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Abstract 

The emergence of many kinds of omnidirectional cameras recently has given a 

broader opportunity for enhancing many types of application with a wide-field-of-view 

capability. However, making use of images obtained from an omnidirectional camera is not 

as easy as that of a general perspective camera due to a distortion characteristic attached to 

those images. Therefore, overcoming the distortion while utilizing omnidirectional images 

is still a big challenge. In this research, we focus on estimating motion directly from 

sequential fisheye images. For about several years, the motion estimation (ME) technique 

has been developed and mainly implemented for many applications. These applications can 

be found in the object tracking, 3-D structure estimation, motion analysis, video frame-rate 

conversion, video compression, and video surveillance system. 

There are two ME developments conducted in this research. The first is the 2-D ME, 

and the second is the 3-D ME. The 2-D ME estimates motion directly from sequential 

fisheye images produced by a fisheye camera. The 3-D ME forecasts the 3-D scene flow 

by utilizing both of sequential fisheye images and a sequential stereo fisheye image 

produced by a stereo fisheye camera. Both the 2-D ME and 3-D ME are design based on 

the optical flow concept, and the conventional Lucas and Kanade’s (LK) approximation is 

developed in each ME concept. 

In the 2-D ME development, we have succeeded to make use of the LK’s optical flow 

scheme as a fundamental methodology of estimating motion directly from sequential 

fisheye images. In the fisheye image circumstance, it seems like this method works very 

efficient. However, the conventional LK’s approach seems to be difficult to overcome a 

massive distortion in the center region of the fisheye image. Therefore, we propose an 

extension of the conventional LK’s concept. The extended version of the conventional LK’s 

approach is named “LKI”, which is Lucas and Kanade’s concept with an improvement. The 

LKI scheme exploits the conventional LK’s method to work many times under the 

supervision of a parametric performance evaluation. As a result, the performance of the 

estimated motion vectors throughout the fisheye image area remains the same at a high 

level. 

In the meantime, rational utilization of the fundamental LK’s concept for supporting 

the 3-D scene flow estimation has been conducted successfully in another development. 
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The conventional LK’s approach has been proven to be effective for calculating not only 

the optical flow but also the disparity between stereo fisheye images. Hence, our 3-D scene 

flow estimation framework that employs the optical flow and disparity calculations can 

produce a promising result. The proposed scheme can generate the 3-D scene flow directly 

from a stereo fisheye camera. This condition is applicable wherever the moving object 

occurs in the fisheye image area. In other words, our approach can reveal the 3-D motion 

captured from 1800 FoV. 
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Chapter 1 

Introduction 

1.1   Background 

For about several years, the motion estimation (ME) technique has been developed 

and mainly implemented for a lot of applications. These applications can be found in the 

object tracking, 3-D structure estimation, motion analysis, video frame-rate conversion, 

video compression, and video surveillance system [1].  

In the two-dimensional (2-D) domain, the ME scheme works by forecasting the 

apparent movement of an object in time-varying images that obtained from the projection 

process of the real-world one. This motion occurs because of exact object motion, an 

illumination change, camera motion, and noise. The objective of the 2-D ME technique is 

then to determine a motion vector for each pixel or group of pixels in an image by using a 

specific calculation scheme. This calculation scheme involves the observed image and at 

least one of its neighbors. There are so many kinds of the 2-D ME schemes that have been 

developed until now. These include the optical flow-based ME, block-based ME, pel-

recursive-based ME, and transform domain ME [1] [2]. 

Besides, estimating the three dimensional (3-D) scene flow directly from multi-view 

general perspective images has successfully developed in recent years [3]. The optical flow 

that is interpreted as the 2-D motion field of objects or pixels on an image plane. Similarly, 

the scene flow is illustrated as the 3-D motion field of objects or points in the real-world. 

This term also means that an uncomplicated projection of the scene flow onto an image 

plane is the optical flow. To be able to estimate the 3-D scene flow, on our approach uses 

a combination of calculation of multi-view of the 3-D projection onto an image plane with 

information about geometrical of 3-D surface or depth. Forecasting the 3-D scene flow is 

very important. It can be used for reconstructing the 3-D object, analyzing 3-D motion, and 

developing 3-D videos. 

Although both the 2-D and 3-D ME has been successfully developed, the application 

of these tools seems to be useful even for narrow-angle-view purposes. This condition is 

acceptable since those tools are designed to support images projected by conventional 

narrow-angle-view cameras as well.  To be able to extend the capability of view, and at the 

same time, to support the 3-D applications, multi-narrow-angle cameras, therefore, field-
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of-view (FoV) capability can be extended to about 1800 (hemisphere FoV) or even 3600 

(omnidirectional FoV) [4]. In the meantime, wide-angle cameras have been emerging 

massively on the market. One of them is the fisheye camera that can capture scene 

phenomenon up to two times hemisphere FoV. However, applying the above ME tools 

directly to serve sequential images captured by the fisheye camera is not easy. This is 

because the sequential fisheye images suffer from massive distortion. Therefore, 

development of both the 2-D and 3-D ME to serve sequential fisheye images is still 

challenging.   

 

1.2   Objective 

The objective of this dissertation is to describe comprehensively the development of 

both the 2-D and 3-D ME directly from fisheye images. Both of them are developed mainly 

for increasing the capability of estimating a motion of object located in the hemisphere FoV 

(in front of the fisheye camera). The advantages of these developments are not only to 

increase the capability of view, but also to simplify the number of cameras used for 

capturing such large view. Instead of developing a method that firstly invests a hard effort 

to refine the fisheye images before implementing a conventional ME method to estimate 

the captured motion [5] [6] [7], this research aims to estimate motion directly from fisheye 

images domain. Therefore, the design of ME should adapt very well to overcome a massive 

distortion attached to such images. 

There are two main developments conducted in this research. The first is the 2-D ME, 

and the second is the 3-D ME. The 2-D ME estimates motion directly from sequential 

fisheye images produced by a fisheye camera. The 3-D ME forecasts the 3-D scene flow 

by utilizing both of sequential fisheye images and a sequential stereo fisheye image 

produced by a stereo fisheye camera. Each of the developments will be discussed 

comprehensively in a chapter inside this dissertation.  

1.3   Research Contribution 

In this research, there are three main contributions. These contributions can be 

explained in the following lists. 

1. This research introduces a solution for estimating both 2-D and 3-D motion directly 

from sequential fisheye images.  
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2. The performance of the 2-D motion vectors (MV) resulted from a conventional 

LK’s calculation can be improved significantly by executing the calculation 

repetitively. The multiple computations work to find the best performance of the 

MV by minimizing an error metric in the fisheye image pixel domain. Specifically, 

this error matric minimizes the difference between a fisheye image reference 

determined as the destination points of the MV and its replication constructed from 

the estimated MV.  

3. This research also reveals that the 3-D motion (scene flow) can be generated from 

sequential fisheye images taken from two fisheye cameras set up as a stereo 

configuration. In this case, those fisheye images from the configuration are made 

synthetically. By combining the optical flow obtained from every two consecutive 

fisheye images and the disparity between stereo fisheye images, the 3-D scene flow 

can be generated from a calculation framework. Once again, in this research, both 

optical flow and disparity calculation are conducted by using the conventional LK’s 

scheme. 

1.4   Dissertation Organization 

This dissertation consists of four main chapters. Each of them will be described as 

follows. 

The first chapter briefly introduces the background of this research, the objective of 

this research, and finally the organization of this dissertation. Following this chapter, there 

are two consecutive chapters that describe the two ME developments in this research. 

The second chapter describes the design of the 2-D ME. In this research, we use the 

optical flow-based ME to estimate the 2-D motion directly from sequential fisheye images. 

The design firstly introduces the conventional Lucas and Kanade (LK), Horn and Schunck 

(HS), and equidistance projection method to obtain the motion vectors from every two 

successive fisheye images. A promising result is shown by the conventional LK’s approach. 

This approach does not only work efficiently but also can adapt very well with the kinds of 

motion on the fisheye image. However, in the center region of the fisheye image, it cannot 

overcome the massive distortion. Therefore, we proposed the extension of the conventional 

LK’s approach. The extended version of the conventional LK’s approach is “LKI”, which 
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is named Lucas and Kanade’s concept with an improvement, and it is described clearly in 

this chapter. 

