 Simulation set B, m = 100.

Fig. 18 Simulation set B, m = 300.

Table 4 Statistics for lifoc in simulation set B.

m
δ = 0.2 δ = 0.5 δ = 0.8

case min avg case min avg case min avg
10 12 −1.64 −0.39 23 −2.44 −0.50 1 −1.04 −0.24
50 8 −2.41 −0.88 2 −4.39 −1.47 4 −3.72 −1.33
100 8 −2.56 −0.79 2 −4.08 −1.66 2 −5.76 −1.49
150 8 −2.56 −0.78 8 −4.16 −2.01 2 −5.37 −1.68
200 8 −2.57 −0.82 5 −4.25 −2.06 13 −4.55 −1.77
250 8 −2.55 −0.77 17 −4.28 −1.36 17 −4.01 −1.85
300 8 −2.54 −0.88 3 −4.57 −2.12 5 −4.47 −1.70
350 8 −2.52 −0.83 3 −4.63 −2.04 5 −4.53 −1.67

simulations above by averaging the CPU time over 100 runs
for Ic = [10, 100], Ie = [50, 500], and δ = 0.5. The results
show that though both sport and lifoc are O(m) algorithms,
clearly sport is the better performing algorithm, with the
best cost/performance ratio for large values of m. The CPU
time values for fifoc are more than three orders of magni-

tude larger than sport— too large to even warrant consider-
ation.

The other disadvantage of lifoc is that the chain of
multiplications involved in the calculation of load fractions
quickly leads to underflow because the numbers involved
are tiny fractions and multiplying them results in smaller
and smaller numbers until the floating point system cannot
handle them anymore. Because of this, for m > 150, it is
difficult to get valid results for lifoc in a large number of
cases. For example, for m = 250, 300, 350, lifoc returned
underflow errors in 24, 32 and 32 runs respectively out of
the 100 simulation runs carried out. In MATLABTM, this
causes a NaN (Not A Number) to be returned, and the load
fractions cannot be calculated. Of course this is not a limi-
tation of the algorithm itself, nevertheless it is an important
practical consideration during implementation.
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Fig. 19 Comparison of CPU time for sport, lifoc, and fifoc.

6. Conclusion

In this paper, a polynomial time algorithm, sport, for the
scheduling of divisible loads on heterogeneous processing
platforms and considering the result collection phase is pre-
sented. A large number of simulations were performed and
it is found that sport consistently delivers good performance
irrespective of the degree of heterogeneity of the system, the
number of nodes, or the size of result data. sport primarily
uses lifoc and fifoc as its base, but instead of having a single
predefined sequence, it iteratively builds a locally optimal
solution leading to a low error value.

This paper includes, for the first time ever, (a) the
derivation of the condition to identify the presence of idle
time in a fifo schedule for two processors, (b) the identifica-
tion of the limiting condition for the optimality of fifo and
lifo schedules for two processors, and (c) the introduction
of the concept of equivalent processor in dlsrchets.

As future work, the conditions (constraints on values
of Ek and Ck), that minimize the error need to be found. An
interesting area would be the investigation of the effect of
affine cost models, processor deadlines and release times.
Another important area would be to extend the results to
multi-installment delivery and multi-level processor trees.
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Appendix: Derivations

The equations for load fractions, processing times, and the
conditions for optimality of Schedules f , l, and g are derived
in brief in A.1, A.2, and A.3. Several intermediate steps in
the derivations are not shown on account of space consider-
ations.

