
 
Sprite Coding in Object-based Video Coding Standard: MPEG-4 

 
Hiroshi Watanabe  
Waseda University   

29-7 Bldg., 1 -3-10 Nishi-Waseda, Shinjuku-ku, Tokyo 169-0051 JAPAN 
Tel: +81-3-5273-9104  Fax: +81-3-5286-3832 

E-mail: hiroshi@giti.waseda.ac.jp 
 

and 
 

 Kumi Jinzenji 
NTT Cyberspace Labs. 

1-1 Hikari-no-oka Yokosuka-shi, Kanagawa 239-0847 JAPAN 
 

 

ABSTRACT 

This paper outlines a new standard video 
compression technology: MPEG-4. We propose a very 
efficient coding scheme using the one of  the 
compression tools of MPEG-4 “Sprite coding”. We 
first introduce MPEG-4 visual “Profiles”, which are 
sets of tools (technical elements) that realize certain 
types of applications. Among these “Profiles”, “Main 
Profile” is capable of using “Sprites” i.e. a unified 
background image derived from a sequence having 
camera motion. We propose a new technique to split 
foreground moving objects from the background 
“Sprite” automatically for more efficient video 
compression than is possible with conventional 
technologies. We call the algorithm the “Two-layer 
video object plane (VOP) generation scheme”. The 
two-layer VOP generation scheme has several core 
algorithms such as GME (Global Motion Estimation), 
foreground moving object extraction, and background 
sprite generation. The foreground object is MPEG-4 
object coded in the main profile, while the background 
sprite is coded using MPEG-4 sprite coding. We call 
this coding scheme “sprite mode”; MPEG-4 simple 
profile coding is called “normal mode”. Experiments 
are conducted on VOP generation and video coding 
with MPEG-4. We compare sprite mode to normal 
mode. The coding efficiency of sprite mode is several 
times higher than that of normal mode at the same 
objective image quality if the foreground ratio is 
within 10-15%.  
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1. INTRODUCTION 

MPEG-4 Visual[1] is an object-based video coding 
standard that employs state-of-the art video 
compression technolo gy for representing 3D video 
objects in a scene.  A frame based video sequence is 
decomposed to several video object planes (VOPs).  
These VOPs can be coded in different ways to suit 
their characteristics.  For example, an object that 
stays in front of a background can be coded using an 
arbitrary shape.  In addition, MPEG-4 adopts a new 
variable length code to achieve the error robustness 
desired for mobile and Internet applications. The 
standard is suitable for mobile videophones, which are 
a practical application in the next generation mobile 
communication system, IMT2000.  

In this paper, we first introduce MPEG-4 visual 
“Profiles”, which are sets of tools (technical elements) 
collected to achieve certain types of applications. 
Among these “Profiles”, “Main Profile” is capable of 
using “Sprite” i.e. a unified background image derived 
from a sequence having a camera motion. Next, we 
propose an automatic two-layer video object extraction 
algorithm to achieve higher compression ratios than 
conventional video coding methods using MC+DCT.  
This algorithm is based on the two layer video object 
model. A video sequence is divided into the 
foreground and background object. The background 
object is represented as a sprite image. Unlike existing 
algorithms, the proposed algorithm offers object 
correspondence and entirely automatic processing 
[3-11]. The proposed algorithm generates foreground 
objects and the background sprite, and then 
compresses them by object coding and sprite coding of 
MPEG-4 Main profile, respectively. We compare the 
result to the result achieved with MPEG-4 simple 
profile without VOP structure.  



2. MPEG-4 VISUAL PROFILE 

  MPEG-4 follows the concept of “Profile” in which 
the lower layer profile is a subset of a higher layer 
profile. This means that the higher layer decoder can 
decode all of the bitstream created by the lower layer 
encoder. This hierarchical model is also called “onion 
ring model.” In MPEG-4, “Profile ” contains “Object 
Type”, a set of tools for several targeted applications.  
The list of “MPEG-4 Visual Profiles” and the related 
“Object Types” are as follows. 

(1)Simple Profile: Simple Object Type 
(2)Core Profile: Simple Object Type, Core Object 

Type 
(3)Simple Scalable Profile: Simple Object Type, 

Simple Scalable Object Type 
(4)N-bit Profile: Simple Object Type, Core Object 

Type, N-bit Object Type 
(5)Main Profile: Simple Object Type, Core Object 

Type, Main Object Type, 
 Scalable Still Texture Object Type 

(6)Scalable Still Texture Profile: Scalable Still 
Texture Object Type 
  “Simple Profile” is targeted for applications of 
mobile communication and the Internet. “Core Profile” 
is for PC applications. “Main Profile” is designed for 
higher resolution images. “Simple Scalable Profile” is 
suitable for applications that experience time-varying 
transmission channel environments. “N-bit Profile” is 

