

Sprite Coding in Object-based Video Coding Standard: MPEG-4

Hiroshi Watanabe
Waseda University

29-7 Bldg., 1 -3-10 Nishi-Waseda, Shinjuku-ku, Tokyo 169-0051 JAPAN
Tel: +81-3-5273-9104 Fax: +81-3-5286-3832

E-mail: hiroshi@giti.waseda.ac.jp

and

 Kumi Jinzenji
NTT Cyberspace Labs.

1-1 Hikari-no-oka Yokosuka-shi, Kanagawa 239-0847 JAPAN

ABSTRACT

This paper outlines a new standard video
compression technology: MPEG-4. We propose a very
efficient coding scheme using the one of the
compression tools of MPEG-4 “Sprite coding”. We
first introduce MPEG-4 visual “Profiles”, which are
sets of tools (technical elements) that realize certain
types of applications. Among these “Profiles”, “Main
Profile” is capable of using “Sprites” i.e. a unified
background image derived from a sequence having
camera motion. We propose a new technique to split
foreground moving objects from the background
“Sprite” automatically for more efficient video
compression than is possible with conventional
technologies. We call the algorithm the “Two-layer
video object plane (VOP) generation scheme”. The
two-layer VOP generation scheme has several core
algorithms such as GME (Global Motion Estimation),
foreground moving object extraction, and background
sprite generation. The foreground object is MPEG-4
object coded in the main profile, while the background
sprite is coded using MPEG-4 sprite coding. We call
this coding scheme “sprite mode”; MPEG-4 simple
profile coding is called “normal mode”. Experiments
are conducted on VOP generation and video coding
with MPEG-4. We compare sprite mode to normal
mode. The coding efficiency of sprite mode is several
times higher than that of normal mode at the same
objective image quality if the foreground ratio is
within 10-15%.

Keywords: MPEG-4, Video Coding, Profile, Sprite,
Video Object Extraction, Very low bit-rate coding

1. INTRODUCTION

MPEG-4 Visual[1] is an object-based video coding
standard that employs state-of-the art video
compression technolo gy for representing 3D video
objects in a scene. A frame based video sequence is
decomposed to several video object planes (VOPs).
These VOPs can be coded in different ways to suit
their characteristics. For example, an object that
stays in front of a background can be coded using an
arbitrary shape. In addition, MPEG-4 adopts a new
variable length code to achieve the error robustness
desired for mobile and Internet applications. The
standard is suitable for mobile videophones, which are
a practical application in the next generation mobile
communication system, IMT2000.

In this paper, we first introduce MPEG-4 visual
“Profiles”, which are sets of tools (technical elements)
collected to achieve certain types of applications.
Among these “Profiles”, “Main Profile” is capable of
using “Sprite” i.e. a unified background image derived
from a sequence having a camera motion. Next, we
propose an automatic two-layer video object extraction
algorithm to achieve higher compression ratios than
conventional video coding methods using MC+DCT.
This algorithm is based on the two layer video object
model. A video sequence is divided into the
foreground and background object. The background
object is represented as a sprite image. Unlike existing
algorithms, the proposed algorithm offers object
correspondence and entirely automatic processing
[3-11]. The proposed algorithm generates foreground
objects and the background sprite, and then
compresses them by object coding and sprite coding of
MPEG-4 Main profile, respectively. We compare the
result to the result achieved with MPEG-4 simple
profile without VOP structure.

2. MPEG-4 VISUAL PROFILE

 MPEG-4 follows the concept of “Profile” in which
the lower layer profile is a subset of a higher layer
profile. This means that the higher layer decoder can
decode all of the bitstream created by the lower layer
encoder. This hierarchical model is also called “onion
ring model.” In MPEG-4, “Profile ” contains “Object
Type”, a set of tools for several targeted applications.
The list of “MPEG-4 Visual Profiles” and the related
“Object Types” are as follows.

