
2234
IEICE TRANS. COMMUN., VOL.E91–B, NO.7 JULY 2008

PAPER

Analysis of Divisible Load Scheduling with Result Collection on
Heterogeneous Systems

Abhay GHATPANDE†a), Student Member, Hidenori NAKAZATO†, Member,
Olivier BEAUMONT††, Nonmember, and Hiroshi WATANABE†, Member

SUMMARY Divisible Load Theory (DLT) is an established framework
to study Divisible Load Scheduling (DLS). Traditional DLT ignores the re-
sult collection phase, and specifies no solution to the general case where
both the network speed and computing capacity of the nodes are heteroge-
neous. In this paper, the DLS with Result Collection on HETerogeneous
Systems (dlsrchets) problem is formulated as a linear program and ana-
lyzed. The papers to date that have dealt with result collection, proposed
simplistic lifo (Last In, First Out) and fifo (First In, First Out) type of
schedules as solutions. The main contributions of this paper are: (a) A
proof of the Allocation Precedence Condition, which is inconsequential in
lifo or fifo, but is important in a general schedule. (b) A proof of the Idle
Time Theorem, which states that irrespective of whether load is allocated to
all available processors, in the optimal solution to the dlsrchets problem,
at the most one processor that is allocated load has idle time, and that the
idle time exists only when the result collection begins immediately after the
completion of load distribution.
key words: divisible load scheduling, heterogeneous systems, result col-
lection

1. Introduction

Divisible loads are a special class of parallelizable applica-
tions, which if given a large enough volume, can be arbi-
trarily partitioned into any number of independently- and
identically-processable load fractions. Examples of appli-
cations that satisfy this divisibility property include massive
data-set processing, image processing, signal processing,
computation of Hough transforms, database search, simu-
lations, and matrix computations.

With the proliferation of the Internet, volunteer com-
puting or desktop grid computing is rapidly becoming fea-
sible and gaining popularity. Volunteer computing is a form
of distributed computing in which a large number of aver-
age users volunteer their computers to serve as processing
and storage resources for scientific research projects [1]–[3].
Divisible loads are especially suited for volunteer comput-
ing because of the absence of interdependencies and prece-
dence relations. Unlike other types of distributed comput-
ing, volunteer computing uses anonymous contributed re-
sources, and consequently, a large degree of heterogeneity
exists in the network bandwidth and processing power of
the participating nodes.

Divisible Load Theory (DLT) is the mathematical

Manuscript received January 10, 2008.
†The authors are with Waseda University, Tokyo, 169-0051

Japan.
††The author is with INRIA Futurs — LaBRI, France.
a) E-mail: abhay@toki.waseda.jp

DOI: 10.1093/ietcom/e91–b.7.2234

framework that has been established to study Divisible Load
Scheduling (DLS) [4]–[25]. The hallmark of DLT has been
its relative simplicity and deterministic nature. In a star con-
nected (single-level tree) network where the center of the
star (root of the tree) forms the source and holds the entire
load to be distributed, and the points of the star (leaf nodes of
the tree) form the computing elements that process the load
fractions allocated to them, the basic principle of DLT to
determine an optimal schedule is the AFS (All nodes Finish
Simultaneously) policy [20]. This states that the optimum
schedule is one in which the load is distributed such that
all the nodes involved in the computation finish processing
their individual load fractions at the same time. This pol-
icy yields closed-form equations for the load fractions, and
allows easy theoretical analysis.

The AFS policy implies that after the nodes finish com-
puting their individual load fractions, no results are returned
to the source. This is an unrealistic assumption for the ap-
plications in which the result collection phase contributes
significantly to the total execution time. All papers that ad-
dressed result collection to date, have advocated simplistic
fifo (First In, First Out) and lifo (Last In, First Out) sched-
ules. In fifo, results are collected in the same order as that
of load allocation, while in lifo, the order is reversed. It has
been proved in [26] that lifo and fifo are not always opti-
mal, and in our opinion, there is no compelling reason to
use them over other possible sequences.

Some papers have dealt with heterogeneous systems.
To the best of our knowledge, no paper has given a satisfac-
tory solution to the case where both the network bandwidth
and computation capacities of the nodes are different, and
result transfer to the source is explicitly considered. Only
a few of the papers that tackled heterogeneity have consid-
ered the possibility of idle time in the optimal schedule, or
the fact that some processors may not be allocated load for
processing.

In this paper, the DLS with Result Collection on HET-
erogeneous Systems (dlsrchets) problem is formulated and
analyzed in detail. A completely general form of dlsrchets
is tackled, with no assumptions being made regarding the
number of processors allocated load, the network and com-
putation heterogeneity, or on the presence (or absence) of
idle time. The major contributions of this paper are: (a)
A proof of the Allocation Precedence Condition, which en-
sures that there exists an optimal schedule in which the
source distributes load to all the processors first, before re-

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

GHATPANDE et al.: ANALYSIS OF DLSRCHETS
2235

ceiving any results. This condition is immaterial in lifo and
fifo schedules, but is important in the general schedule. (b)
A proof of the Idle Time Theorem, which states that irrespec-
tive of whether load is allocated to all available processors,
in the optimal solution to the dlsrchets problem, at the most
one of the processors that is allocated load has idle time, and
that the idle time exists only when the result collection be-
gins immediately after the completion of load distribution.
Though linear models for computation and communication
time are used in this paper for simplicity, all the results can
be easily extended to affine cost models.

The rest of the paper is as follows. In Sect. 2 the re-
sults obtained to date related to dlsrchets are discussed.
Section 3 provides a detailed description of the dlsrchets
problem along with the proof of the allocation precedence
condition. Section 4 analyzes the optimal solution of the dl-
srchets problem, and proves the idle time theorem. Finally,
Sect. 5 gives the conclusion and future work.

2. Related Work

To the best of our knowledge, no paper to date has compre-
hensively dealt with the issues of result collection and node
heterogeneity considered together, nor has any polynomial
time algorithm been proposed to find the optimum load al-
location and result collection sequence in a heterogeneous
network.

Bharadwaj, et al. [4, Chap. 5] proved that the sequence
of allocation of data to the processors is important in het-
erogeneous networks. Without considering result collection,
they proved that for optimum performance, (a) when proces-
sors have equal computation capacity, the optimal schedule
results when the fractions are allocated in the order of de-
creasing communication link capacity, and (b) when com-
munication capacity is equal, the data should be allocated in
the order of decreasing computation capacity.