The third chapter, on the other hand, presents the design of the 3-D ME, and it is also 

known as the 3-D scene flow. In this research, we implement a binocular fisheye camera 

system to produce a sequential stereo fisheye image. Furthermore, we combine the optical 

flow and the disparity calculation to support the 3-D scene flow calculation framework. 

The design is presented comprehensively in this chapter. 

Finally, in chapter four, a summary of our works and further questions are inventoried 

clearly in this chapter. 
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Chapter 2 

The 2-D Optical Flow-Based Motion Estimation for Sequential 
Fisheye Images 

2.1 Introduction 

2.1.1 Background and Motivation 

As it has been mentioned in chapter 1, the two-dimensional (2-D) motion estimation 

(ME) technique has a great value to reveal the real-world motion from a video sequence. 

Specifically, the 2-D ME estimates the existence of motion in time-varying images that 

obtained from the projection process of the real-world one inside a camera. This motion 

occurs due to true object motion, an illumination change, camera motion, and noise. The 

objective of the 2-D ME technique is then to define a motion vector for each pixel or group 

of pixels in an image by using a specific calculation scheme. This calculation method 

involves the image being investigated and at least one of its neighbors. Finally, the motion 

vectors can be used for further applications, such as video analysis, motion tracking, frame-

rate conversion, video compression, and video surveillance system [1]. 

Many 2-D ME techniques have been developed well mainly to serve a video sequence 

consisting of general perspective frames (images). These images have an insignificant 

geometric distortion, and it is available in a narrow-angle perspective fashion. On the other 

hand, recently there have been many kinds of omnidirectional cameras in the markets [4]. 

These cameras capture larger field-of-view (FoV) than the narrow-angle perspective 

cameras do, and one of the omnidirectional cameras is the fisheye camera. This camera 

primarily provides images that cover almost 1800 FoV from an inexpensive single camera. 

Nevertheless, estimating motion directly from larger FoV images is still challenging to do 

since the fisheye images undergo massive geometric distortion. Therefore, this research 

focuses on the development of an appropriate ME tool that deals with sequential fisheye 

images.   

2.1.2 Problem Formulation 

There are three main problems in this research. These problems are the fisheye 

image’s distortion, the appropriate ME tools for the fisheye images, and the suitable image 
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quality metric used to measure the performance of motion vectors or for supporting the ME 

tool.  Each of them will be described briefly in the following sections. 

2.1.2.1 The Fisheye Image’s Distortion 

Although fisheye images bring many advantages due to that they provide more 

extensive visual information; these images suffer from distortion. In the maximum FoV, 

1800, there are at least two types of distortion adhering to the fisheye images [4] [8]. The 

first is tangential distortion, and the second is radial distortion. The tangential distortion is 

insignificant, as well as invisible. Therefore, it can be ignored. However, the radial 

distortion is visible tremendously. Hence, to make use of the fisheye images for further 

needs, the radial distortion has to be managed appropriately. In Figure 2.1 and 2.2, the effect 

of the radial distortion upon the fisheye images can be seen clearly. While Figure 2.1 shows 

three samples of syntactical fisheye images [9], Figure 2.2 presents three examples of real 

fisheye images obtained from a Ricoh Theta S camera [10].  

 

…  

 

…  

 

… 

 

… 

 a) Frame 5th  b) Frame 35th  c) Frame 78th  

Figure 2.1. Three samples of synthetic fisheye image from the flowers sequence [9]. 

       

… 

 

… 

 

… 

 

… 

 a) Frame 19th  Frame 70th  Frame 90th  

Figure 2.2. Three samples of real fisheye image from the hand sequence. 
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The radial distortion tended to change the shape of objects when these objects were 

captured in the different location of the fisheye image area. 

The distortion attached to a fisheye image is influenced by the uncommon projection 

characteristic of the fisheye camera itself. A fisheye lens is designed to capture a 

hemispherical field in front of the fisheye camera. The angle of the view also can reach 

1800. Therefore, unlike a general image (a narrow-angle perspective image), a fisheye 

image is not assumed to obey the conventional pinhole projection model, but it follows the 

fisheye projection families. The reason for this assumption is caused by the fact that the 

projected view will need an infinite image plane to cover that huge-of-view [10] [11]. In 

Figure 2.3, the difference between the basic geometric concept of the pinhole projection 

model and the fisheye projection model is presented clearly. It can be seen in Figure 2.3.a 

that the central perspective (pinhole) projection model assumes that the angle (αx) between 

a ray coming from an object point and the optical axis is the same as the angle (βx) between 

the ray after passing center projection (O) and the optical axis. The relationship between 

the two angles can be expressed as equation (2.1). 

𝛼𝛼𝑥𝑥 = 𝛽𝛽𝑥𝑥      {𝑥𝑥 ∈ 𝑅𝑅|𝑥𝑥 > 0}                                                                                   (2.1). 

Furthermore, for 1800 FoV, when the object point’s ray is perpendicular to the optical axis, 

this ray will be projected onto the image plane at an infinite distance. This drawback can 

be avoided by using the fisheye projection model, as shown in Figure 2.3.b. The fisheye 

projection model, basically assumes that in an ideal situation, the angle (αx) between an 

incident ray coming from the corresponding object point and the optical axis has a linear 

relationship with the distance (sx) between that ray after reaching the image point and the 

optical axis. This relation can be expressed as follows: 

𝛼𝛼𝑥𝑥 = 𝑠𝑠𝑥𝑥       {𝑥𝑥 ∈ 𝑅𝑅|𝑥𝑥 > 0}                                                                                  (2.2). 

This projection model tends to be refracted the incoming ray in line with the optical axis. 

In the maximum FoV, 1800, an object point’s ray will be projected at the periphery area of 

the image space (the fisheye image area). Hence, the hemispherical field-of-view can be 

projected in a finite image plane. Furthermore, to be able to project the hemispherical FoV 

in a finite image plane, one of the fisheye projection models in table 2.1 can be selected 

[12]. Of the four models, the equidistance projection is the most suitable model  
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(a) The perspective projection model. 

 
(b) The fisheye image projection model. 

Figure 2.3. The difference between the perspective projection and the fisheye projection model.
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for the fisheye image. Despite the fact that the fisheye projection model projects the 

hemispherical FoV into the image space, the distribution of the projected view is not 

uniform due to the properties of the lens. The projection of the incoming rays occurs 

densely in the center area of the image, whereas it is indicated sparsely in the peripheral 

region of the image [11] [13] [14]. This phenomenon is then assumed as the radial distortion. 

Table 2.1. The fisheye projection models. 

No Name of the fisheye projection Formulation 

1 Stereographic s = 2f tan(α/2) 

2 Equidistance s = fα 

3 Equisolid s = 2f sin(α/2) 

4 Orthogonal s = f sin(α) 

s = the distance between image point and principal axis,  

f = focal length, and  

α = the angle between principal axis and object point’s incoming ray 

 

Beside the fisheye projection model, the radial distortion can be assumed to meet 

polynomial fisheye transform [13] [15]. There are two types of polynomial fisheye 

transform. The first is the odd polynomial model. This model can be expressed as follows: 

𝑟𝑟𝑑𝑑 = 𝑟𝑟𝑢𝑢 + �𝑘𝑘𝑛𝑛𝑟𝑟𝑢𝑢𝑛𝑛
∞

𝑛𝑛=1

     {𝑛𝑛 ∈ 𝑅𝑅,𝑛𝑛 > 1}                                                              (2.3) 

where rd is the distorted radius, ru is the undistorted radius, and k is the polynomial 

coefficient. The second is the division polynomial model. This model can be stated as 

follows: 

𝑟𝑟𝑑𝑑 = 𝑟𝑟𝑢𝑢 �1 + �𝑘𝑘𝑛𝑛𝑟𝑟𝑢𝑢2𝑛𝑛
∞

𝑛𝑛=1

 �     {𝑛𝑛 ∈ 𝑅𝑅,𝑛𝑛 > 1}                                                  (2.4) 

where the symbols are the same as the ones for equation 2.3.  

