
MPEG-4 Very Low Bit-rate Video Compression Using Sprite Coding

Kumi Jinzenji†*, Hiroshi Watanabe*, Shigeki Okada†, Naoki Kobayashi†

†NTT Cyber Space Labs.
1-1 HikarinookaYokosuka-Shi, Kanagawa 238-0846, JAPAN

*Waseda University, Global Information and Telecommunication Institute
1-3-10 Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, JAPAN

ABSTRACT

This paper focuses on the “sprite coding” that supports the
MPEG-4 Version 1 Main profile in order to transfer “near VHS
quality video “ across narrow-band transmission links such as the
Internet. Automatic VOP (Video Object Plane) generation
technologies are being studied as one of the most important issues
of MPEG-4 object coding. This paper proposes a two-layer VOP
generation scheme with some core algorithms such as GME
(Global Motion Estimation), foreground moving object extraction,
and background sprite generation. This paper also describes a
shape information reduction method for the foreground object. The
foreground object is object-coded in the , while the background
sprite is coded using sprite coding in MPEG-4. We call this coding
scheme “sprite mode”; MPEG-4 simple profile coding is called
“normal mode”. Experiments are conducted on VOP generation
and video coding with MPEG-4. We compare sprite mode to
normal mode. The coding efficiency of sprite mode is several
times higher than that of normal mode at the same objective image
quality if the foreground ratio is within 10-15%. Given the target of
very low bitrate (128kbps, 64kbp) rate coding, sprite mode
achieved almost the same SNR but more than twice the frame
rate compared to normal mode.

1. INTRODUCTION

We are researching and developing very low bitrate coding
schemes applicable to Internet applications [1]. Conventional
coding schemes fail to maximize the frame rate or image quality at
very low bitrate (i.e. 64kbps). This reflects the weakness of
MC+DCT and an alternative compression scheme was seen as
necessary. This paper focuses on the “sprite coding” (the coding
tool that supports the MPEG-4 Main profile) and proposes a way to
automatically split a moving image into the sprite and the
foreground object. Sprite coding expresses the area that occupies
the same position across several frames as one plane (sprite) and
can be described by parametric conversion (global motion: GM).
The corresponding area in each frame can be regenerated from the
sprite. If this area is large, most of the moving image can be
expressed using one sprite (=static image), which leads to very high
compression efficiency.

For the automatic generation of sprites, Irani [2] et al. use the
top-down approach to calculate the global motion by aligning the
entire image. Wang [3] et al. generates multiple sprites from
multiple global motions determined by the clustering of local motion.
Lee [4] et al. report that manual sprite generation and achieved
dramatic compression efficiency while keeping the same subjective
image quality. However, none of these papers discussed the area
outside the sprite (= foreground area).

The answer to how to express and code the non-background
area (= foreground area) is MPEG-4 object coding. If there are
multiple objects within a frame, object coding is executed for each
object. This means that each object must keep its correspondence
across several frames. One of the conventional object extraction
schemes (semi-automatic scheme) proposed by Choi [5] et al.
clearly solves the correspondence problem of each object, but its
processing cost is not desirable. Some thechnoloies [6][7] extract
and trace single objects. However, none of them discuss the
correspondence of multiple objects across several frames.

First of all, this paper defines the VOP (Video Object Plane)
which consists of two layers, namely the foreground object and the
background sprite. Each frame is automatically split into
foreground VOP and background VOP. Because this two layer
VOP generation algorithm regards the whole moving area outside
the sprite as the one foreground, the problem of object
correspondence is sidestepped. The two layer VOP generation
algorithm consists of a GM calculation method specialized for sprite
generation, a high-quality background sprite generation method, and
a foreground object extraction method. The foreground object
extraction method is based on the difference between the original
image and background image extracted by GM, and is robust
against GM displacement. There is a problem in that an
automatically generated foreground object has complicated
contours and includes much noise, so its shape is very difficult to
predict accurately. As a result, intra coding increases which
increases code size. To sidestep this problem, we propose a
method that approximates object shape by using macro blocks.
This method can reduce the shape code size by about 90%. In this
paper, we apply the proposed algorithm to generate the foreground
object and the background sprite, then compress by object coding
and sprite coding of MPEG-4 Main profile, respectively. We
compare them to the results of MPEG-4 simple profile without
VOP structure.

2. AUTOMATIC TWO-LAYER VOP
GENERATION

2.1 Two-layer Video Object Model

Fig.1 overviews the coding/decoding model proposed in this
paper. On coding side, the image is first split into two layer video
objects, namely the foreground object and the background sprite.
The background sprite is the background reflecting the camera
motion. The foreground object is any moving area not belonging to
the background, and all these areas are treated as one foreground.
For example in “soccer” image, the players, the referees and the
ball are treated as one foreground object. The foreground object
and the background sprite are independent video objects, and the

former is converted to free shape code; the latter is subjected to
sprite coding. These isolated bit streams are multiplexed and sent
as one. At the receiving side, the bit stream is demultiplexed and
each video object is decoded, superimposed and displayed.