Cheng and Robertazzi [19] and Bharadwaj, et al. [4,
Chap. 3] addressed the issue of result collection with a sim-
plistic constant result collection time, which is possible only
for a limited number of applications on homogeneous net-
works. Barlas [20] explicitly addressed the result collection
phase for single-level and arbitrary tree networks, but an as-
sumption regarding the absence of idle time was made with-
out justification. Essentially only two cases were analyzed:
(a) when communication overhead is zero, and (b) when
communication networks are homogeneous. The optimal
sequences derived were essentially lifo or fifo. Rosenberg
[27] too proposed the lifo and fifo sequences for result col-
lection. He concluded through simulations that fifo is bet-
ter when the communication network is homogeneous with
a large number of processors, while lifo is advantageous
when the network is heterogeneous with a small number of
processors.

Traditionally, DLT has focussed only on single-
installment [4, Chap. 8] delivery of data. Banino, et al. [28]
and Beaumont, et al. [29] considered a multi-installment
strategy. The data is considered to be split into equal sized

tasks, and the maximum number of tasks that can be deliv-
ered to the processors in a given time interval is found. They
argue that in the steady state, separate modeling of result
collection is unnecessary. They concluded that allocation
should proceed in the order of decreasing communication
bandwidth for optimal performance in the steady-state.

In this paper, the focus is on the more traditional form
of single-installment DLS on account of the following rea-
sons:

• To get a better understanding of the underlying prob-
lem structure when result collection and node hetero-
geneity are considered together.
• The scheduling of tasks is essentially left to chance in

the multi-installment strategy. Collisions during com-
munication are likely to cause delays.
• For certain applications, multi-installment distribution

of data is difficult or not desirable, especially in cases
where there is data interdependency.

Along with the AFS policy, there are two assumptions
that have implicitly pervaded DLT literature to date: (a) load
is allocated to all processors, and (b) processors are never
idle after receiving their load fractions. The presence of idle
time in the optimal schedule, which is a very important is-
sue, has been overlooked in DLT work on result collection
and heterogeneity. For the first time, it has been shown in
[26] that the lifo and fifo orderings are not always optimal
for a given set of processors. In [30], [31], it has been stated
that all processors from a given set of processors may not be
used in the optimal solution. For the single-port communi-
cation model (see Sect. 3.1), [26], [30] and [31] proved the
following features in optimal schedules:

• Assuming lifo and fifo orderings, load is allocated in
the order of decreasing communication link bandwidth.
• lifo ordering never has idle time in any processor.
• Assuming fifo ordering, at the most one processor may

have idle time.
• The processor with idle time in an optimal fifo sched-

ule can always be chosen to be the last processor in the
allocation sequence (i.e. the processor with the slowest
communication link).

We believe that the work presented in this paper
is a logical progression to the results in [26], [30], [31].
The above mentioned optimality results have been derived
strictly for lifo and fifo type of schedules. Since any one of
the other possible processor orderings could be the optimal
solution to the dlsrchets problem, the next logical question
is, “Can these optimality results also be extended to the gen-
eral case?” For example,

• Should all processors be allocated load first before they
start sending results back to the source in the general
case?
• [26], [30], [31] define the dlsrchets problem as a linear

program only for a single pair of allocation and collec-
tion sequences. Can the general problem be defined in

2236
IEICE TRANS. COMMUN., VOL.E91–B, NO.7 JULY 2008

a similar way? If so, what are the necessary conditions
to be able to do that? (The above mentioned allocation
precedence condition is one of them.)
• Will all available processors be allocated load in the

optimal solution for the general case?
• How many processors out of those that are allocated

load will have idle time in the optimal solution for the
general case?

These are some of the questions that we attempt to an-
swer in this paper.

3. Problem Description

In this paper, a divisible load refers to an arbitrarily divis-
ible load [4, Chap. 1] that can be divided into any num-
ber of fractions of arbitrary size, without restriction on the
granularity of division. Each fraction undergoes identical
processing irrespective of its size, and there exist no prece-
dence relations between the fractions, so that each fraction
can be processed independently of the others.

3.1 System Model

The divisible load J is to be distributed and processed on
a heterogeneous star network H = (P,L,E,C) as shown in
Fig. 1, where P = {p0, . . . , pm} is the set of m + 1 proces-
sors, and L = {l1, . . . , lm} is the set of m network links that
connect the master scheduler (source) p0 at the center of the
star, to the slave processors p1, . . . , pm. E = {E1, . . . , Em} is
the set of computation parameters of the slave processors,
and C = {C1, . . . ,Cm} the set of communication parameters
of the network links. The computation and communication
parameters are the inverse of the speed of the processors and
links respectively, and are defined in time units per unit load,
i.e., pk takes Ek time units to process a unit load transmitted
to it from p0 in Ck time units over the link lk.

It is assumed that all processors are continuously and
exclusively available, and have sufficient buffer capacity to
receive the entire load fraction in a single installment from
the source. The values in E and C are assumed to be deter-
ministic and available at the source. Based on these values,
the source p0 splits J into parts (fractions) α1, . . . , αm and
sends them to the respective processors p1, . . . , pm for com-
putation. Each such set of m fractions is known as a load
distribution α = {α1, . . . , αm}. The source does not retain

Fig. 1 Heterogeneous star networkH .

any part of the load for computation. If it does, then it can
be modeled as an extra slave processor with computation
parameter E0 and communication parameter C0 = 0.