To some extent, the above radial distortion concepts might be useful for practical 

solutions.  However, the distortion in the fisheye images also consists of an illumination 

change and other noise caused by the construction of the fisheye lens. 
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2.1.2.2 The Motion Estimation Tool  

To the degree our perception, there are several kinds of the 2-D-ME concept that has 

been developed recently, and all of them seem to come from a thought that motion is a 

displacement vector that wraps a reference image into the following destination image [1]. 

A constraint equation for this though can be expressed as follows: 

𝐴𝐴(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝐴𝐴(𝑥𝑥 − 𝑑𝑑1,𝑦𝑦 − 𝑑𝑑2, 𝑡𝑡 − 1)                                                               (2.5) 

where d = (d1, d2) denotes the apparent displacement vector field, A is marked as an image, 

and t and t-1 describes the arrangement of the images position in time. 

The optical flow-based ME calculates the apparent motion vectors directly from two 

successive images. The calculation works to solve the brightness constancy suspicion 

between pixels in an image and each counterpart pixel in the following or previous image 

(I(x,y,t) and I(x,y,t-1) or I(x,y,t) and I(x,y,t+1)). The brightness constancy suspicion seems 

to be similar to the equation (2.5). By using partial differentiation, which is the same as the 

least-squares operation, the equation (2.5) can be stated also as the spatiotemporal 

constraint equation as follows (noted that the A now become I): 

𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                                                                                         (2.6)  

where vx and vy are motion vectors in respect to horizontal and vertical respectively and ∂ 

is the partial derivative operator. Moreover, by solving the equation (2.6), the motion 

vectors can be obtained. Since there will be two unknowns in the equation (2.6), the 

calculation has to avoid for only one pixel. At least a small region of pixels called the 

aperture has to be involved to solve that equation. The optical flow-based ME is very well 

known in computer vision applications. 

The block-based ME directly calculates the similarity of each block of pixels in an 

image with each counterpart block of pixels in one of the following or previous images [16]. 

Therefore, a motion vector can be obtained for each block. 

Different with the optical flow-based ME, the block-based ME use an error function such 

as the mean-square error (MSE) or the mean-absolute error (MAE) to judge the similarity 

between a block of pixels from the target frame and each block of pixels in a search area in 

the reference frame. This condition can be expressed as follows: 

𝜀𝜀(𝑑𝑑) ≜�(𝐴𝐴(𝒏𝒏 + 𝑘𝑘, 𝑡𝑡) − 𝐴𝐴(𝒏𝒏 + 𝑘𝑘 − 𝑑𝑑, 𝑡𝑡 − 1))2                                        (2.7)
𝑘𝑘
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where n = (x,y)T center position of a square block, d = (d1,d2)T denotes a vector 

displacement. The rest of work is to seek the displacement vectors that minimizes this error 

as follows: 

𝑑𝑑𝑜𝑜 ≜ min
𝑑𝑑
𝜀𝜀(𝑑𝑑)                                                                                                       (2.8) 

The block-based motion estimation is very valuable in the video compression application. 

Besides the two major motion estimation concepts, other methods have also been 

developed in the same years. Among these, there is the global ME which deals with a video 

sequence that contains camera motion. This motion then is modeled by parametric 

transformations. How to estimate the parametric transformations is known as the global 

motion estimation. The global ME considers motion field (d) in the equation (2.5) to consist 

of affine motion model as follows [17]: 

𝑑𝑑1(𝑥𝑥,𝑦𝑦) = (𝑎𝑎1 + 𝑎𝑎2𝑥𝑥 + 𝑎𝑎3𝑦𝑦),𝑑𝑑2(𝑥𝑥,𝑦𝑦) = (𝑎𝑎4 + 𝑎𝑎5𝑥𝑥 + 𝑎𝑎6𝑦𝑦)                    (2.9), 

or quadratic motion model as follows: 

𝑑𝑑1(𝑥𝑥,𝑦𝑦) = 𝑞𝑞1 + 𝑞𝑞2𝑥𝑥 + 𝑞𝑞3𝑦𝑦 + 𝑞𝑞7𝑥𝑥2 + 𝑞𝑞8𝑥𝑥𝑦𝑦, 

𝑑𝑑2(𝑥𝑥,𝑦𝑦) = 𝑞𝑞4 + 𝑞𝑞5𝑥𝑥 + 𝑞𝑞6𝑦𝑦 + 𝑞𝑞7𝑥𝑥𝑦𝑦 + 𝑞𝑞8𝑦𝑦2                                                   (2.10). 

Therefore, the least-square minimization can be applied to the equation (2.5) the same as 

the optical flow-based ME do earlier. This motion estimation is necessary for the sports 

video content analysis, including zoom in and out applications.  

Another method is the pel-recursive ME. This method calculates a motion vector 

recursively for each pixel in a frame. The calculation is conducted to minimize the displaced 

frame difference (DFD). The DFD is basically similar to the equation (2.5), and it is defined 

as follows (noted that the A now become f): 

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑛𝑛,𝑚𝑚,𝑘𝑘) − 𝑓𝑓(𝑛𝑛 − Δ𝑥𝑥,𝑚𝑚 − Δ𝑦𝑦,𝑘𝑘 − 1)                                            (2.11), 

where f denotes as a frame, k determines a temporal location, (n,m) is a spatial location, ∆x 

and ∆y are displacements. From then on, by using the steepest descent approach, 

minimizing the square of the DFD can produce an iterative calculation of the motion 

vector 𝐷𝐷𝑛𝑛,𝑚𝑚
(𝑖𝑖) . By considering the current pixel position (n,m) and the motion vector 𝐷𝐷𝑛𝑛,𝑚𝑚

(𝑖𝑖)  at 

iteration i, the recursion can be defined as follows: 

𝐷𝐷𝑛𝑛,𝑚𝑚
(𝑖𝑖+1) = 𝐷𝐷𝑛𝑛,𝑚𝑚

(𝑖𝑖) − 𝜀𝜀
2
∇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2(𝑛𝑛,𝑚𝑚,Δ𝑥𝑥,Δ𝑦𝑦)                                                      (2.12),   
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where ∇D is the gradient with respect to D, and ε > 0 denotes a constant gain. 

Besides the above method, there is the motion estimation in the transform domain. 

This method exploits correspondence between translations in the spatial domain and a 

change of phase of the Fourier coefficients. Hence, the displacement is estimated from a 

phase correlation between blocks of pixels. In one case, the transform domain approach 

employs a discrete transform rather than the Fourier transform. That is applicable because 

the discrete cosine transform (DCT) has been previously applicable in the video coding 

application.  

2.1.2.3 The Image Quality Metrics 

As far as our observation, there are at least three image quality metrics used for 

comparing an image target with an image reference. These are the mean square error (MSE), 

the peak-signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) 

[1] [18].  

The MSE calculates the average of the squares of the errors between the image target 

and the reference one, and it can be calculated as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑀𝑀𝑀𝑀

���𝐴𝐴(𝑖𝑖, 𝑗𝑗) − �̂�𝐴(𝑖𝑖, 𝑗𝑗)�2                                                              (2.13),
𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑖𝑖=1

 

where the image target (A) and the image reference (Â) have a size of N x M pixels. Each 

pixel location is indicated by pixel indices 1 ≤ i ≤ M and 1 ≤ j ≤ N. Both images should 

have the same size. 

PSNR enhances the MSE calculation by scaling it according to the dynamic range of 

pixel intensity (the bit depth of pixel denoted by 2n). Hence, the PSNR can be calculated as 

follows: 

𝑃𝑃𝑀𝑀𝑀𝑀𝑅𝑅 = 20𝑙𝑙𝑙𝑙𝑙𝑙10 �
2𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀1/2�                                                                              (2.14). 