mainly used for satellite surveillance applications.  
  Many new coding techniques have been introduced 
to achieve new coding functions  in MPEG-4. Intra, 
Predicted and Bi-directionally predicted Video Object 
Planes are the basic  approaches to cope with arbitrary 
shaped images that differ from the conventional square 
ones. I-VOP and P-VOP can be used in “Simple 
Profile” where as B-VOP can be used in “Core 
Profile”.  Binary/Grayscale alpha plane can represent 
levels of transparency when two or more objects 
overlap.  Binary alpha is used in “Core Profile” 
where as grayscale alpha can be used in “Main 
Profile”. For enhanced error robustness, “Simple 
Profile” offers re-synchronization marker, reversible 
variable length code (VLC) and data partitioning.  
“Sprite” is one of the coding tools in “Main Profile”.  
The MPEG-4 standard was design on the assumption 
that “Sprite” is provided in a certain way. How to 
generate “Sprite” lies outside the scope of MPEG-4. 
Wavelet still image coding can provide a graceful 
degradation for scalable image representation. In the 
next section, we will focus on MPEG-4 “Sprite” 
coding used in combination with automatic “Sprite” 
generation.  
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Fig1. MPEG-4 visual profile and visual tools. 



3. SPRITE CODING 

Figure2 shows the difference between conventional 
coding schemes and MPEG-4 object coding. The left 
side of the figure presents conventional coding. A 
video sequence is coded frame by frame using motion 
compensation to reduce frame redundancy. The right 
side of Figure 2 presents the typical MPEG-4 object 
coding process. A video sequence can be divided into 
several video objects. One of the objects is “Sprite”. 
These video objects are assembled at the receiver site 
to recreate the image. Object extraction/segmentation 
lies outside the standardization issue. 

Automatic “Sprite” generation from a video 
sequence is a key point in realizing the “Sprite” coding 
mode in MPEG-4. A “Sprite” can be viewed as a 
unified image when there is some camera motion such 
as panning or zooming. Most sport video scenes have 
such characteristics. First, we propose a new technique 
to separate moving foreground objects from panning 
and zooming video sequences. Next, foreground 
objects are coded by MPEG-4 arbitrary shaped video 
coding mode; “Sprite” is coded in still image coding 
mode. The background image in each frame can be 
reconstructed by geometric-projection from the 
“Sprite”. This offers high coding efficiency, i.e. high 
compression ratio, since most of the background image 
in the video sequence can be represented by one large 
sprite image; temporal change is ignored.  

3.1 Two-layer video object model 

  We presume a simple two-layer video object plane 
model. Each frame can be automatically separated to 
foreground and background VOPs. Fig.3 overviews 

the coding/decoding model proposed in this paper. On 
coding side, the image is first split into two layer video 
objects, namely the foreground object and the 
background sprite. The background sprite is the 
background and reflects the camera motion. The 
foreground object is any moving area not belonging to 
the background, and all such areas are treated as one 
object. For example in “soccer” image, the players, the 
referees and the ball are treated as one foreground 
object.  The foreground object and the background 
sprite are independent video objects, and the former is 
converted to free shape code; the latter is subjected to 
sprite coding in the MPEG-4 Main profile.  These 
isolated bit streams are multiplexed and sent as one. At 
the receiving side, the bitstream is demultiplexed and 
the video objects are decoded, superimposed and 
displayed.  If the foreground area is small, the 
non-foreground area (the background area occupies 

 

 

Fig3.Two-layer video object model. 
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most of the moving image) can be expressed as one 
sprite (= static image). Therefore, compression 
efficiency is expected to be higher than that possible 
with conventional methods based on MC+DCT.  

Figure 4 overviews the flow of the two-layer VOP 
extraction algorithm. The algorithm consists of five 
parts: motion vector calculation, global motion 
estimation, provisional sprite generation, foreground 
object extraction and background(final) sprite 
generation. 

3.2 Global motion detection 

To generate the sprite, GM should faithfully reflect 
the camera motion. The typical GM calculation [4][5] 
yields the MSE (Mean Square Error) between the GM 
predicted image and the original image [4][5].  
Because GM is calculated as the average value of local 
motion, it does not accurately reflect camera motion.  
Though documents [10][11] propose a GM calculation 
method, they do not exclude non-camera motion 
(outliers).  To calculate GM that well reflects camera 
motion, this paper clarifies the relationship between 
camera motion and local motion vectors (parallel 
motion model), and proposes a way to select GM from 
local motion vector groups. 

Camera motion can be described using the Hermart 
transform (four parameters affine) as: 
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where (u,v) is the motion vector calculated in each 
macro-block, (x,y) is the position of the pixel, and 
{a,a’,b,c,d} is the set of GM parameters to be 
calculated. a and a’ are scaling parameters, b denotes 

rotation, c and d denote translation.  
First, the motion vector for each macro-block is 

calculated using the block-matching algorithm. Partial 
derivatives (see Eq. (2) and (3)) of the motion vectors 
are calculated  for each  macro-block. 
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Each partial derivative creates a significant cluster 
on a line written by Eq.(2) and (3) in each feature 
space. Here, all blocks with smooth intensity 
gradation are removed from the target blocks in the 
GME process, because such motion vectors are not 
accurate and often concentrate around zero. The 
centroid of each cluster yields scaling and rotation 
parameters. In this way, a’and b are detected. 