All processors follow a single-port and no-overlap
communication model, implying that processors can com-
municate with only one other processor at a time, and com-
munication and computation cannot occur simultaneously.
A few papers have dealt with DLS with a multi-port model
[32]–[34]. This model was first proposed for Hypercubes
in [35]. If it is possible to have as many ports as there are
slaves, and also be able to program the source to commu-
nicate simultaneously with all the slaves, then the problem
of sequencing allocation and result collection becomes ir-
relevant. We use the single-port model for the following
reasons:

• Traditionally, DLT has used the single-port (sequential)
communication model, as evidenced by the large body
of literature using this model mentioned in Sect. 1 and
2 versus the three papers [32]–[34] cited above for the
multi-port model.
• As mentioned in Sect. 1, this paper addresses DLS

on generic heterogeneous systems such as the Internet
and volunteer computing platforms. The master-slave
topology is an application-level logical construct on
these systems. The source is not a special machine as
used in the papers [32]–[35] referenced above, but can
be any machine that wants to participate in the compu-
tation.
• An experimental setup such as the one described in

[30], [31] using MPI (Message-Passing Interface) to
implement the master-slave processing follows the
single-port model as it is found to be more realistic in
practice. As noted in [36], scatter-gather operations
in MPI need to be improved before it can be reliably
used for simultaneous data transfer to and from several
slaves.
• If each slave was to be connected to the master by a

dedicated link (port), then the number of slave proces-
sors that could be used would be seriously limited as it
is not practical to have a large number of physical ports
on a computer.

The execution of the divisible job on each processor
comprises of three distinct phases — the allocation phase,
where data is sent to the processor from the source, the com-
putation phase, where the data is processed, and the result
collection phase, where the processor sends the processed
data back to the source. The computation phase begins only
after the entire load fraction allocated to that processor is re-
ceived from the source. Similarly, the result collection phase
begins only after the entire load fraction has been processed,
and is ready for transmission back to the source. This is
known as block based system model, since each phase forms
a block on the time line (see Fig. 2).

For the divisible loads under consideration, such as im-
age and video processing, Kalman filtering, matrix conver-
sions, etc., the computation phase usually involves simple

GHATPANDE et al.: ANALYSIS OF DLSRCHETS
2237

Fig. 2 A possible schedule with m = 3.

linear transformations, and the volume of returned results
can be considered to be proportional to the amount of load
received in the allocation phase. This is the accepted model
for returned results in literature to date [4], [7], [20], [26],
[27], [30], [31]. If the allocated load fraction is αk, then the
returned result is equal to δαk. The constant δ is application
specific, and is equal for all processors for a particular load
J . In this paper, we assume 0 ≤ δ ≤ 1. The case for δ > 1
is left for future research.

The time taken for computation and communication is
a linearly increasing function of the size of data allocated or
transferred. For a load fraction αk, αkCk is the transmission
time from p0 to pk, αkEk is the time it takes pk to perform
the requisite processing on αk, and δαkCk is the time it takes
pk to finally transmit the results back to p0. Though a linear
model is considered for the computation and communica-
tion time, all results can be easily extended to affine cost
models.

3.2 Problem Formulation

In the dlsrchets problem, the source has to partition the
load J into fractions α1, . . . , αm, and manage the allocation
of these fractions to, and collection of the results from the
processors p1, . . . , pm in the minimum possible time. Let
T = {1, . . . ,m} be the set of tasks corresponding to the m
fractions that are allocated to, and R = {1, . . . ,m} be the set
of results that are collected from the processors p1, . . . , pm

respectively.
Though the load fractions (tasks) can be processed

independently of each other on the respective processors,
the single-port communication model implicitly induces a
precedence order on the distribution of the tasks and col-
lection of the results. Let ≺a and ≺c be total orders on the
sets T and R respectively, such that ≺a represents the se-
quence (order) in which processors are allocated tasks, and
≺c is the sequence in which results are collected from the
processors at the source. Then, i ≺a j implies that task i
precedes task j (or equivalently task j succeeds task i) in
the allocation sequence ≺a, and i ≺c j signifies that re-
sult i precedes result j in the collection sequence ≺c. If
{k ∈ T : i ≺a k ≺a j} = ∅, then task i is the immediate pre-
decessor of task j in ≺a, and is denoted as i �a j. Similarly,
if {k ∈ R : i ≺c k ≺c j} = ∅, then result j is the immediate
successor of result i in ≺c, and is denoted as i �c j. Define

Bi
≺a

:= { j ∈ T : j ≺a i}∪{i} and Fi
≺a

:= { j ∈ T : i ≺a j}∪{i},
i.e., Bi

≺a
is the set of task i and the tasks before i (predeces-

sors of i) in ≺a, while Fi
≺a

is the set of task i and the fol-
lowers (successors) of task i in ≺a. Bi

≺c
and Fi

≺c
are defined

accordingly for ≺c. The minimal element of ≺a is defined as
≺+a := ∃! i ∈ T : Bi

≺a
= {i} and the maximal element of ≺a is

defined as, ≺−a := ∃! i ∈ T : Fi
≺a
= {i}, i.e., ≺+a and ≺−a are the

first and last tasks allocated in ≺a. ≺+c and ≺−c are similarly
defined as the first and last results returned in ≺c.

For a given load J , the objective is to minimize the
total processing time T , which is defined as the time taken
from the point when the source first initiates the allocation
of tasks, to the point when the source completes reception of
all the results. From the system model in Sect. 3.1, there are
two important constraints to consider while scheduling the
tasks on the processors, viz. the exclusivity of the communi-
cation medium (single-port model), and the non-overlap of
communication and computation.

The schedule S of dlsrchets for a given load distri-
bution α, is a pair (t, r), where, t : T 	→ R

+ is the task
allocation start time function, and r : R 	→ R

+ is the result
collection start time function. In a feasible schedule, the
start times in t and r must satisfy the following constraints:

t j − ti ≥ αiCi ∀ i ∈ {1, . . . ,m}, i �a j (1)

ti ≥
∑

j∈Bi
≺a \{i}

α jC j ∀ i ∈ {1, . . . ,m} (2)

r j − ri ≥ δαiCi ∀ i ∈ {1, . . . ,m}, i �c j (3)

T − ri ≥
∑

j∈Fi
≺c

δα jC j ∀ i ∈ {1, . . . ,m} (4)

ri − ti ≥ αiCi + αiEi ∀ i ∈ {1, . . . ,m} (5)

ti � r j ∀ i, j ∈ {1, . . . ,m} (6)

r j − ti ≥ αiCi ∀ j ∈ {1, . . . ,m},∀ ti < r j (7)

ti − r j ≥ δα jC j ∀ i ∈ {1, . . . ,m},∀ r j < ti (8)

ti, r j ≥ 0 ∀ i, j ∈ {1, . . . ,m} (9)

The precedence constraints of ≺a are enforced by (1)
and (2), while inequalities (3) and (4) impose the prece-
dence constraints of ≺c and define the processing time T .
The fact that the result collection cannot begin before the
execution of the entire load fraction is complete is shown
by (5). Constraints (6), (7), and (8) impose the single-port
model so that no allocation and collection phase can overlap.
The non-negativity of the start times is ensured by (9).