The SSIM measures a similarity index between two images (f and g) by combining 

three significant factors of an image, such as loss of correlation s(f,g), luminance distortion 

(l(f,g)), and contrast distortion (c(f,g)). The SSIM’s formulation can be expressed as follows 

[39]: 

𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀(𝑓𝑓,𝑙𝑙) = �𝑙𝑙(𝑓𝑓,𝑙𝑙). 𝑐𝑐(𝑓𝑓,𝑙𝑙). 𝑠𝑠(𝑓𝑓,𝑙𝑙)�                                                          (2.15), 
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where 

𝑙𝑙(𝑓𝑓,𝑙𝑙) =
�2𝜇𝜇𝑓𝑓𝜇𝜇𝑔𝑔 + 𝐶𝐶1�
�𝜇𝜇𝑓𝑓2 + 𝜇𝜇𝑔𝑔2 + 𝐶𝐶1�

, 𝑐𝑐(𝑓𝑓,𝑙𝑙) =
�2𝜎𝜎𝑓𝑓𝑔𝑔 + 𝐶𝐶3�
�𝜎𝜎𝑓𝑓𝜎𝜎𝑔𝑔 + 𝐶𝐶3�

, 𝑎𝑎𝑛𝑛𝑑𝑑  

𝑠𝑠(𝑓𝑓,𝑙𝑙) =
�2𝜎𝜎𝑓𝑓𝜎𝜎𝑔𝑔 + 𝐶𝐶2�
�𝜎𝜎𝑓𝑓2 + 𝜎𝜎𝑔𝑔2 + 𝐶𝐶2�

 . 

The notations of μ, σ, and C are a mean, a standard deviation, and a non-zero constant, 

respectively.  

The SSIM works with the highest computational complexity that caused by utilizing 

those three elements, although it provides the best accuracy among those image quality 

metrics. On the other hand, the MSE runs fastest since it only considers the differences 

between the two images, but of the three image quality metrics, the MSE offers the lowest 

accuracy. Selecting one of those image quality metrics for a specific purpose can be 

conducted based on many different aspects. One of them is to consider a trade-off between 

the computational complexity and accuracy. Therefore, in this research, the PSNR is 

selected since it gives better accuracy with modest complexity. Additionally, the PSNR 

calculation can perform very well and more efficient, even though it works repeatedly. 

2.1.2.4 Contribution and Constraint 

This research focuses on developing a motion estimation scheme that can be used 

directly for the fisheye images. For some application, such as the video analysis, video 

frame-rate conversion, slow-motion scene, scene flow, and fisheye compression, shifting 

the correction process to the final processing is a valuable strategy. 

Moreover, the basic concept of motion estimation implemented in this research is the 

optical flow. By assuming that this concept will perform very well to overcome the 

deformation of objects on the fisheye images, the research initially applies the basic idea of 

optical flow that previously proposed by Lucas and Kanade (LK), Horn and Schunck (HS), 

and an equidistant motion model to obtain preliminary results [1] [2]. After that, a proposed 

scheme is employed to achieve a better result. The proposed scheme extends the LK’s 

scheme with a supplementary self-improvement mechanism that autonomously looks for 

the highest performance of the motion estimation.  

This scheme is somewhat similar to the pel-recursive motion estimation, especially 

in making use of updating mechanism of motion vector value according to the previous 
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prediction error. Nevertheless, either the way of calculating motion vectors or updating the 

result is very different. The conventional pel-motion estimation recursively estimates a 

motion vector of a pixel directly from neighboring pixels in the same frame (in scanned 

order) or to the corresponding pixel location in the next image frame. The refinement 

process is then performed by finding the least error between the current and the previous 

estimation. In the proposed scheme, on the other hand, the calculation of motion vectors is 

carried out between two successive frames by using LK’s scheme, while the further 

refinement process relies on the quality of a reconstructed image produced by transforming 

the first image by using the obtained motion vectors as transformation parameters. 

The advantage of the proposed scheme is that the obtained motion vectors are more 

reliable, although, the motion speed of an object in the fisheye images area varies. Moreover, 

the proposed scheme can be used for overcoming motion in the fisheye images that caused 

by a change of intensity, a change of object shape, fluctuating number of object motion, or 

poor camera stability. If such fisheye image characteristics are assumed as integrated parts 

of higher order Tylor series that is ignored when the optical flow constraint problem is 

defined, the proposed method can be a practical solution for the absence of this parameter. 

Additionally, this research is constrained by some assumptions. The first assumption 

is that each sequential fisheye image consists of no camera rotation. The second is that the 

focal length of the sequential fisheye images is constant, therefore, those images are viewed 

in the maximum FoV. Another constraint is that the distance of the motion of each objects 

from the fisheye camera is not defined in the calculation. Finally, the camera motion is 

assumed to be small, or it occurs because the process of taking videos did not use a camera 

stabilization.  

2.2 Related Works 

Hard endeavors have been led to develop a motion estimation for serving 

omnidirectional images. They initially found a way of transforming the fisheye images to 

appropriate general perspective images. Hence, the advanced motion estimation schemes 

with slight modification can be used for further applications. I. Bauermann et al. started 

with an idea of converting omnidirectional images (3600) to panoramic images or general 

perspective images before applying the existing motion estimation scheme in MPEG-4 

AVC/H.264 video coding standard [19]. It seems like the conversion process is began from 
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pre-warping the omnidirectional images to panoramic images. From then on, a resampling 

step is applied to scale the image in horizontal and vertical direction. Consequently, the 

panoramic images can be feed to the motion estimation process in the encoder. 

Z. Jiali et al. proposed the affine motion compensated frame for estimating motion 

from a panoramic video sequence [20]. In their concept, a general perspective camera 

captures the wide-field-of-view along a given axis on spherical surface or a cylindrical. 

Moreover, image stitching and registration method are applied to obtain a continuity of 

series of images. Because there is not only translation motion inside a frame, but also non-

translation motion between two frames, the motion in this video sequence is assumed as 

geometrical affine motion. Therefore, the well-known Inter-Frame predictive scheme 

adopted by the International Telecommunication Union, Telecommunication 

standardization sector (ITU-T), H.26x, or Moving Picture Experts Group (MPEG), MPEG-

X standard, can be modified to serve this kind of video sequence by using the affine motion 

compensated frame. 

A. Djamal et al. developed the adapted block-matching method for optical flow 

estimation in catadioptric images [21]. In their idea, the modified version of the classical 

block-based motion estimation is applied for estimating motion directly from synthetically 

or real catadioptric images. The modification is conducted by changing the shape and size 

of both the block of pixels and the window search area. 

2.3 Research Methodology 

2.3.1 Motion Estimation Design Methodology 

In this research, the organic method of motion estimation process is designed to meet 

a flow diagram shown in Figure 2.4. It can be seen that the fundamental process of 

estimating motion directly from sequential fisheye images cannot be separated from the 

performance evaluation mechanism. This because it is critical to confirm that the predicted 

motion occurs accurately. Hence, it can be used for further applications. These images are 

taken from a sequential fisheye image. Every pair of fisheye images is then inputted into 

an optical flow calculation process. The heart of estimating motion between the two 

consecutive fisheye images is in this process. 
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Figure 2.4. The flow diagram of the motion estimation design methodology. 

The optical flow calculation process will produce motion vectors from the first fisheye 

image to the second one (forward motion vectors). These vectors also denote as estimated 

motion vectors. In the next step, to be able to evaluate the performance of the estimated 

motion vectors, an imitation of the second fisheye image firstly has to be reconstructed. 

This step transforms the first fisheye image by making use of the motion vectors. Therefore, 

a reconstructed fisheye image can be generated. This reconstructed fisheye image finally 

can be evaluated quantitatively or qualitatively at the final process by comparing it with a 

proper fisheye image reference (e.g., the second fisheye image).  

2.3.2 The Optical Flow Calculation 

The optical flow previously is used for obtaining motion vectors by calculating the 

spatiotemporal intensity derivative of two consecutive perspective images [1] [2] [22]. Now 

it can be utilized in the same manner for serving two consecutive fisheye images, and it is 

applicable to all fisheye images in a fisheye image sequence. The basic concept of the 
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optical flow comes from an assumption of brightness similarity of pixels between two 

successive fisheye images (FN1 and FN2), as shown in Figure 2.5. In this figure, FN 

denotes frame number (the fisheye image number).  

 

 

Figure 2.5. The optical flow calculation from two successive fisheye images. 
 