(1)Simple Profile: Simple Object Type
(2)Core Profile: Simple Object Type, Core Object

Type
(3)Simple Scalable Profile: Simple Object Type,

Simple Scalable Object Type
(4)N-bit Profile: Simple Object Type, Core Object

Type, N-bit Object Type
(5)Main Profile: Simple Object Type, Core Object

Type, Main Object Type,
 Scalable Still Texture Object Type

(6)Scalable Still Texture Profile: Scalable Still
Texture Object Type
 “Simple Profile” is targeted for applications of
mobile communication and the Internet. “Core Profile”
is for PC applications. “Main Profile” is designed for
higher resolution images. “Simple Scalable Profile” is
suitable for applications that experience time-varying
transmission channel environments. “N-bit Profile” is

mainly used for satellite surveillance applications.
 Many new coding techniques have been introduced
to achieve new coding functions in MPEG-4. Intra,
Predicted and Bi-directionally predicted Video Object
Planes are the basic approaches to cope with arbitrary
shaped images that differ from the conventional square
ones. I-VOP and P-VOP can be used in “Simple
Profile” where as B-VOP can be used in “Core
Profile”. Binary/Grayscale alpha plane can represent
levels of transparency when two or more objects
overlap. Binary alpha is used in “Core Profile”
where as grayscale alpha can be used in “Main
Profile”. For enhanced error robustness, “Simple
Profile” offers re-synchronization marker, reversible
variable length code (VLC) and data partitioning.
“Sprite” is one of the coding tools in “Main Profile”.
The MPEG-4 standard was design on the assumption
that “Sprite” is provided in a certain way. How to
generate “Sprite” lies outside the scope of MPEG-4.
Wavelet still image coding can provide a graceful
degradation for scalable image representation. In the
next section, we will focus on MPEG-4 “Sprite”
coding used in combination with automatic “Sprite”
generation.

N-bit Still Scalable Texture

Main

Simple Scalable

Core

Simple
I-VOP

AC/DC prediction

P-VOP
4-MV

Error resilience

Unrestricted motion vector

B-VOP

Temporal scalability

Sprite

Spacial scalability

P-VOP based temporal scalability

Interace Gray shape

Binary shape
Method1/Method2 quantization

N-bit
Scalable still texture

Fig1. MPEG-4 visual profile and visual tools.

3. SPRITE CODING

Figure2 shows the difference between conventional
coding schemes and MPEG-4 object coding. The left
side of the figure presents conventional coding. A
video sequence is coded frame by frame using motion
compensation to reduce frame redundancy. The right
side of Figure 2 presents the typical MPEG-4 object
coding process. A video sequence can be divided into
several video objects. One of the objects is “Sprite”.
These video objects are assembled at the receiver site
to recreate the image. Object extraction/segmentation
lies outside the standardization issue.

Automatic “Sprite” generation from a video
sequence is a key point in realizing the “Sprite” coding
mode in MPEG-4. A “Sprite” can be viewed as a
unified image when there is some camera motion such
as panning or zooming. Most sport video scenes have
such characteristics. First, we propose a new technique
to separate moving foreground objects from panning
and zooming video sequences. Next, foreground
objects are coded by MPEG-4 arbitrary shaped video
coding mode; “Sprite” is coded in still image coding
mode. The background image in each frame can be
reconstructed by geometric-projection from the
“Sprite”. This offers high coding efficiency, i.e. high
compression ratio, since most of the background image
in the video sequence can be represented by one large
sprite image; temporal change is ignored.

3.1 Two-layer video object model

 We presume a simple two-layer video object plane
model. Each frame can be automatically separated to
foreground and background VOPs. Fig.3 overviews

the coding/decoding model proposed in this paper. On
coding side, the image is first split into two layer video
objects, namely the foreground object and the
background sprite. The background sprite is the
background and reflects the camera motion. The
foreground object is any moving area not belonging to
the background, and all such areas are treated as one
object. For example in “soccer” image, the players, the
referees and the ball are treated as one foreground
object. The foreground object and the background
sprite are independent video objects, and the former is
converted to free shape code; the latter is subjected to
sprite coding in the MPEG-4 Main profile. These
isolated bit streams are multiplexed and sent as one. At
the receiving side, the bitstream is demultiplexed and
the video objects are decoded, superimposed and
displayed. If the foreground area is small, the
non-foreground area (the background area occupies

Fig3.Two-layer video object model.