Automatic two layer VOP generation algorithm consists of 3
main parts: GM calculation, background sprite generation, and
foreground object extraction. At first, we calculate the motion
vectors between adjacent frames, then using these motion vectors,
calculate GM from the base frame. Using this GM, we deform the
original image and map it to generate a temporary sprite without
moving objects. We then calculate the difference between the
temporary sprite and the original image, and use the result to
generate the candidate foreground image and the background
image. The candidate foreground image is approximated using
macro blocks to yield the final foreground image. The background
image is used to generate the background sprite. Details are given
in the following chapter and reference [1].

2.2 GM Calculation

For sprite generation, GM should reflect only camera operation.
This is the most significant difference from the typical GME
algorithm which is tries to minimize the error between the original
image and the predicted image with GM. To avoid non-camera
movement (outlier), two techniques are proposed for GME: use of
motion vector distribution in the feature space and cluster candidate
selection.

Camera motion can be described using the Hermart transform
(four parameters affine) as:

1+′=









+
















′−

′
=









aa

d

c

y

x

ab

ba

v

u
(1)

where (u,v) is the motion vector calculated in each macro-
block, (x,y) is the position of the pixel, and {a,a’,b,c,d} is the set of
GM parameters to be calculated. a and a’ are scaling parameters,
b denotes rotation, c and d denote translation.

First, the motion vector for each macro-block is calculated
using the block-matching algorithm. Partial derivatives (see
equation (2) and (3)) of the motion vectors are calculated for each
macro-block.

a
y

v

x

u ′≡
∂
∂

=
∂
∂

(2)

b
x

v

y

u
≡−=

∂
∂

∂
∂

(3)

Each partial derivative creates a significant cluster on a line
written by equations (2) and (3) in each feature space. Here, all
blocks with smooth intensity gradation are removed from the target
blocks in the GME process, because such motion vectors are not
accurate and often concentrate around zero. The centroid of each
cluster yields scaling and rotation parameters. In this way, a’and b
are detected.

Equation (1) can be transformed into

















′−

′
−








=








y

x

ab

ba

v

u

d

c
. (4)

Translation vectors in each macro-block are calculated using
Equation (4). The translation vectors create several clusters in the
feature space. These centroids of the clusters are the candidates of
translation parameters c and d. Here, suppose that the translation
vector ()outlieroutlier dc , reflects outlier motion, while
()cameracamera dc , is camera motion. The absolute difference at each
pixel between the original and predicted images using a certain
translation parameter candidate is calculated. The number of pixels
whose value exceeds a certain threshold Th is calculated. If idealp

is the pixel number for ideal camera motion, while outlierp is for
outlier motion. idealp is always larger than any outlierp . This
principle can be used for the cluster candidate selection needed for
translation parameter detection. First, an absolute difference image
between the original image and the predicted image is calculated
for each candidate to examine. Then, in each candidate, the
number of pixels in the absolute difference image less than a
certain threshold Th is counted. The centroid having the largest
number of pixels is selected as the translation parameter. Here,
threshold Th is experimentally determined. These detected
parameters {a,a’,b,c,d} are then transformed into GM from a
preset base frame.

2.3 BackGround Sprite Generation

To generate a high quality sprite, this paper takes advantage of a
conventional temporal median method, the overwriting method.
Two kinds of sprite are generated: provisional sprite and final sprite.

The sprite is the panorama image generated by aligning images
so that their patterns link to each other. Using the GM calculated
from the base frame in the above section, we transform the shape
of each image and map them on the lattice points of the base
coordinate system. We can see that multiple pixels overlap each
other. We calculate their median and take it as the value of that
coordinate. If the pixels of the moving object is less than half of
pixels overlapping on that coordinate the pixels reflecting the
moving object will be excluded by calculating the median. This
generates the sprite without moving area. However, the sprite
generated by the temporal median method tends to be a little fuzzy.
We therefore, use this median-value-based sprite as a provisional
sprite to extract foreground. The overwrite method pastes the
pixels as they are on the base frame and so generates a high
quality sprite. However, it has a problem in that the foreground of
the top frame and the foreground object at the edge of each frame
remain. So after extracting the moving object, we treat the
remaining part of the image as the background image and
overwrite the pixels on the base coordinates one by one to generate
the final high quality sprite.