The assumption also means that intensity of a pixel projected on FN1 at t (I1(x1,y1)) is 

similar to its emergence on FN2 at t+1 (I2(x2,y2)), even though they are not in the same 

position due to the motion. Therefore, the assumption can be expressed as follows: 

𝑆𝑆1(𝑥𝑥1,𝑦𝑦1, 𝑡𝑡) = 𝑆𝑆2(𝑥𝑥1 + 𝑢𝑢,𝑦𝑦1 + 𝑣𝑣, 𝑡𝑡 + 1)                                                            (2.16) 

where the motion vectors for this case are denoted by u and v (horizontal and vertical, 

respectively). Furthermore, a construction of the lower-order Taylor series expansion of 

equation (2.16), concerning such location of the pixel on FN1 (x1,y1), can simplify that 

equation to become a general optical flow equation as follows [23]: 

𝑢𝑢𝑆𝑆𝑥𝑥 + 𝑣𝑣𝑆𝑆𝑦𝑦 = −𝑆𝑆𝜕𝜕                                                                                                      (2.17) 

where Ix = ∂I/∂x and Iy = ∂I/∂y are the first derivatives of the fisheye image regarding 

horizontal and vertical successively, while ∂I/∂t is the difference between the first 

(FN1+n, {n € R│n > 0}) 

(FN1) 

(X2,Y2,) 

FN2 

(X1,Y1) 
V=(u,v) 

FN1 
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derivative of I2 and I1. Nevertheless, since there are two unknowns in equation (2.17), this 

equation now becomes an optical flow problem (aperture problem) that have to be solved 

in a specific way. 

2.3.2.1 Lucas and Kanade’s Method 

Lucas and Kanade (LK) propose a solution for the equation (2.17) by incorporating 

n x n neighboring pixels. They assume that pixels surrounding a pixel being observed 

behave almost the same as the observed pixel. Therefore, the equation (2.17) can be 

expressed as follows [24] [25]: 

�
�𝑛𝑛2𝑆𝑆𝑥𝑥2 �𝑛𝑛2𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦

�𝑛𝑛2𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦 �𝑛𝑛2𝑆𝑆𝑦𝑦2
�

�����������������
𝐴𝐴

�𝑢𝑢𝑣𝑣��
𝑈𝑈

= −�
�𝑛𝑛2𝑆𝑆𝑥𝑥𝑆𝑆𝜕𝜕

�𝑛𝑛2𝑆𝑆𝑦𝑦𝑆𝑆𝜕𝜕
�

�����������
𝐵𝐵

                                       (2.18) 

From the equation (2.18), the motion vectors (u and v) can be obtained. This equation is 

also well known as a solution for image registration technique. 

2.3.2.2 Horn and Schunk’s Method 

Horn and Schunk (HS) introduce a solution for the equation (2.17) by considering a 

global constraint of smoothness [26]. Different from the LK’s scheme that considers the 

local variation of a pixel, HS’ scheme considers the global variation of an image. This 

condition means that motion vectors of a pixel always depends on the value of its neighbors. 

Therefore, the iterative calculation should be performed to update the value of the motion 

vectors. The iterative calculation of the motion vector for each pixel can be stated as 

follows: 

𝑢𝑢𝑘𝑘+1 = 𝑢𝑢−𝑘𝑘 −
𝑆𝑆𝑥𝑥�𝑆𝑆𝑥𝑥𝑢𝑢−𝑘𝑘 + 𝑆𝑆𝑦𝑦𝑣𝑣−𝑘𝑘 + 𝑆𝑆𝜕𝜕�

𝛼𝛼2 + 𝑆𝑆𝑥𝑥2 + 𝑆𝑆𝑦𝑦2
                                                           (2.19) 

and 

𝑣𝑣𝑘𝑘+1 = 𝑣𝑣−𝑘𝑘 −
𝑆𝑆𝑦𝑦�𝑆𝑆𝑥𝑥𝑢𝑢−𝑘𝑘 + 𝑆𝑆𝑦𝑦𝑣𝑣−𝑘𝑘 + 𝑆𝑆𝜕𝜕�

𝛼𝛼2 + 𝑆𝑆𝑥𝑥2 + 𝑆𝑆𝑦𝑦2
                                                           (2.20) 

The notations of  u, v, Ix, and Iy are the same as the ones mentioned in the LK’s method, 

except α is a parameter used for scaling the global smoothness period (typically around 1), 

and k is the iteration step (k € R │k > 0). 
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2.3.2.3 Equidistance Projection Model 

The equidistance projection (EP) model assumes that pixels on a fisheye image are 

composed by using an equidistance projection method [23] [27] [28]. In this scheme, 

motion on the fisheye image can be defined as follows: 

𝑢𝑢 = 𝑎𝑎(𝑥𝑥 − 𝑥𝑥0)2 + 𝑎𝑎(𝑦𝑦 − 𝑦𝑦0)2 + 𝑐𝑐                                                                    (2.21) 
𝑣𝑣 = 𝑏𝑏(𝑥𝑥 − 𝑥𝑥0)2 + 𝑏𝑏(𝑦𝑦 − 𝑦𝑦0)2 + 𝑑𝑑                                                                    (2.22). 

Therefore, the equation (2.17) can be expressed as follows: 

⎝

⎜
⎜
⎜
⎜
⎛
�𝑛𝑛2𝑆𝑆𝑥𝑥2 𝑘𝑘2 �𝑛𝑛2𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦𝑘𝑘2 �𝑛𝑛2𝑆𝑆𝑥𝑥𝑘𝑘 �𝑛𝑛2𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦𝑘𝑘
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                                                                                                  (2.23). 

After calculating the equation (2.23), E parameters (a, b, c, and d) can be divined. Therefore, 

the motion vectors denoted by the equation (2.21) and (2.20) now can be obtained. 

2.3.2.4 Lucas and Kanade’s Method with Automatic Self-Improvement 

This approach applies original LK’s concept as a fundamental concept of calculating 

optical flow. However, the calculation of the optical flow from two successive fisheye 

images is extended by incorporating an evaluation performance calculation (PSNR 

calculation). In section 2.1.2.3, the discussion about the image quality metrics has been 

done briefly, and the PSNR will be used not only for the image quality assessment but also 

for judging the performance of the estimated motion vectors.  

By considering the equation (2.13), the reconstructed fisheye image (Â) is developed 

from a simple linear geometry transformation of (A) using the motion vectors of u and v. In 
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other words, each pixel (x,y) in A is mapped to each correspondence pixel (x*,y*) in Â, and 

their relationship can be expressed as x* = ux and y* = vy. Since the destination point during 

the transformation process could lie in between two pixels or there would be more than one 

vector go in the same direction, both x* and y* would be difficult to be defined. To 

overcome this condition, simple bilinear interpolation can be applied at the end of the 

fisheye image reconstruction process [29] [30]. 

In the following discussion, this approach will then be named Lucas and Kanade’s 

concept with an improvement (LKI) [31]. Figure 2.6 shows a flowchart for this approach. 

By setting the PSNR to zero for the first time (IPSNR = 0), the calculation begins with a 

way of finding motion vectors between two successive fisheye images (FN1 and FN2) by 

using the equation (2.18). From then on, the motion vectors (u and v) and the first fisheye 

image (FN1) are used for developing a reconstructed fisheye image (RI) as if it is the same 

as the second fisheye image (FN2). The RI is then compared with the FN2 to get a 

performance value. The performance value is indicated as a new PSNR. Until this stage, 

one cycle calculation has been performed. If the new PSNR is higher than the previous one, 

there will be the next cycle with the previous FN1 is updated by the new RI. Otherwise, the 

calculation process will be stopped, and the motion vectors will be indicated as an aggregate 

of all motion vectors obtained in each cycle (utotal and vtotal). In the final stage, a final 

reconstructed fisheye image (FRI) can be generated by transforming the original FN1 with 

transformation vectors utotal and vtotal. As a result, the final performance evaluation can be 

obtained from the final PSNR, FR1, and the final inter-different fisheye image (FIDI). The 

final IDI shows the difference between the FN2 and the final FRI. 

2.3.3 Sequential Fisheye Images 

There are twelve sequential fisheye images trained for evaluating the performance of 

each motion estimation concept. The characteristics of each sequential fisheye image, such 

as the number of fisheye image (frames), types of information, and information 

characteristic, are described explicitly in Table 2.2. The cube sequence is developed by 

using the blender software, while the flowers sequence is collected from the website of the 

multimedia communications and signal processing (LMS), Friedrich - Alexander 

University Erlangen - Nurnberg (FAU), Germany [9]. 
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Figure 2.6. The flowchart of the LKI scheme. 