Figure 2 shows the timing diagram for a feasible sched-
ule with m = 3. The time spent in communication with the
source p0 is shown above the horizontal axes, and time spent
in computation by the individual processors below the hori-
zontal axes. Since p0 does not retain any part of the load for
itself, there is no p0 axis.

In a lifo or fifo schedule, the order of distribution and
collection of fractions is predefined, which explicitly deter-
mines t and r once α is known. However, in the general case
this is not so, and to efficiently find optimal schedules, it is

2238
IEICE TRANS. COMMUN., VOL.E91–B, NO.7 JULY 2008

Fig. 3 Interleaved result collection.

necessary to constrain the number of possible values that t
and r can take. A lemma is stated based on the following
condition that reduces the range of optimal solutions to a
finite number.

Condition 1 (Allocation Precedence Condition):The source
should first allocate the entire load to the processors before
receiving any results from the processors.

Lemma 1 (Allocation Precedence Lemma): There exists
an optimal schedule for dlsrchets that satisfies the alloca-
tion precedence condition. (There may exist other optimal
schedules that do not satisfy the allocation precedence con-
dition.)

Proof. Consider a feasible schedule with processing time
T , that satisfies (1) to (9) for a load distribution α, and an
arbitrary order of allocation and collection ≺a and ≺c, such
that some results are collected before the load is completely
allocated first.

Then, there exists at least one pair (i, j) with i ≺a j,
such that the result collection starting at ri is followed by a
task allocation at t j, without any other intermediate commu-
nication phase as shown in Fig. 3.

Suppose that all load fractions in α, and all other start
times in t and r are maintained the same, and only the order
of collection of result i and allocation of task j is exchanged,
such that the new allocation start time of task j is t′j = ri, and
the new collection start time of result i is r′i = ri + α jC j.

Since the above exchange does not alter the order of
allocation of different tasks, the precedence constraints of≺a

defined by (1) and (2) still hold. Similarly, the precedence
constraints of ≺c, imposed by (3) and (4) also hold after the
exchange. The constraints (6), (7), and (8) are valid after
the exchange because the single-port model is not violated
by the exchange.

Only the conditions expressed by (5) require verifica-
tion. Before the exchange, the conditions ri−ti ≥ αiCi+αiEi

and r j − t j ≥ α jC j + α jE j are satisfied. After the ex-
change, the constraints (5) are still valid because r′i − ti =
ri + α jC j − ti > ri − ti, and r j − t′j = r j − ri > r j − t j.

From the above observations, it is clear that after the
reordering, all conditions for feasibility are still satisfied.
Moreover, the orders ≺a and ≺c are unchanged, and no ad-
ditional processing time is required for the reordering.

If a similar reordering is carried out for all such pairs
(i, j), then the allocation precedence condition is satisfied
with no addition in total processing time T .

Now if there is an optimal schedule for dlsrchets that

does not satisfy the allocation precedence condition, then a
reordering can be performed as mentioned above so that the
schedule satisfies the allocation precedence condition with-
out an increase in the total processing time. That is, there
always exists an optimal schedule that satisfies the alloca-
tion precedence condition, and only such schedules need be
considered in the search for the optimal schedule.

Two other basic lemma are stated before the dlsrchets
problem is formally defined.

Lemma 2: There exists an optimal schedule for dlsrchets
that has no idle time between any two consecutive allocation
phases and any two consecutive result collection phases.
(There may exist other optimal schedules that do not satisfy
this condition.)

Proof. Assume that a feasible schedule that obeys (1) to
(9), and in addition also satisfies the allocation precedence
condition, has idle time between the consecutive communi-
cation phases (see Fig. 2). Let the processing time be T , the
load distribution be α, and (≺a,≺c) be the orders of alloca-
tion and collection.

According to the assumptions in the system model, all
processors are available continuously and exclusively dur-
ing the entire execution process, and the source can only
communicate with one processor at a time. For any i �a j,
when processor pi completes the reception of its allocated
task at time ti + αiCi, processor pj is already available and
can start receiving data immediately at t j = ti + αiCi. Be-
cause the schedule satisfies the allocation precedence con-
dition, load is first distributed to all the processors sequen-
tially before result collection begins. Thus the start time
of each task i ∈ T can be brought forward so that ti =
t≺+a +

∑
j∈Bi

≺a \{i} α jC j, and the inequalities (1) and (2) are re-
duced to equalities without exceeding T .

Following a similar logic to the one above, the re-
sult collection of each result i ∈ R can be delayed to the
extent necessary to make the result collection start time
ri = T −

∑
j∈Fi

≺c
δα jC j, with inequalities (3) and (4) reduced

to equalities and no extra time added to T .
Since any feasible schedule can be reordered in this

manner to eliminate the idle time between communication
phases, it follows that the optimal schedule to dlsrchets also
has no idle time between any two consecutive allocation and
result collection phases.

Lemma 3: There exists an optimal schedule for dlsrchets
that has no idle time between the allocation and computation
phases of each processor. (There may exist other optimal
schedules that do not satisfy this condition.)

Proof. Following an argument similar to the one used in
Lemma 2, since all processors are always available, they
can begin computing immediately upon receiving their load
fractions in the allocation phase without affecting the sched-
ule.

Thus, any processor pi begins computing its allocated

GHATPANDE et al.: ANALYSIS OF DLSRCHETS
2239

Fig. 4 Schedule with some idle time eliminated for m = 3.

task at time t≺+a +
∑

j∈Bi
≺a
α jC j without crossing the time in-

terval T . Since any feasible schedule can be reordered in
this manner, the optimal schedule to dlsrchets too has no
idle time between the allocation and computation phases of
each processor.

Theorem 1: There exists an optimal schedule for dl-
srchets that satisfies Lemmas 1 to 3.

Proof. If there exists any optimal schedule that does not
satisfy any of the Lemmas 1 to 3, it can always be reordered
as explained in the respective proofs to satisfy the same.