A.1 Schedule f

From Fig. 4(a), α f
1 (E1+δC1) = α f

2 (C2+E2). Using α f
1+α

f
2 =

1 gives

α
f
1 =

C2r f
2

C1r f
1 +C2r f

2

(A· 1)

α
f
2 =

C1r f
1

C1r f
1 +C2r f

2

(A· 2)

where

r f
1 = δ + ρ1

r f
2 = 1 + ρ2

It is interesting to see α f
1 and α f

2 as weighted ratios of C2

and C1. The weights are functions of the network as well as
the application under consideration. The processing time of
Schedule f is

T f = α
f
1C1(1 + δ + ρ1) + δα f

2C2

Using (A· 1) and (A· 2),

=
C1C2

C1r f
1 + C2r f

2

(
(1 + r f

1 )(δ + r f
2 ) − δ

)
(A· 3)

It is advantageous to distribute load to the two processors in
Schedule f instead of processing it entirely on p1, if T f ≤
T 1. Now, from (A· 3),

T f ≤ T 1 ⇔
C1C2

C1r f
1 +C2r f

2

(δr f
1 + r f

2 + r f
1 r f

2 ) ≤ C1(1 + r f
1 )

⇔ δC2 ≤ C1(1 + δ + ρ1) (A· 4)

Similarly, it is advantageous to distribute load to the two
processors in Schedule f instead of processing it entirely on
p2, if T f ≤ T 2. Again using (A· 3),

T f ≤ T 2 ⇔
C1C2

C1r f
1 + C2r f

2

(δr f
1 + r f

2 + r f
1 r f

2 ) ≤ C2(δ + r f
2 )

⇔ δC1 ≤ C2(1 + δ + ρ2) (A· 5)

Equation (A· 5) is always true for C1 ≤ C2.

To derive the equation for equivalent processor of Sched-
ule f , algebraic manipulation of (A· 3) gives

T f
1:2 =

C1C2

C1r f
1 +C2r f

2

(
r f

1 + r f
2 + δr

f
1 + δr

f
2

+ r f
1 r f

2 − r f
1 − δr f

2 + δ − δ
)

=
C1C2(r f

1 + r f
2 )

C1r f
1 + C2r f

2

+
C1C2(ρ1ρ2 − δ)

C1r f
1 + C2r f

2

+
δC1C2(r f

1 + r f
2 )

C1r f
1 + C2r f

2

(A· 6)

A.2 Schedule l

From Fig. 4(b), αl
1E1 = α

l
2(C2+E2+δC2). Using αl

1+α
l
2 = 1

gives

αl
1 =

C2rl
2

C1rl
1 +C2rl

2

(A· 7)

αl
2 =

C1rl
1

C1rl
1 +C2rl

2

(A· 8)

where
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rl
1 = ρ1 (A· 9)

rl
2 = 1 + δ + ρ2 (A· 10)

We note that

rl
1 = r f

1 − δ (A· 11)

rl
2 = r f

2 + δ (A· 12)

rl
1 + rl

2 = r f
1 + r f

2 = 1 + δ + ρ1 + ρ2 (A· 13)

The processing time of Schedule l is

T l = αl
1C1(1 + δ + ρ1)

Using (A· 7),

=
C1C2rl

2(1 + δ + rl
1)

C1rl
1 + C2rl

2

(A· 14)

Using (A· 11) and (A· 12)

=
C1C2(1 + r f

1 )(δ + r f
2 )

C1r f
1 +C2r f

2 + δ(C2 −C1)
(A· 15)

Schedule l is advantageous instead of distributing load en-
tirely to p1, if T l ≤ T 1. From (A· 14),

T l≤T 1 ⇔ C1C2rl
2(1+δ+rl

1)

C1rl
1+C2rl

2

≤ C1(1+δ+rl
1)

⇔ 0 ≤ C1ρ1

(A· 16)

Equation (A· 16) is always true. Similarly, Schedule l is ad-
vantageous as compared to processing entire load on p2, if
T l ≤ T 2. Again using (A· 14),

T l ≤ T 2 ⇔ C1C2rl
2(1 + δ + rl

1)

C1rl
1 +C2rl

2

≤ C2rl
2

⇔ C1(1 + δ) ≤ C2(1 + δ + ρ2)

(A· 17)