Automatic VOP
Definition

VOP0: Background sprite
VOP1: Foreground moving object

Input Bitstream

VOP 1
Decoding

Output

VOP 0
Decoding

Bitstream Composition

VOP 0
Encoding

VOP 1
Encoding

M
U

X

D
E

M
U

X

Fig2. Conventional coding vs. sprite coding.

Background sprite
(MPEG-4 sprite coding)

Background video object

Foreground video object
(MPEG-4 Object coding)

Video sequence
Composed image

Conventional coding Sprite coding

Segmentation

most of the moving image) can be expressed as one
sprite (= static image). Therefore, compression
efficiency is expected to be higher than that possible
with conventional methods based on MC+DCT.

Figure 4 overviews the flow of the two-layer VOP
extraction algorithm. The algorithm consists of five
parts: motion vector calculation, global motion
estimation, provisional sprite generation, foreground
object extraction and background(final) sprite
generation.

3.2 Global motion detection

To generate the sprite, GM should faithfully reflect
the camera motion. The typical GM calculation [4][5]
yields the MSE (Mean Square Error) between the GM
predicted image and the original image [4][5].
Because GM is calculated as the average value of local
motion, it does not accurately reflect camera motion.
Though documents [10][11] propose a GM calculation
method, they do not exclude non-camera motion
(outliers). To calculate GM that well reflects camera
motion, this paper clarifies the relationship between
camera motion and local motion vectors (parallel
motion model), and proposes a way to select GM from
local motion vector groups.

Camera motion can be described using the Hermart
transform (four parameters affine) as:

1???

??
?

?
??
?

?
???

?

?
??
?

?
??
?

?
??
?

?
??

?
???

?

?
??
?

?

aa

d
c

y
x

ab
ba

v
u

 (1)

where (u,v) is the motion vector calculated in each
macro-block, (x,y) is the position of the pixel, and
{a,a’,b,c,d} is the set of GM parameters to be
calculated. a and a’ are scaling parameters, b denotes

rotation, c and d denote translation.
First, the motion vector for each macro-block is

calculated using the block-matching algorithm. Partial
derivatives (see Eq. (2) and (3)) of the motion vectors
are calculated for each macro-block.

a
y
v

x
u

??
?
?

?
?
? (2)

b
x
v

y
u

???
?
?

?
? (3)

Each partial derivative creates a significant cluster
on a line written by Eq.(2) and (3) in each feature
space. Here, all blocks with smooth intensity
gradation are removed from the target blocks in the
GME process, because such motion vectors are not
accurate and often concentrate around zero. The
centroid of each cluster yields scaling and rotation
parameters. In this way, a’and b are detected.

Equation (1) can be transformed into

??
?

?
??
?

?
??
?

?
??
?

?
??

?
???

?

?
??
?

?
???

?

?
??
?

?
y
x

ab
ba

v
u

d
c . (4)

Subtracting the scaling and rotation effect from the
block-based motion vector according to Eq.(4), yields
the transition parameters. Block-based transition
parameters are clustered to identify the median values,
which well reflect the camera motion.

3.3 Background sprite generation

Once camera motion in the sequence is obtained,
each frame image can be superimposed considering its
size and location. Next, median filtering in the
temporal direction is performed to remove the
foreground object. Images without foreground object
are super- imposed to generate one “Sprite” for the
sequence. Applying scaling, rotation and transition
parameters to the “Sprite” yields the background
image of each frame. To generate a high quality sprite,
this paper takes advantage of a conventional temporal
median method[10], the overwriting method. Two
kinds of sprite are generated: provisional sprite and
final sprite.