From Theorem 1, it follows that only those schedules
that satisfy Lemmas 1 to 3 need be considered in the search
for the optimal solution to dlsrchets. A possible timing di-
agram for such a schedule is shown in Fig. 4.

From the preceding discussion, it can be concluded that
the start times t and r in the optimal schedule for dlsrchets
can be determined from the sequences ≺a and ≺c, and the
load distribution α that minimize the processing time T .
Hence instead of finding t and r as in traditional schedul-
ing practice, the dlsrchets problem is formulated as a linear
programming problem, to find ≺a, ≺c, and α that minimize
T . Once the optimal values of these variables are known, it
is trivial to find the optimal schedule.

The constraints (1) to (9) and the Allocation Prece-
dence Condition are combined into a unified form, and for
each processor pi, constraints on T are written in terms of
Bi
≺a

and Fi
≺c

. The dlsrchets problem is defined as a linear
program as follows.

dlsrchets (DLS with Result Collection on HETeroge-
neous Systems)

Given a heterogeneous network H = (P,L,E,C), and a di-
visible loadJ , find the sequence pair (≺a,≺c), and load dis-
tribution α = {α1, . . . , αm} that

Minimize ζ = T
Subject To:

∑

j∈Bk
≺a

α jC j + αkEk +
∑

j∈6Fk
≺c

δα jC j ≤ T

k = 1, . . . ,m (10)

m∑

j=1

α jC j +

m∑

j=1

δα jC j ≤ T (11)

m∑

j=1

α j = J (12)

T ≥ 0, αk ≥ 0 k = 1, . . . ,m (13)

In the above formulation, for a triple (≺a,≺c, α), the
LHS (Left Hand Side) of constraint (10) indicates the total
time spent in transmission of tasks to all the processors that
must receive load before the processor pi can begin process-
ing its allocated task, the computation time on the processor
pi itself, and the time for transmission back to the source of
results of processor pi, and all its subsequent result trans-
fers. For the no-overlap model to be satisfied, the process-
ing time T should be greater than or equal to this time for all
the m processors. The single-port communication model is
enforced by (11) since its LHS represents the lower bound
on the time for distribution and collection under this model.
The fact that the entire load is distributed amongst the pro-
cessors is imposed by (12). This is the normalization equa-
tion. The non-negativity of the decision variables is ensured
by constraint (13).

The dlsrchets problem is defined similar to the prob-
lem addressed in [26], [30], [31]. The throughput maximiza-
tion problem addressed in [26], [30], [31] and the execution
time minimization problem addressed in this paper are duals
of each other, and can be transformed from one form into the
other. Because all equations are linear in the decision vari-
ables, an optimal solution to one form is also an optimal so-
lution to the other form. However, the problem formulation
given in [26], [30], [31] is applicable only for a single pair
of allocation and collection sequences. lifo and fifo were
selected as two instances of the problem and respective op-
timality results were derived. The formulation in this paper
is completely general and the scope of the problem is global,
i.e. for all possible allocation and collection sequences. The
optimality results for lifo and fifo presented in [26], [30],
[31] can be easily derived as subsets of this generic formu-
lation.

To keep the dlsrchets formulation as general as possi-
ble, we have not included the idle times in the definition of
the problem as in [30], [31]. In [30], [31], it is assumed in
the system model itself that idle time always lies between
the computation and result collection phase of a processor,
when it may not always be so. The idle time can lie any-
where on the time-line. Lemmas 2 and 3 prove that idle
time can be transferred to lie between computation and re-
sult collection phase of a processor.

Moreover, there is a discrepancy in the formulation
used in [30], [31] because the constraints (2a) (correspond-
ing to (10) here) are expressed as inequalities. These must
actually be equalities since the idle times (xi) are already
considered in the equations.

The decision version of dlsrchets used to analyze the
problem complexity is:

2240
IEICE TRANS. COMMUN., VOL.E91–B, NO.7 JULY 2008

dlsrchets (Decision)

Instance: Heterogeneous network H = (P,L,E,C), divisi-
ble load J , time interval T .
Question: Can loadJ be processed onH , in at most T units
of time?

Finding an optimal solution to the dlsrchets problem is sur-
prisingly difficult. In fact, there is no known polynomial-
time algorithm to find the optimal schedule for the general
case considered in this paper, nor has the NP-completeness
of dlsrchets been proved. The problem is in NP, since the
values of the two permutations and the load distribution can
be guessed, and it can be checked if the answer to the deci-
sion question is true or false.

4. Analysis of Optimal Solution

The processors allocated non-zero load fractions are called
participating processors or participants.

Theorem 2 (Idle Time Theorem): In the optimal solution
to the dlsrchets problem, irrespective of whether load is al-
located to all available processors, at the most one of the
participating processors has idle time, and the idle time ex-
ists only when the result collection begins immediately after
the completion of load distribution.

Proof. For a pair (≺a,≺c), the dlsrchets problem defined
by (10) to (13) always has a feasible solution. This is
because, for any load distribution α that satisfies (12), T
can be made arbitrarily large to satisfy the inequalities (10)
and (11). It implies that the polyhedron formed by the con-
straints of the dlsrchets problem, P := {x ∈ R

m+1 : Ax ≤
b, x ≥ 0} � ∅.

According to the theory of linear programming, the op-
timal solution to dlsrchets is obtained at some vertex of
this polyhedron [37], [38]. As the dlsrchets problem has
m + 1 decision variables and 2m + 3 constraints, in a non-
degenerate optimal solution, at the optimal vertex, m + 1
constraints out of these must be tight, i.e., satisfied with
equality. In a degenerate optimal solution, more than m + 1
constraints are tight.

It is clear that in an optimal solution, (12) will always
be tight, and T will always be greater than zero. This means
that m constraints out of the remaining 2m + 1 constraints
will be tight in a non-degenerate optimal solution. There are
two possible ways to proceed with the analysis at this point
depending on the assumption regarding the allocated load
fractions in the optimal solution.

1. ∀ k ∈ {1, . . . , m} : αk > 0.
In this case, all the load fractions are assumed to be
always greater than zero, i.e. number of participants is
m. Since all decision variables are positive, there can
be no degeneracy [38, Chapter 3].