Table 2.2. The characteristics of sequential fisheye images. 

The Name of 
Sequential 

Fisheye Images 

The 
Number 

Frame 
Resolution 

Types of 
Information 

The Characteristic of 
Information 

N 

Y 

Start 

Input: The first fisheye image 
(FN1) and the second fisheye 
image (FN2) 

Set: Original FN1 (OFN1) = FN1, Initial PSNR 
(IPSNR) = 0, utotal = 0, vtotal = 0 

 LK’s optical flow calculation  
 Output: u and v 

 FN1 is transformed by using transformation vectors (u  and v) 
 Output: Reconstructed fisheye image (RI) 

 PSNR calculation between RI and FN2 
 Output: PSNR 

Set: IPSNR = PSNR, 
        FN1 = RI,  
        utotal = utotal + u,  
        vtotal = vtotal + v 

IPSNR < 
PSNR?  

 OFN1 is transformed by using transformation vectors (utotal 
& vtotal) 

 PSNR calculation between FRI and FN2 
 Output:  

1. The final motion vectors (utotal & vtotal) 
2. The final reconstructed fisheye image (FRI) 
3. The final PSNR 
4. The final inter-difference fisheye image (FIDI) 

End 
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of 
Frames 

Cube (CQ) 209 640x640 Synthetic 
A cube moves from left to 
right side with constant 
speed. 

Flowers (FQ) 118 1088x1088 Synthetic Flowers blossom freely. 

Hand (HQ) 151 640x640 Real object 
A hand moves from left to 
right side with constant 
speed.   

Man (MQ) 93 640x640 Real object 

A man sits in front of the 
fisheye camera and moves 
his hands in opposite 
direction rapidly. 

Truck I (TQ-I) 13 960x960 Real object 
A truck moves fast toward 
to the fisheye camera. 

Truck II (TQ-II) 40 960x960 Real object 
A truck moves away out of 
the fisheye camera. 

Car I (CQ-I) 14 960x960 Real object 
A small white car moves 
toward to the fisheye 
camera with constant speed. 

Car II (CQ-II) 19 960x960 Real object 
A small red car moves 
toward to the fisheye 
camera with constant speed. 

Train (TQ) 84 960x960 Real object 
A small train moves from 
right to left side with 
constant speed. 

Traffic I (TRQ-I) 117 960x960 Real object 
A small number of cars 
move slowly on the road. 

Traffic II (TRQ-II) 99 960x960 Real object 
A large number of cars 
move slowly on the road. 

People (PQ) 158 960x960 Real object 
Many people walk with 
constant speed. 

 

The information in all sequential fisheye images, except the cube and flowers, is captured 

by a Ricoh Theta S fisheye camera [32]. In this experiment, the data is only obtained 

through one side lens. The camera position is in a static position when it is capturing the 

information contained in some sequential fisheye images, except the traffic I, traffic II, and 



23 
 

people. Therefore, the last three fisheye image sequences also consist of small camera 

motion. 

2.4 Research Results 

This section will discuss the experimental processes comprehensively, including 

experimental setup, additional comparison schemes, estimated motion vectors, qualitative 

evaluation, quantitative evaluation, and processing time. 

2.4.1 Experimental Setup 

To be able to implement all motion estimation schemes for serving different types of 

sequential fisheye images, a set of program code related to appropriate simulation 

environment is developed by using MATLAB R2016a.  

The motion is estimated from two successive fisheye images, and it is applied to all 

fisheye images within each sequential fisheye image listed in Table 2.2. The objective of 

the experiment is to pay attention to how far the proposed scheme (LKI) can increase the 

performance of motion vectors, in comparison with other schemes. Two indicators of 

performance can be judged from qualitative (visual) and quantitative (PSNR) measurement. 

While the PSNR denotes a value of peak to peak error between the second image (FN2) 

and the reconstructed image (RI), visual performance can be seen directly from the quality 

of the inter-different fisheye image (IDI) and the RI. The finest IDI, the best RI (the RI is 

similar to the FN2). The highest PSNR, the lowest error of motion vectors. 

2.4.2 Additional Comparison Schemes 

In this research, the performance of LKI scheme is benchmarked against the one 

obtained from each block-based motion estimation (BMA) schemes. These BMA schemes 

are exhaustive search (ES), three-step search (TSS), new three-step search (NTSS), simple 

and efficient TSS (SETSS), four-step search (FSS), diamond search (DS), and adaptive 

rood pattern search (ARPS). These algorithms are fundamental concepts of the BMA that 

are used for video coding standards, such as MPEG series or H.26x family. A complete 

report of these concepts can be found in the reference [16]. The size of the macro-block 

used in this experiment is set to 8 x 8 pixels. 
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2.4.3 The Estimated Vectors 

Motion vectors (MV) or optical flow (OF) can be obtained directly from each 

sequential fisheye image listed in Table 2.2 by using every OF scheme mentioned in section 

2.3.2. Some examples of the MV related to the pair of fisheye images input taken from the 

flower (FQ), man (MQ), hand (HQ), or people (PQ) can be seen in Figure 2.7 and Figure 

2.8. Explicitly, the examples of the MV obtained from the LK’s scheme are shown in Figure 

2.7, while the other examples of the MV produced by the LKI process are depicted in Figure 

2.8. In compare to the LK’s scheme, the LKI process can produce MV more densely [33]. 

The MV occurs wherever the motion of an object is located in, or if there is a motion caused 

by a change of illumination or noise in the fisheye image area. 

 

    
a) MV from FN-65 and 66 

of FQ  
b) MV from FN-79 and 80 

of HQ 
c) MV from FN-45 and 46 

of MQ  
d) MV from FN-14 and 15 

of PQ 
Figure. 2.7. The MV after LK’s process. 

 
 

    
a) MV from FN-65 and 66 

of FQ 
b) MV from FN-79 and 80 

of HQ  
c) MV from FN-45 and 46 

of MQ 
d) MV from FN-14 and 15 

of PQ  
Figure 2.8. The MV results after LKI process. 
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2.4.4 Qualitative Evaluation 

Example of fisheye images taken from each sequential fisheye image listed in Table 

2.2 can be seen in Figure 2.9 (a - l). Those figures are the second fisheye image input (FN2). 

Some examples of the RI produced by the LK process can be seen in Figure 2.10 (a - c), 

Figure 2.11 (a - c), Figure 2.12 (a - c), and Figure 2.13 (a - c). Some other examples of the 

IDI associating with its RI can be seen in Figure 2.10 (d - f), Figure 2.11 (d - f), Figure 2.12 

(d - f), and Figure 2.13 (d - f). Those RI figures show that each RI is not the same as each 

associated FN2. This condition is also reflected in each associated IDI. The white area in 

those IDI results occurs significantly. This condition also means that the error of the MV is 

very high. Nevertheless, the results are much better when the LKI scheme is applied, as 

shown in Figure 2.10 (g - i), Figure 2.11 (g - i), Figure 2.12 (g – i), and Figure 2.13 (g - i) 

for the RI results, and Figure 2.10 (j - l), Figure 2.11 (j - l), Figure 2.12 (j - l), and Figure 

2.13 (j - l) for the IDI results. Each RI is almost the same as each associated FN2. Moreover, 

those IDI results are almost totally grey. This condition means that the error of the MV is 

very low. 

2.4.5 Quantitative Evaluation 

In the quantitative evaluation, the performance of the LKI is proven to be higher than 

the other optical flow methods or even the seven types of block-based scheme. The PSNR 

stays at a high level for each sequential fisheye image trained, as shown in Figure 2.14 to 

Figure 2.25.  

Regarding some sequential fisheye images that the motion is scattered equally in the 

fisheye area at the same time, such as the flowers, traffic I, traffic II and people, the 

associated PSNR for the LKI process tends to be constant in the higher level, by comparison 

with other schemes. The PSNR for the flowers (FQ), traffic I (TRQ-I), traffic II (TRQ-II), 

and people (PQ) are about 40 dB, 40 dB, 38 dB, and 35 dB, respectively. Those PSNR 

results can be seen in Figure 2.15, Figure 2.23, Figure 2.24, and Figure 2.25, consecutively. 