Equation (1) can be transformed into 
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Subtracting the scaling and rotation effect from the 
block-based motion vector according to Eq.(4), yields 
the transition parameters. Block-based transition 
parameters are clustered to identify the median values, 
which well reflect the camera motion.  

3.3 Background sprite generation 

Once camera motion in the sequence is obtained, 
each frame image can be superimposed considering its 
size and location. Next, median filtering in the 
temporal direction is performed to remove the 
foreground object. Images without foreground object 
are super- imposed to generate one “Sprite” for the 
sequence. Applying scaling, rotation and transition 
parameters to the “Sprite” yields the background 
image of each frame. To generate a high quality sprite, 
this paper takes advantage of a conventional temporal 
median method[10], the overwriting method. Two 
kinds of sprite are generated: provisional sprite and 
final sprite.  

Using the GM calculated from the base frame in the 
above subsection, we transform the shape of each 
image and map them on the lattice points of the base 
coordinate system. We can see that multiple pixels 
overlap each other. We calculate their median value 
and take it as the value of that coordinate. This 
generates the sprite without moving area. However, the 
sprite generated by the temporal median method tends 
to be a little fuzzy.  We, therefore, use this 
median-value-based sprite as a temporary sprite to 
extract the foreground.  The overwriting method 
pastes the pixels as they are on the base frame and so 
generates a high quality sprite. However, it has a 

 

Fig.4 Automatic two-layer VOP generation algorithm. 
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problem in that the foreground of the top frame and the 
foreground object at the edge of each frame remain.  
Accordingly, after extracting the moving object, we 
treat the remaining part of the image as the 
background image and paste the pixels  on the base 
coordinates one by one to generate the final high 
quality sprite. 

3.4 Foreground object extraction 

Finally, this background image is subtracted from the 
input image to obtain the foreground object.  

At first, we calculate the difference image between 
the original image and the image extracted using the 
temporary sprite.  We binarize this difference image 
by thresholding and split it into a foreground candidate 
image and a background image. The foreground 
candidate image is processed by the foreground shape 
macro block approximation method (described in the 
next section), to yield the final foreground image. 

Because the automatically generated foreground 
object has complicated contours (many acnodes), its 
shape is very difficult to predict accurately. This 
triggers intra coding which increases coding volume.  
To sidestep this problem, this paper proposes a method 
that approximates object shape by using macro blocks. 
Foreground contours are approximated by 
macro-blocks. 

This paper proposes two phase macro block 
approximation. At first, the macro block (contains 
more than threshold Th1 foreground pixels) is 
regarded as foreground.  All other macro blocks are 
regarded as background.  We then focus on the 
background macro block adjacent to the foreground 
macro block from the first macro-block approximation 

phase. If more than threshold Th2 (Th2<Th1) of 
foreground pixels are included in that macro block, we 
regard it as foreground. 

Another merit of macro block approximation is the 
lower processing cost in software decoder 
implementation.  As shape information encoding and 
padding are not needed, this method is suitable for 
applications that require real time encoding. 

3.5 Video Coding simulation  

 In the previous section, we applied the two-layer 
VOP generation algorithm to moving images and 
generated video objects. We converted the foreground 
objects of several images to MPEG-4 object code, and 
converted the background sprites to same profile sprite 
code. We then processed the original moving image 
using the MPEG-4 Simple profile code (One VOP). 
For convenience, the former (latter) is referred to as 
sprite (normal) mode. The code volume with sprite 
mode is the sum of the foreground object code and the 
background sprite code. We used five video sequence 
including “stefan”: standard video sequence for 
simulation trials. These video sequences contain 
camera motion and some moving objects. Quantization 
parameter (QP) was constant at 15 throughout the 
sequence. Foreground ratio was set to 10 – 15 percent 
of the image size. 

Figure 5 shows the examples of the sprite and 
foreground moving object so generated. Figure 6 
presents the coding results.  When the foreground 
ratio is within 10 - 15%, the coding efficiency of sprite 
mode is more than twice that of normal mode. This is 
noticeable in “Stefan”, which includes a large audience 
area. The other images have more even backgrounds.  

 

Fig.5 Generated sprites and foreground objects. 
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Even if a part of a moving area is not extracted as 
foreground, its loss does not impact image quality.  

4. CONCLUSION 

  We overviewed the new video coding standard 
MPEG-4 visual profile and object types. We then 
proposed a new video coding algorithm that well 
utilizes the characteristics of MPEG-4 visual tools 
such as sprite and video objects. The automatic 
two-layer VOP generation algorithm was proposed and 
applied to low bit rate video coding. In simulations, 
the proposed algorithm was found to provide a 
dramatic  increase in compression rates,  50% to 25% , 
compared with the normal MPEG-4 mode. It offers the 
same quality video when the foreground object size is 
around 10 to 15% of the image.  

However, video sequences do not always satisfy 
these conditions.  How to judge which shot should 
undergo sprite coding, a seamless decoding method, 
and how to allocate the code to each video object are 
future tasks. 
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Fig.6  Coding simulation result. 
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