It leaves only m + 1 constraints (10) and (11), out of
which m will be tight in the optimal solution. Hence,
in the optimal solution, either,

(a) the m constraints (10) are tight, and the (11) con-
straint is not, or

(b) the (11) constraint is tight and one of the (10) con-
straints is not.

If any constraint from (10) and (11) is not tight in
the optimal solution, it implies a shortfall in the LHS
as compared to the optimal processing time. In con-
straints (10) this shortfall represents idle time in a pro-
cessor, while in (11) it represents the intervening time
interval between completion of load distribution from
the source and the start of result transfer to the source.

Thus, if the option (a) above is true, then none of the
processors have any idle time in the optimal solution. If
the option (b) is true, then one of the processors has idle
time, and since this happens only when constraint (11)
is tight, it means that idle time in a processor exists only
when result transfer to the source begins immediately
after completion of load allocation is completed. This
is similar to the analysis in [30], [31].

2. ∃ k ∈ {1, . . . , m} : αk = 0.
In this case, some of the processors can be allocated
zero load in the optimal solution.

The analysis has two parts — for non-degenerate and
degenerate optimal solutions.

Non-degenerate Optimal Solution

If there are p (p ≤ m) participants in the optimal so-
lution, then m − p constraints of (13) are necessarily
tight. This means that out of the m + 1 constraints (10)
and (11), only p constraints will be tight in the optimal
solution. Hence, in the optimal solution, either,

(a) p of the (10) constraints are tight, m− p of the (10)
constraints are not tight, and the (11) constraint is
not tight, or

(b) the (11) constraint is tight, p − 1 of the (10) con-
straints are tight, and m − p + 1 of the (10) con-
straints are not tight.

In the optimal solution, if the option (a) is true, then
m− p processors have idle time, while if the option (b)
is true, then m − p + 1 processors have idle time.

Since m− p processors are not allocated load, it is obvi-
ous that they are idle throughout in either of the above
two options. The additional processor with idle time if
the option (b) is true has to be one of the participating
processors. This means that idle time in a participating
processor exists only when the result collection begins
immediately upon completion of load allocation.

Degenerate Optimal Solution

Similar to the non-degenerate case, if there are p (p ≤
m) participants in the optimal solution, then m− p con-
straints of (13) are necessarily tight. Since the optimal
solution is degenerate, more than p constraints out of
the m + 1 constraints (10) and (11) will be tight.

GHATPANDE et al.: ANALYSIS OF DLSRCHETS
2241

This means that in the optimal solution, irrespective
of whether the (11) constraint is tight, at least p of
the (10) constraints are tight, and less than m − p of
the (10) constraints are not tight. Since m − p proces-
sors are necessarily idle, some of the (10) constraints
corresponding to the processors allocated zero load are
tight in the degenerate solution.

Since ∀ k ∈ {1, . . . ,m}, Bk
≺a
, Fk
≺c
⊆ {1, . . . ,m}, it implies

that,
∑

j∈Bk
≺a

α jC j ≤
m∑

j=1

α jC j k ∈ {1, . . . ,m}

and

∑

j∈Fk
≺c

δα jC j ≤
m∑

j=1

δα jC j k ∈ {1, . . . ,m}

It follows that,

∑

j∈Bk
≺a

α jC j +
∑

j∈Fk
≺c

δα jC j ≤
m∑

j=1

α jC j +

m∑

j=1

δα jC j

k ∈ {1, . . . ,m} (14)

If (11) is not tight, then the RHS (Right Hand Side)
of (14) is strictly less than T . That is,∑

j∈Bk
≺a

α jC j+
∑

j∈Fk
≺c

δα jC j < T k ∈ {1, . . . ,m} (15)

If ∃ k ∈ {1, . . . ,m} : αk = 0, then αkEk = 0, and
from (15), it immediately follows that the correspond-
ing constraint from (10) can never be tight.
Thus, a constraint corresponding to a processor pk al-
located zero load is tight in the optimal solution only
if ∑

j∈Bk
≺a

α jC j +
∑

j∈Fk
≺c

δα jC j − T = 0 (16)

or equivalently if (14) is satisfied with an equality, and
the RHS of (14) is equal to T , i.e, the (11) constraint is
tight.

It is now clear that a degenerate optimal solution exists
only when the (11) constraint is tight, and the condi-
tion (16) is satisfied. To find when the condition is sat-
isfied, consider the case where for some pair (≺a,≺c),
one or more of the processors allocated zero load fol-
low each other at the end of the allocation sequence and
the start of the result collection sequence in the optimal
solution.

For example, if αi, α j, αk = 0, and one or more of the
following occur (the list is not exhaustive):

• ≺−a= i and ≺+c= i
• i �a j, ≺−a= j and ≺+c= i
• i �a j, ≺−a= j, ≺+c= k and k �c i

Only if such tail-end zero-load processors exist,
then (14) is satisfied with an equality. Finally, if con-
straint (11) is tight in the optimal solution, then it fol-
lows that the constraints corresponding to these proces-
sors are tight.

The linear program obtained after eliminating the re-
dundant constraints corresponding to the tail-end zero-
load processors has a non-degenerate optimal solution.
This is because, the feasible region defined by the con-
straints of the non-degenerate problem does not change
after addition of the redundant constraints. Hence only
a single participant processor has idle time in the de-
generate optimal solution.

From the preceding discussion on the optimal solution to the
linear program for a pair (≺a,≺c), it follows that in the op-
timal solution to the dlsrchets problem, (≺∗a,≺∗c, α∗), at the
most one participating processor can have idle time. The
idle time occurs only when the result collection from pro-
cessor ≺+c starts immediately after completion of load allo-
cation to processor ≺−a .

There are m! possible permutations each of ≺a and ≺c,
and the linear program has to be evaluated (m!)2 times to
determine the globally optimum solution (≺∗a,≺∗c, α∗) for dl-
srchets. Since the solution to the linear program is com-
pletely determined by the values of δ, C and E, along with
the pair (≺a,≺c), it is not possible at this stage to predict
which of the processors or how many processors will be al-
located zero load.

If the load distribution is constrained to be strictly posi-
tive, i.e., ∀αk > 0⇒ p = m, then there is only one processor
with idle time in the optimal solution when (11) is tight. As
proved in [30], [31], for the fifo schedule, this processor can
always be chosen to be processor ≺−a . However, this may
not be true in general. For a lifo schedule under the same
constraints, no processor ever has idle time in the optimal
solution because (11) can never be tight.