Additionally, in which few sequential fisheye images consist of small camera motion, such 

as the TRQ-I, TRQ-II, and PQ, the PSNR obtained from the LKI scheme for each of them 

stays at the highest level. In other words, small camera motion can be detected by the LKI 

process very well. 
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(a) The FN-106 of CQ (b) The FN-66 of FQ (c) The FN-80 of HQ 

   

   
(d) The FN-46 of MQ (e) The FN-15 of TQ-I (f) The FN-21 of TQ-II 

   

   
(g) The FN-16 of CQ-I (h) The FN-21 of CQ-II (i) The FN-44 of TQ 

   

   
(j) The FN-119 of TRQ-I (k) The RI for FN-76 of TRQ-II (l) The RI for FN-160 of PQ 

   
Figure 2.9. The examples of the fisheye image obtained each sequential fisheye images listed in Table 2.2 
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(a) The RI for FN-106 of CQ (b) The RI for FN-66 of FQ (c) The RI for FN-80 of HQ 

   

   
(d) The RI for FN-106 of CQ (e) The RI for FN-66 of FQ (f) The RI for FN-80 of HQ 

   

   
(g) The IDI for (a) (h) The IDI for (b) (i) The IDI for (c) 

   

   
(j) The IDI for (d) (k) The IDI for (e) (l) The IDI for (f) 

   
Figure 2.10. The RI results after LK’s process (a - c), RI results after LKI process (d - f), IDI results after 

LK’s process (g - i), and IDI results after LKI process (j - l). 
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(a) The RI for FN-46 of MQ (b) The RI for FN-15 of TQ-I (c) The RI for FN-21 of TQ-II 

   

   
(d) The RI for FN-46 of MQ (e) The RI for FN-15 of TQ-I (f) The RI for FN-21 of TQ-II 

   

   
(g) The IDI for (a) (h) The IDI for (b) (i) The IDI for (c) 

   

   
(j) The IDI for (d) (k) The IDI for (e) (l) The IDI for (f) 

   
Figure 2.11. The RI results after LK’s process (a - c), RI results after LKI process (d - f), IDI results after 

LK’s process (g - i), and IDI results after LKI process (j - l). 
 



29 
 

   
(a) The RI for FN-16 of CQ-I (b) The RI for FN-21 of CQ-II (c) The RI for FN-44 of TQ 

   

   
(d) The RI for FN-16 of CQ-I (e) The RI for FN-21 of CQ-II (f) The RI for FN-44 of TQ 

   

   
(g) The IDI for (a) (h) The IDI for (b) (i) The IDI for (c) 

   

   
(j) The IDI for (d) (k) The IDI for (e) (l) The IDI for (f) 

   
Figure 2.12. The RI results after LK’s process (a - c), RI results after LKI process (d - f), IDI results after 

LK’s process (g - i), and IDI results after LKI process (j - l). 
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(a) The RI for FN-119 of TRQ-I (b) The RI for FN-76 of TRQ-II (c) The RI for FN-160 of PQ 

   

   
(d) The RI for FN-119 of TRQ-I (e) The RI for FN-76 of TRQ-II (f) The RI for FN-160 of PQ 

   

   
(g) The IDI for (a) (h) The IDI for (b) (i) The IDI for (c) 

   

   
(j) The IDI for (d) (k) The IDI for (e) (l) The IDI for (f) 

   
Figure 2.13. The RI results after LK’s process (a - c), RI results after LKI process (d - f), IDI results after LK’s 

process (g - i), and IDI results after LKI process (j - l). 
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Concerning the man sequence (MQ), the PSNR obtained from all schemes, except 

the LKI, seems to be fluctuated dramatically from about 35 dB to 55 dB. This condition 

happens since the object motion is dominated by two hands of a man that moves in the 

opposite direction around the center area of the fisheye image. Nevertheless, the PSNR 

derived from the LKI scheme only varies slightly from about 45 dB to 55 dB. These results 

can be seen in Figure 2.19. Moreover, this condition also means that a rapid motion around 

the center area of the fisheye image can be estimated very well by the LKI scheme. 

Some sequential fisheye images that present single object with constant motion, such 

as the cube (CQ), hand (HQ), and train (TQ), present an exciting result, as shown in Figure 

2.16, Figure 2.18, and Figure 2.24, respectively. When the LK, HS, EP, and the other seven 

types of block-based scheme are applied, and the position of the object is located at the 

peripheral area of the fisheye image, the PSNR for each scheme is very high (at a maximum 

value). However, when the object is moving toward to the center area of the fisheye image, 

the PSNR for each scheme is going down gradually. It touches a minimum value when the 

position of the object is located in the center area of the fisheye image. The PSNR is then 

going up again when the object is leaving the center area of the fisheye image. It reaches 

the maximum value again when the position of the object is located at another peripheral 

area of the fisheye image. The gap between the maximum and minimum PSNR is about 30 

dB, 24 dB, and 20 dB for the cube, hand, and train, consecutively. As a result, those 

schemes are not good enough to produce MV, mainly when the motion of the object mostly 

occurs around the center area of the fisheye image. Nevertheless, the condition is much 

better when the LKI scheme is applied. The PSNR for the LKI scheme obtained when the 

object is nearby the peripheral area of the fisheye image is as high as the PSNR for other 

schemes. From then on, the PSNR is decreasing when the object is moving to the center 

area of the fisheye image, but the decrease is slight. The PSNR then goes down to a 

minimum when the object is located at the center area of the fisheye image, but the PSNR 

is still much higher than the minimum PSNR obtained from the other schemes. The distance 

between the maximum and minimum PSNR is now only about 9 dB, 6 dB, and 3 dB for 

the cube, hand, and train, respectively.
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Figure 2.14. PSNR versus frame number for the cube sequence (CQ). 

 
 

 
Figure 2.15 PSNR versus frame number for the flowers sequence (FQ). 

 
 

 
Figure 2.16 PSNR versus frame number for the hand sequence (HQ). 

 
 

 
Figure 2.17. PSNR versus frame number for the man sequence (MQ). 
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Figure 2.18 PSNR versus frame number for the truck I sequence (TQ-I). 

 
 

 
Figure 2.19 PSNR versus frame number for the truck II sequence (TQ-II). 

 
 

 
Figure 2.20. PSNR versus frame number for the car I sequence (CQ-I). 

 
 

 
Figure 2.21 PSNR versus frame number for the car II sequence (CQ-II). 
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Figure 2.22 PSNR versus frame number for the train sequence (TQ). 

 
 

 
Figure 2.23. PSNR versus frame number for the traffic I sequence (TRQ-I). 

 
 

 
Figure 2.24 PSNR versus frame number for the traffic II sequence (TRQ-II). 

 
 

 
Figure 2.25 PSNR versus frame number for the people sequence (PQ). 
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Some other sequential fisheye images, such as the truck I (TQ-I), truck II (TQ-II), car 

I (CQ-I) and car II (CQ-II), show other intriguing results, as shown in Figure 2.20, Figure 

2.21, Figure 2.22, and Figure 2.23, respectively. When the LK, HS, EP and the seven types 

of block-based scheme are employed, and the position of the object is in front of the fisheye 

lens, but far away from the fisheye lens, the PSNR for each scheme is very high (at a 

maximum value). However, when the position of the object is closing to the fisheye lens, 

the PSNR for each scheme is going down gradually. It touches a minimum value when the 

object is located at the closest distance to the fisheye lens. The gap between the maximum 

and minimum PSNR obtained from those motion estimation schemes for the truck I, truck 

II, car I, and car II is around 26 dB, 30 dB, 35 dB, and 20 dB, respectively. However, the 

PSNR disparity obtained from the LKI scheme for the same sequence order can be reduced 

to about 6 dB, 12 dB, 12 dB, and 12 dB, respectively. Of the eleven motion estimation 

schemes, the LKI scheme generally achieves the highest score of PSNR for those sequences. 