Using the GM calculated from the base frame in the
above subsection, we transform the shape of each
image and map them on the lattice points of the base
coordinate system. We can see that multiple pixels
overlap each other. We calculate their median value
and take it as the value of that coordinate. This
generates the sprite without moving area. However, the
sprite generated by the temporal median method tends
to be a little fuzzy. We, therefore, use this
median-value-based sprite as a temporary sprite to
extract the foreground. The overwriting method
pastes the pixels as they are on the base frame and so
generates a high quality sprite. However, it has a

Fig.4 Automatic two-layer VOP generation algorithm.

Original
 Image

Motion vector calculation

Global motion estimation

Provisional sprite generation

Foreground object extraction

Background sprite generation

Global
motion

Background sprite Foreground object

Macro-block
approximation

problem in that the foreground of the top frame and the
foreground object at the edge of each frame remain.
Accordingly, after extracting the moving object, we
treat the remaining part of the image as the
background image and paste the pixels on the base
coordinates one by one to generate the final high
quality sprite.

3.4 Foreground object extraction

Finally, this background image is subtracted from the
input image to obtain the foreground object.

At first, we calculate the difference image between
the original image and the image extracted using the
temporary sprite. We binarize this difference image
by thresholding and split it into a foreground candidate
image and a background image. The foreground
candidate image is processed by the foreground shape
macro block approximation method (described in the
next section), to yield the final foreground image.

Because the automatically generated foreground
object has complicated contours (many acnodes), its
shape is very difficult to predict accurately. This
triggers intra coding which increases coding volume.
To sidestep this problem, this paper proposes a method
that approximates object shape by using macro blocks.
Foreground contours are approximated by
macro-blocks.

This paper proposes two phase macro block
approximation. At first, the macro block (contains
more than threshold Th1 foreground pixels) is
regarded as foreground. All other macro blocks are
regarded as background. We then focus on the
background macro block adjacent to the foreground
macro block from the first macro-block approximation

phase. If more than threshold Th2 (Th2<Th1) of
foreground pixels are included in that macro block, we
regard it as foreground.

Another merit of macro block approximation is the
lower processing cost in software decoder
implementation. As shape information encoding and
padding are not needed, this method is suitable for
applications that require real time encoding.

3.5 Video Coding simulation

 In the previous section, we applied the two-layer
VOP generation algorithm to moving images and
generated video objects. We converted the foreground
objects of several images to MPEG-4 object code, and
converted the background sprites to same profile sprite
code. We then processed the original moving image
using the MPEG-4 Simple profile code (One VOP).
For convenience, the former (latter) is referred to as
sprite (normal) mode. The code volume with sprite
mode is the sum of the foreground object code and the
background sprite code. We used five video sequence
including “stefan”: standard video sequence for
simulation trials. These video sequences contain
camera motion and some moving objects. Quantization
parameter (QP) was constant at 15 throughout the
sequence. Foreground ratio was set to 10 – 15 percent
of the image size.

Figure 5 shows the examples of the sprite and
foreground moving object so generated. Figure 6
presents the coding results. When the foreground
ratio is within 10 - 15%, the coding efficiency of sprite
mode is more than twice that of normal mode. This is
noticeable in “Stefan”, which includes a large audience
area. The other images have more even backgrounds.

Fig.5 Generated sprites and foreground objects.

Foreground object Composed image Original image

Background sprite

Even if a part of a moving area is not extracted as
foreground, its loss does not impact image quality.

4. CONCLUSION

 We overviewed the new video coding standard
MPEG-4 visual profile and object types. We then
proposed a new video coding algorithm that well
utilizes the characteristics of MPEG-4 visual tools
such as sprite and video objects. The automatic
two-layer VOP generation algorithm was proposed and
applied to low bit rate video coding. In simulations,
the proposed algorithm was found to provide a
dramatic increase in compression rates, 50% to 25% ,
compared with the normal MPEG-4 mode. It offers the
same quality video when the foreground object size is
around 10 to 15% of the image.