5. Conclusion

In this paper, the dlsrchets problem for the scheduling of
divisible loads on heterogeneous systems and considering
the result collection phase was formulated and analyzed.

Among the main contributions of this paper are the
generic formulation of the dlsrchets problem and a proof
of the allocation precedence condition. The optimal solu-
tion to dlsrchets was analyzed in detail and it was proved
that irrespective of whether load is allocated to all proces-
sors or not, at the most one processor that is allocated load
has idle time. In the general case it is not possible to predict
which participating processor is the one with idle time. It
was proved that the idle time exists only when the source
starts to receive results immediately after completion of the
distribution of the load to the participating processors.

As there is no known polynomial time algorithm to ob-
tain the optimal solution, future work involves proposing

2242
IEICE TRANS. COMMUN., VOL.E91–B, NO.7 JULY 2008

heuristic algorithms to solve the dlsrchets problem.

Acknowledgements

The authors would like to sincerely thank the reviewers for
their insightful comments on the previous drafts of this pa-
per.

References

[1] D.P. Anderson, E. Korpela, and R. Walton, “High-performance task
distribution for volunteer computing,” First IEEE Intl. Conf. on e-
Science and Grid Technologies, Melbourne, Dec. 2005.

[2] D.P. Anderson and G. Fedak, “The computational and storage poten-
tial of volunteer computing,” IEEE/ACM International Symposium
on Cluster Computing and the Grid, Singapore, May 2006.

[3] D.P. Anderson and J. McLeod VII, “Local scheduling for volunteer
computing,” Workshop on Large-Scale, Volatile Desktop Grids (PC-
Grid 2007) held in conjunction with the IEEE Intl. Parallel and Dis-
tributed Processing Symposium (IPDPS), Long Beach, CA, March
2007.

[4] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi, Scheduling
Divisible Loads in Parallel and Distributed Systems, IEEE Computer
Society Press, Los Alamitos, CA, 1996.

[5] V. Bharadwaj, D. Ghose, and T.G. Robertazzi, “Divisible load the-
ory: A new paradigm for load scheduling in distributed systems,”
Cluster Computing, vol.6, no.1, pp.7–17, Jan. 2003.

[6] T. Robertazzi, http://www.ece.sunysb.edu/∼tom/dlt.html, April
2005.

[7] N. Comino and V.L. Narasimhan, “A novel data distribution tech-
nique for host-client type parallel applications,” IEEE Trans. Parallel
Distrib. Syst., vol.13, no.2, pp.97–110, Feb. 2002.

[8] V. Bharadwaj, X. Li, and C.C. Ko, “Efficient partitioning and
scheduling of computer vision and image processing data on bus
networks using divisible load analysis,” Image Vis. Comput., vol.18,
no.1, pp.919–938, Jan. 2000.

[9] V. Bharadwaj, D. Ghose, and V. Mani, “Optimal sequencing and
arrangement in distributed single-level tree networks with commu-
nication delays,” IEEE Trans. Parallel Distrib. Syst., vol.5, no.9,
pp.968–976, Sept. 1994.

[10] V. Bharadwaj, D. Ghose, and V. Mani, “Multi-installment load dis-
tribution in tree networks with delays,” IEEE Trans. Aerosp. Elec-
tron. Syst., vol.31, no.2, pp.555–567, April 1995.

[11] V. Bharadwaj, X. Li, and C.C. Ko, “On the influence of start-up costs
in scheduling divisible loads on bus networks,” IEEE Trans. Parallel
Distrib. Syst., vol.11, no.12, pp.1288–1305, Dec. 2000.

[12] X. Li, V. Bharadwaj, and C.C. Ko, “Divisible load scheduling on
single-level tree networks with buffer constraints,” IEEE Trans.
Aerosp. Electron. Syst., vol.36, no.4, pp.1298–1308, Oct. 2000.

[13] S. Bataineh, T.Y. Hsiung, and T.G. Robertazzi, “Closed form solu-
tions for bus and tree networks of processors load sharing a divisible
job,” IEEE Trans. Comput., vol.43, no.10, pp.1184–1196, Oct. 1994.

[14] S. Bataineh and B. Al-Asir, “An efficient scheduling algorithm for
divisible and indivisible tasks in loosely coupled multiprocessor sys-
tems,” Software Engineering Journal, vol.9, no.1, pp.13–18, Jan.
1994.

[15] S. Bataineh and T.G. Robertazzi, “Performance limits for processors
with divisible jobs,” IEEE Trans. Aerosp. Electron. Syst., vol.33,
no.4, pp.1189–1198, Oct. 1997.

[16] J. Sohn and T.G. Robertazzi, “Optimal divisible job load sharing for
bus networks,” IEEE Trans. Aerosp. Electron. Syst., vol.32, no.1,
pp.34–40, Jan. 1996.

[17] J. Sohn, T.G. Robertazzi, and S. Luryi, “Optimizing computing costs
using divisible load analysis,” IEEE Trans. Parallel Distrib. Syst.,
vol.9, no.3, pp.225–234, March 1998.

[18] T.G. Robertazzi, “Processor equivalence for daisy chain load shar-
ing processors,” IEEE Trans. Aerosp. Electron. Syst., vol.29, no.4,
pp.1216–1221, Oct. 1993.

[19] Y.C. Cheng and T.G. Robertazzi, “Distributed computation for a tree
network with communication delays,” IEEE Trans. Aerosp. Elec-
tron. Syst., vol.26, no.3, pp.511–516, May 1990.

[20] G.D. Barlas, “Collection-aware optimum sequencing of operations
and closed-form solutions for the distribution of a divisible load on
arbitrary processor trees,” IEEE Trans. Parallel Distrib. Syst., vol.9,
no.5, pp.429–441, May 1998.

[21] V. Mani and D. Ghose, “Distributed computation in linear networks:
Closed-form solutions,” IEEE Trans. Aerosp. Electron. Syst., vol.30,
no.2, pp.471–483, April 1994.

[22] D. Ghose and V. Mani, “Distributed computation with communica-
tion delays: Asymptotic performance analysis,” J. Parallel Distrib.
Comput., vol.23, no.3, pp.293–305, Dec. 1994.