Automatic VOP
Definition

VOP1: Foreground moving object
VOP0: Background sprite

Input Bitstream
M
U
X

VOP 1
Decoding

D
E
M
U
X

Output

VOP 0
Decoding

Bitstream Composition

VOP 0
Encoding

VOP 1
Encoding

Fig.1 Two layer VOP Model.

2.4 Foreground Object Extraction

At first, we calculate the difference image between the original
image and the image extracted using the temporary sprite. We
binarize this difference image by thresholding and split it into a
foreground candidate image and a background image. The
foreground candidate image is processed by the macro block
approximation method (described in the next section), to yield the
final foreground image.

Because the automatically generated foreground object has
complicated contours, many acnodes, its shape is very difficult to
predict accurately. This triggers intra coding which increases
coding volume. To sidestep this problem, this paper proposes a
method that approximates object shape by using macro blocks.

MPEG-4 object shape coding has two modes: lossless and lossy.
The most rough shape expression in lossy mode is approximated by
macro blocks (Fig.2(b)). To be more specific, if more than half of
the macro block pixels include foreground information, the whole
macro block is regarded as foreground. Conversely, if less than
half of the macro block pixels include foreground information, the
whole macro block is regarded as background. One problem is
that the foreground object is eroded and obstructs the view.
Therefore, this paper proposes two phase macro block
approximation. At first, the macro block (contains more than
threshold Th1 foreground pixels) is regarded as foreground
(Fig.2(c)). All other macro blocks are regarded as background.
We then focus on the background macro block adjacent to the
foreground macro block from the first macro block approximation
phase. If more than threshold Th2 (Th2<Th1) of foreground pixels
are included in that macro block, we regard it as foreground
(Fig.2(d)).

The optimum threshold values, Th1 and Th2, depend on the
image. For example, an image with a complicated background is
easily effected by false GM, and foreground candidate areas
calculated by the difference naturally increase. To automatically
specify Th1 and Th2, we propose the algorithm shown in Fig. 3.
As it is assumed that sprite coding does not yield a code size
reduction if the foreground exceeds some ratio, we use the
foreground ratio as the control key. Th1 and Th2 are initially set at
the percentage corresponding to 1 pixel, and then incremented until
the foreground ratio falls under the heuristic threshold Rmax.

We executed the macro block approximation for the shape
information contained in the standard image “Stefan” using a
segmentation mask, and found that the shape code size was
reduced by about 90%. Another merit of macro block
approximation is the lower processing cost in software decoder
implementation. As shape information encoding and padding are
not needed, this method is suitable for applications that require real
time encoding/decoding.

3. MPEG-4 Coding Experiments
In the previous section, we applied the two layer VOP

generation algorithm to moving images and generated video objects.
We compressed the foreground objects by object coding and
compress edthe background sprites by sprite coding. We then
compress the original moving image using the MPEG-4 Simple
profile. For convenience, the former (latter) is referred to as sprite
(normal) mode. The code size with sprite mode is the sum of the
foreground object code and the background sprite code.

3.1 Relationship between Foreground Ratio and
Code size

It is obvious that the superiority of the sprite mode over the
normal mode depends, in part, on the ratio of foreground to
background object.

We examined 5 SIF images (150 frames each) that included
camera operation as shown below, and compared the coding
efficiency provided by both modes by fixing the quantization
parameter value (QP=12) and changing the foreground ratio from 5
to 40 %. Applying the same quantization parameter to both modes
should yield the same image quality.

1. Horserace: pan & several horses
2. Athlete: pan & several athletes
3. Soccer : pan, zoom & several players, a ball
4.Stefan: pan, zoom & a player, a ball
5.Board: pan & active skater border

Fig. 4 shows the foreground ratio and code size ratio with both
coding modes. If the foreground ratio is within 10 - 15%, the
coding efficiency of sprite mode is more than 2 times higher than
that of normal mode. When the foreground ratio is about 40%, the
coding efficiency of both modes is basically the same. At
foreground ratios beyond 40%, normal mode achieves higher
coding efficiency than sprite mode.

As the proposed two layer VOP generation algorithm selects
foreground according to the foreground ratio, a part of the
foreground may be excluded from this range and not extracted. In
this case, the foreground is coded as it is, and the information
volume decreases proportionally. This is noticeable in “Stefan”,
which includes a large audience area. The other images have more
even backgrounds. Even if a part of a moving area is not extracted

Initialize threshold Th1and

First approximate to macro-block

Second approximate to macro-block

Calculate foreground ratio Rf

If Rf<Rmax
Yes

No

Th2=Th1
Th1=Th1＋d

Macro-block
approximated
foreground object

Fig.2 Macro-block approximation. (a)original contours; (b)most lossy mode; (c)
first macro-block approximation; (d)second macro-block approximation and final
contours.