However, video sequences do not always satisfy
these conditions. How to judge which shot should
undergo sprite coding, a seamless decoding method,
and how to allocate the code to each video object are
future tasks.

REFERENCES

[1] ISO/IEC 14496-2, “Information Technology –
Coding of audio-visual objects– Part 2: Visual” (1999).
[2] “MPEG-4 Video Verification Model Version
15.0,”ISO/IECJTC1/SC29/WG11 PEG98/N3093.
[3] K. Jinzenji, S. Okada, H. Watanabe, N.
Kobayashi, ”Automatic Two-layer Video Object Plane
Generation Scheme And Its Application to MPEG-4
Video Coding,” IEEE ISCAS2000, pp.606-609, May
2000.
[4] M. Irani, S. Hsu, and P. Anandan, “Video
Compression Using Mosaic Representation,” Signal

Processing: Image Communication, Vol. 7, pp.
529-552, 1995.
[5] J. Wang and E. Adelsen, “Representing Moving
Images with Layers,” IEEE Trans. on IP, Vol. 3, No. 5,
pp.v625-638, September 1994.
[6] M. Lee, W. Chen, C. Lin, C. Gu, T. Markoc, S.
Zabinsky, R. Szeliski, “A Layered Video Object
Coding System Using Sprite and Affine Motion
Model,” IEEE Trans. on CSVT, Vol. 7, No. 1, February
1997.
[7] M. Kass, A. Witikin, D. Terzopoulos, “SNAKES:
Active Contour Models,” Proc. 1st ICCV, pp.259-268,
1987.
[8] J. G. Choi, S. Lee, S. Kim, “Spatio-Temporal Video
Segmentation Using a Joint Similarity Measure,” IEEE
Trans. on CSVT, Vol. 7, No. 2, April 1997.
[9] Neri, S. Colonnese, G. Russo, “Automatic Moving
Objects and Background Segmentation by Means of
Higher Order Statistics,” IEEE ISCAS’97, June 1997.
[10] R. Mech, M. Wollborn, “A Noise Robust Method
for Segmentation of Moving Objects in Video
Sequence,” IEEE ICASSP’97, April 1997.
[11] T.Meier, K.N. Ngan, “Automatic Segmentation of
Moving Objects for Video Object Plane Generation,”
IEEE Trans. on CSVT, Vol. 8, No. 5, September
1998.
[12] H. Jozawa, K. Kamikura, A. Sagata, H. Kotera,
and H. Watanabe: "Two-stage motion compensation
using adaptive global MC and local affine MC," IEEE
Trans. Circuit & Systems for Video Tech., Vol. 7, No.
1, pp. 75-85, January 1997.
[13] J. Bergen, P. Anandan, K. Hana, R. Hingorani,
“Hierachical Model-Based Motion Estimation,”
ECCV ’92, pp. 237-252, May 1992.
[14] A. Akutsu, T. Tonomura, H. Hamada,
“Videostyler: Multi-dimensional Video Computing for
Eloquent Media Interface,” ICIP ‘ 95, pp. 330-333,
September 1995.
[15] K. Jinzenji, S. Ishibashi, and H. Kotera,
“Algorithm for Automatically Producing Layered
Sprites by detecting Camera Movement,” IEEE
International Conference on Image Processing '97
(ICIP'97), pp. 767-770, October 1997.
[16] K. Jinzenji, H. Watanabe, N. Kobayashi, “ Global
Motion Estimation for Static Sprite Production and Its
Application to Video Coding,” IEEE ISPACS‘98,
pp.328-332, November 1998.

Fig.6 Coding simulation result.

0

100

200
300

400

500

600

700

800

900

Horserace Soccer Athlete Stefan Skateboard

[k
bi

ts
 p

er
 s

ec
.]

Sprite

Normal