Equation (A· 17) is always true for C1 ≤ C2.
To find the limiting condition for the optimality of

Schedules f and l, the equations for T f and T l are com-
pared. From (A· 3) and (A· 15),

T f ≤ T l ⇔ (1 + r f
1 )(δ + r f

2 ) − δ
C1r f

1 +C2r f
2

≤

(1 + r f
1 )(δ + r f

2 )

C1r f
1 +C2r f

2 + δ(C2 −C1)

⇔ C1C2

C1r f
1 +C2r f

2

(
(1 + r f

1 )(δ + r f
2 ) − δ

)

≤ C1C2

(C2 −C1)

⇔ T f ≤ C1C2

(C2 −C1)
(A· 18)

Conversely, it can be easily proved that

T l ≥ C1C2

(C2 −C1)
⇔ T l ≥ T f

To derive the equation for equivalent processor for Sched-
ule l, algebraic manipulation of (A· 15) gives

T l
1:2 =

C1C2

C1r f
1 + C2r f

2 + δ(C2 − C1)

(
r f

1 + r f
2

+ δr f
1 + δr

f
2 + r f

1 r f
2 − r f

1 − δr f
2 + δ

)

Using (A· 11), (A· 12), and (A· 13),

=
C1C2(rl

1 + rl
2)

C1rl
1 + C2rl

2

+
C1C2ρ1ρ2

C1rl
1 + C2rl

2

+
δC1C2(rl

1 + rl
2)

C1rl
1 + C2rl

2

(A· 19)

A.3 Schedule g

From Fig. 4(c), αg1E1 = α
g
2C2. Using αg1 + α

g
2 = 1 gives

α
g
1 =

C2

E1 +C2
=

C2

C1ρ1 +C2
(A· 20)

α
g
2 =

E1

E1 +C2
=

C1ρ1

C1ρ1 +C2
(A· 21)

Idle time occurs in processor p2 (i.e., x2 ≥ 0), only when
α
g
2E2 ≤ δαg1C1. From (A· 20) and (A· 21),

α
g
2E2 ≤ δαg1C1 ⇔ ρ1ρ2 ≤ δ (A· 22)

The processing time of Schedule g is

T g = αg1C1(1 + δ + ρ1) + δαg2C2

Using (A· 20) and (A· 21),

=
C1C2

C1ρ1 +C2
(1 + δ)(1 + ρ1) (A· 23)

It is advantageous to distribute load to the two processors in
Schedule g instead of processing it entirely on p1, if T g ≤
T 1. From (A· 23),

T g ≤ T 1 ⇔ C1C2

C1ρ1 +C2
(1 + δ)(1 + ρ1) ≤ C1(1 + δ + ρ1)

⇔ δC2 ≤ C1(1 + δ + ρ1) (A· 24)

Similarly, it is advantageous to distribute load to the
two processors in Schedule g instead of processing it en-
tirely on p2, if T g ≤ T 2. Again using (A· 23),

T g ≤ T 2 ⇔ C1C2

C1ρ1 +C2
(1 + δ)(1 + ρ1) ≤ C2(1 + δ + ρ2)

⇔ C1(1 + δ − ρ1ρ2) ≤ C2(1 + δ + ρ2) (A· 25)
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Equation (A· 25) is always true for C1 ≤ C2.
To find the limiting condition for optimality of Sched-

ules g and l, the equations for T g and T l are compared. From
(A· 23) and (A· 14),

T g ≤ T l ⇔ (1 + δ)(1 + ρ1)
C1ρ1 + C2

≤ (1 + δ + rl
1)rl

2

C1rl
1 +C2rl

2

Using (A· 9),

⇔ C2rl
2δρ1 ≤ C1ρ1(δrl

2 + ρ2 + ρ1ρ2)

Using (A· 10),

⇔ C2 ≤ C1

(
1 +

(1 + ρ1)ρ2

δ(1 + δ + ρ2)

)
(A· 26)
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