Fig.3 Flow chart of macro-block approximation.

(b) (c) (d)(a)

as foreground, its loss does not impact image quality. We found
that if the background is perfectly static and the foreground ratio is
within 10 - 15 %, we can more than double the coding efficiency
by using sprite mode.

3.2 Image Quality and Frame Rate Comparison
at Fixed Bit Rate

We executed normal/sprite mode coding experiments on the
“Horserace” image (bitrate=128 kbps with target frame rate=15
fps, and bitrate=64 kbps with target frame rate=10 fps). Normal
mode coding control followed VM Ver.15 [8]. The foreground
ratio of sprite mode was set at 15% to reflect the understanding
gained in the previous section.

Fig. 5 compares image frame SN ratios at 128 kbps and 64 kbps.
At 128 kbps, normal mode yielded the average SNR of 25.85 dB at
the frame rate of 6.80 fps, while sprite mode achieved the average
SNR of 25.69 dB at the frame rate of 15 fps. Similarly, at 64 kbps,
normal mode achieved the average SNR of 26.31 dB at the frame
rate of 2.8 fps, while sprite mode achieved the average SNR of
24.79 dB at the frame rate of 8.60 fps. At 128 kbps, the sprite
mode offers more than double the frame rate. The tests showed
that while the sprite mode yields slightly inferior SNR objective
image quality, it sometimes yields superior subjective image quality
(please note the result at 128 kbps).

4. Summary

We focused on “sprite coding” (the coding tool that supports
MPEG-4 Main profile [8]) to develop a “near VHS on the
Internet” coding method. We proposed an automatic video object
generation algorithm. We also applied MPEG-4 coding (sprite
mode) to the video objects generated by the proposed algorithm,
and compared it performance to that of the MPEG-4 simple profile
(normal mode). We considered the coding efficiency. Tests proved
that at the low bitrates of 128 kbps and 64 kbps, the sprite mode
yields almost the same SNR as the normal mode while achieving 2-
3 times higher frame rates with the condition foreground ratio less
than 10-15% of the whole image. However, video sequences do
not always satisfy these conditions. How to judge which shot
should undergo sprite coding, a seamless decoding method, and
how to allocate the code to each video object are future tasks.

Acknowledgement

We are deeply grateful to Ms. Noriko Yonehara of NTT
Software Corporation who was so helpful during the computer
simulations.

REFERENCES

[1] K. Jinzenji, S. Okada, H. Watanabe, N.
Kobayashi, ”Automatic Two-layer Video Object Plane
Generation Scheme And Its Application to MPEG-4 Video
Coding,” IEEE ISCAS2000, pp.606-609, May 2000.
[2] M. Irani, S. Hsu, and P. Anandan, “Video Compression Using

Mosaic Representation,” Signal Processing: Image
Communication, Vol. 7, pp. 529-552, 1995.
[3] J. Wang and E. Adelsen, “Representing Moving Images with

Layers,” IEEE Trans. on IP, Vol. 3, No. 5, pp.v625-638,
September 1994.
[4] M. Lee, W. Chen, C. Lin, C. Gu, T. Markoc, S. Zabinsky, R.

Szeliski, “A Layered Video Object Coding System Using
Sprite and Affine Motion Model,” IEEE Trans. on CSVT, Vol.
7, No. 1, February 1997.
[5] J. G. Choi, S. Lee, S. Kim, “Spatio-Temporal Video

Segmentation Using a Joint Similarity Measure,” IEEE Trans.
on CSVT, Vol. 7, No. 2, April 1997.
[6] Neri, S. Colonnese, G. Russo, “Automatic Moving Objects

and Background Segmentation by Means of Higher Order
Statistics,” IEEE ISCAS’97, June 1997.
[7] T.Meier, K.N. Ngan, “Automatic Segmentation of Moving

Objects for Video Object Plane Generation,” IEEE Trans. on
CSVT, Vol. 8, No. 5, September 1998.
[8] “MPEG-4 Video Verification Model Version 15.0,”

ISO/IECJTC1/SC29/WG11 MPEG98/N3093.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50
Foreground ratio [%]

Horserace

Soccer

Athlete

Stefan

Board 20

22

24

26

28

30

32

750 775 800 825 850 875 900

Frame number

S
N
R
[d
B
]

Normal

Sprite

20

22

24

26

28

30

32

750 775 800 825 850 875 900

Frame number

S
N
R
 [
dB
]

Normal

Sprite

Fig.4 Foreground ratio and coding
efficiency of sprite mode compared to
normal mode.

Fig.5 Objective coded image quality under fixed bit-rate. Left: 128kbps and right:
64kbps.