[23] D. Ghose and H.J. Kim, “Load partitioning and trade-off study for
large matrix-vector computations in multicast bus networks with
communication delays,” J. Parallel Distrib. Comput., vol.55, no.1,
pp.32–59, Nov. 1998.

[24] H.J. Kim, G. in Jee, and J.G. Lee, “Optimal load distribution for tree
network processors,” IEEE Trans. Aerosp. Electron. Syst., vol.32,
no.2, pp.607–612, April 1996.

[25] C.H. Lee and K.G. Shin, “Optimal task assignment in homogeneous
networks,” IEEE Trans. Parallel Distrib. Syst., vol.8, no.2, pp.119–
129, Feb. 1997.

[26] O. Beaumont, L. Marchal, and Y. Robert, “Scheduling divisible
loads with return messages on heterogeneous master-worker plat-
forms,” Research Report 2005-21, May 2005.

[27] A. Rosenberg, “Sharing partitionable workload in heterogeneous
NOWs: Greedier is not better,” IEEE International Conference on
Cluster Computing, Newport Beach, CA, pp.124–131, Oct. 2001.

[28] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and
Y. Robert, “Scheduling strategies for master-slave tasking on het-
erogeneous processor platforms,” IEEE Trans. Parallel Distrib. Syst.,
vol.15, no.4, pp.1–12, April 2004.

[29] O. Beaumont, A. Legrand, and Y. Robert, “Optimal algorithms
for scheduling divisible loads on heterogeneous systems,” Inter-
national Parallel and Distributed Processing Symposium, (IPDPS)
2003, p.14, April 2003.

[30] O. Beaumont, L. Marchal, V. Rehn, and Y. Robert, “FIFO schedul-
ing of divisible loads with return messages under the one-port
model,” Research Report 2005-52, Oct. 2005.

[31] O. Beaumont, L. Marchal, V. Rehn, and Y. Robert, “FIFO schedul-
ing of divisible loads with return messages under the one port
model,” Proc. Heterogeneous Computing Workshop HCW’06, April
2006.

[32] D. Yu and T.G. Robertazzi, “Scalable scheduling in parallel pro-
cessors,” Proc. Conference on Information Sciences and Systems,
Princeton, NJ, March 2002.

[33] J.T. Hung and T.G. Robertazzi, “Scalable scheduling for clusters and
grids using cut through switching,” Intl. J. of Computers and their
Applications, vol.26, no.3, pp.147–156, 2004.

[34] D. Yu and T.G. Robertazzi, “Divisible load scheduling for grid com-
puting,” Proc. International Conference on Parallel and Distributed
Computing Systems (PDCS 2003), Los Angeles, CA, USA, Nov.
2003.

[35] D.A.L. Piriyakumar and C.S.R. Murthy, “Distributed computation
for a hypercube network of sensor-driven processors with commu-
nication delays including setup time,” IEEE Trans. Syst., Man, Cy-
bern. A, Syst. Humans, vol.28, no.3, pp.245–251, March 1998.

[36] R. Thakur and W. Gropp, Open Issues in MPI Implementa-
tion, Lecture Notes in Computer Science, vol.4697, Springer
Berlin/Heidelberg, 2007.

[37] G.B. Dantzig, Linear Programming and Extensions, Princeton Univ.
Press, Princeton, NJ, 1963.

[38] R.J. Vanderbei, Linear Programming: Foundations and Extensions,

GHATPANDE et al.: ANALYSIS OF DLSRCHETS
2243

2nd ed., International Series in Operations Research & Management,
vol.37, Kluwer Academic Publishers, 2001.

Abhay Ghatpande received his B.E. degree
from University of Pune, India in 1997, and his
M.S. degree from Waseda University, Tokyo in
2004. He is presently a Research Associate and
Ph.D. candidate there. In 1997 he started his ca-
reer in Larsen & Toubro Ltd., as software engi-
neer. In 2000, he helped set up MoTech Soft-
ware’s Japan branch office. In 2002 he turned to
research. His research interests include parallel
and distributed computing, multi-agent systems,
and use of inference and learning algorithms in

high performance computing. He is a member of the IEEE.

Hidenori Nakazato received his B. Engi-
neering degree in Electronics and Telecommu-
nications from Waseda University in 1982, and
his MS and Ph.D. degrees in Computer Science
from University of Illinois in 1989 and 1993, re-
spectively. He was with Oki Electric from 1982
to 2000 where he developed equipment for pub-
lic telephony switches, distributed environment
for telecommunications systems, and commu-
nications quality control mechanisms. He has
been a Professor at Graduate School of Global

Information and Telecommunications Studies, Waseda University since
2000. His research interests include performance issues in distributed sys-
tems and networks, cooperation mechanisms of distributed programs, dis-
tributed real-time systems, and network QoS control.

Olivier Beaumont received his Ph.D. from
the University of Rennes in 1999. From 1999 to
2001, he was assistant professor at Ecole Nor-
male Supérieure de Lyon. He was appointed at
ENSEIRB in Bordeaux. In 2004, he defended
his “habilitation à diriger les recherches.” He is
the author of more than 15 papers published in
international journals and 50 papers published in
international conferences. His research interests
are design of parallel, distributed and random-
ized algorithms, overlay networks on large scale

heterogeneous platforms and combinatorial optimization.

Hiroshi Watanabe received the B.E., M.E.
and Ph.D. degrees from Hokkaido University,
Japan, in 1980, 1982 and 1985, respectively. He
joined Nippon Telegraph and Telephone Corpo-
ration (NTT) in 1985, and engaged in R&D for
image and video coding systems at NTT Hu-
man Interface Labs. (Later NTT Cyber Space
Labs.) until August 2000. He has also en-
gaged in developing JPEG, MPEG standards un-
der JTC 1/SC 29. From Sept. 2000, he is a Pro-
fessor at Graduate School of Global Information

and Telecommunication Studies. He has been ISO/IEC JTC 1/SC 29 Chair-
man since November 1999. He is an associate editor of IEEE Transactions
of Circuits and Systems for Video Technology. He is a member of a steer-
ing committee of PCSJ, IEEE, IPSJ, ITE, IIEEJ.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