Once again, the LKI process is beneficial to increase the performance of MV, especially to 

overcome the distortion problem around the center area of fisheye images. 

The MV result obtained from the TRQ-I sequence almost remains constant at a high 

PSNR, although there is a slight fluctuation. However, in some frames, the PSNR attained 

by the LKI scheme is lower than that of the LK or EP method, as presented in Figure 2.23. 

This condition occurs since, in this experiment, the LK, EP, or LKI scheme runs 

independently with a different parameter of calculation. Either the LK or EP scheme uses 

a constant window size (15 x 15 neighboring pixels) to obtain the MV using the equation 

(2.18). This window size is generally acceptable for every sequential fisheye images used 

in this experiment, even though it does not give the best result for all fisheye images in 

every sequence, especially for handling a large motion [34]. Nevertheless, in the case of 

some fisheye images in the TRQ-I and few fisheye images in the TRQ-II, the PSNR 

obtained from the LK or EP remains at a high level. This condition happens because those 

fisheye images consist of simple object motions located outside the center area of the 

fisheye images. On the other hand, the LKI scheme in this experiment uses 10 x 10 

neighboring pixels for every cycle of the PSNR calculation. This window size is very stable 

to find an initial MV. This situation means that the possibility of obtaining outlier vectors 

is very low. Therefore, the rest cycles will not propagate a lot of false vectors. However, 

the first PSNR calculation in the LKI scheme may be lower than that of the LK or EP 
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method. Another advantage of using the LKI scheme is that the PSNR value for these kinds 

of sequence tends to be fluctuating in a tiny margin.  

In the LKI scheme, the process of finding a maximum PSNR may resemble the 

mechanism of the hill climbing. The hill climbing behaves to look for a maximum state of 

a function or to obtain a local maximum of an objective function using an iterative 

calculation [1]. Furthermore, the LKI scheme seeks a PSNR maximum through a repetitive 

PSNR calculation. By setting the initial PSNR (PSNR [0]) to zero, the succeeding PSNR 

calculations will perform to find a value that is larger than its neighbors (PSNR [0] < PSNR 

[i] > PSNR [i+1], {i € R│i > 0}). The objective of finding the maximum PSNR in the LKI 

scheme, basically, is to obtain the best aggregate of motion vectors from all cycles of PSNR 

calculation. To be able to achieve that objective, there are two influential factors in each 

cycle of the PSNR calculation (i) that have to be concerned. The first is the quality of 

motion vectors produced by the optical flow calculation. The second is the quality of the 

reconstructed fisheye image built by transforming the origin of the fisheye image using 

variables denoted by the motion vectors. In practice, the process of finding a maximum 

PSNR when the motions of objects occur massively in the center area of sequential fisheye 

images is more difficult than that of appearance in the peripheral region. This condition 

happens since the motions of objects seem to be moving with higher speed, or the shape of 

objects tends to be deformed enormously in the center area of sequential fisheye images. 

The same situation even happens when the motions of objects occur too close to the camera, 

or the illumination changes dramatically. Moreover, from the quantitative perspective, the 

number of cycles of PSNR calculation also increases significantly due to those conditions. 

The LKI scheme works well to estimate motion directly from sequential fisheye 

images because the recursive PSNR based calculation inside this scheme has a resilient 

effort to adapt to the characteristic of object motion inside the sequential fisheye images. 

For instance, the LKI scheme succeeds to obtain motion vectors not only from slower 

motions of objects located nearby the peripheral area but also from faster motions of objects 

discovered around the center area of the fisheye images. The LKI works with a small 

number of cycle of PSNR calculation when the movements of objects occur in the 

peripheral region, while it works with a higher number of cycle of PSNR calculation when 

the movements of objects appear around the center area of the fisheye images. For such 

condition, this method runs successfully to maintain the performance of the motion vectors 
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at the higher level, in comparison with the seven types of block-based motion estimation. 

Those block-based motion estimations cannot keep the PSNR performance at the same 

level, especially when the movements of objects appear around the center area of the 

fisheye images. In a further experiment, the LKI method, to some extent, is also applicable 

for estimating motion from general perspective images. However, it has been tested with 

only a small number of consecutive general perspective images. From that test, the 

performance of PSNR or inter-different fisheye image is auspicious. The LKI mostly works 

with a constant number of cycle of PSNR calculation for this kind of image. 

2.4.6 The Processing Time 

The amount of time spent on obtaining MV from two successive fisheye images is 

defined as processing time [22]. Table 2.3 presents some examples of the processing time 

needed by each motion estimation scheme to obtain MV from two successive fisheye 

images associated with each sequential fisheye image (SFI). Generally, it can be seen that 

the LKI can obtain MV under one second for all samples of the pair of fisheye images, 

except the pairs taken from the truck I, car I, car II, traffic II, and people. 

The LKI is very fast enough to find the best MV, especially when it has to obtain MV 

from synthetic sequences, such as the cube or flowers. However, the processing time for 

the flowers is longer than that of the cube. This because the number of object motions in 

the flowers is more than that of the cube. However, they have the same characteristics, such 

as constant illumination, constant speed, and minor motions. On the other hand, the 

processing time for other sequences that have the same number of object motions with the 

cube, such as the hand, man, and train, is longer than that of the cube. This because they 

are real sequences that consist of inconstant illumination. 

Regarding the truck I and truck II, the processing time for the truck II is lower than 

one second, while the truck I is higher than one second. This condition happens because 

the samples from the truck II consists of a small object, whereas the samples from the truck 

I consists of a massive object.  

Besides, although the samples of the pair of fisheye images taken from the car I and 

car II is almost the same, the time processing for the car I is longer than that of the car II. 

This condition occurs since there is a significant difference in the brightness level of the 

object (the car) between the two samples. On the other hand, even though the samples taken 
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from the traffic I are almost the same as the traffic II, the processing time for the samples 

taken from traffic II is slower than that of the traffic I. This condition happens due to the 

difference of the number of objects. 

 

Table 2.3 The processing time (in second). 

SFI\MV 
Schemes 

LK HS EP LKI ES TSS SETSS NTSS FSS DS ARPS 

Cube (CQ) 0.05 22.7 3.3 0.22 2.2 0.3 0.18 0.32 0.29 0.41 0.21 

Flowers 
(FQ) 

0.15 63.45 5.65 0.64 5.63 0.77 0.47 0.82 0.72 0.81 0.37 

Hand (HQ) 0.04 21.6 3.18 0.53 2.23 0.29 0.22 0.31 0.25 0.28 0.15 

Man (MQ) 0.05 21.26 3.16 0.6 2.22 0.27 0.21 0.2 0.2 0.17 0.1 

Truck I 
(TQ-I) 

0.12 49.48 4.97 7.4 3.4 0.42 0.29 0.51 0.45 0.53 0.31 

Truck II 
(TQ-II) 

0.11 50.44 4.9 0.3 3.42 0.43 0.34 0.38 0.36 0.35 0.24 

Car I (CQ-
I) 

0.11 49.48 4.99 5.3 3.45 0.43 0.31 0.45 0.41 0.44 0.27 

Car II (CQ-
II) 

0.11 50.1 4.86 3.89 3.45 0.43 0.3 0.43 0.4 0.41 0.27 

Train (TQ) 0.05 21.27 3.18 0.8 2.28 0.29 0.21 0.27 0.25 0.25 0.17 

Traffic I 
(TRQ-I) 

0.11 49.77 4.9 0.32 3.44 0.43 0.33 0.32 0.32 0.27 0.17 

Traffic II 
(TRQ-II) 

0.11 48.77 5.01 2.42 3.47 0.42 0.32 0.34 0.34 0.3 0.15 

People 
(PQ) 

0.11 46.07 4.98 3.2 3.42 0.42 0.32 0.33 0.33 0.32 0.17 

 

The processing time for each sample taken from the truck I, car I, car II, traffic II, 

and people, is higher than one. This condition happens because those samples consist of 

complex characteristics, such as many object motion (the traffic II and people), different 

illumination, and different brightness level of the object motion. 
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The above results are achievable by running codes on the Intel Pentium i7-3770 CPU, 

8 GB RAM. We develop the codes by using MATLAB R2016a, which is installed on 

Window 7 operating system. 

2.4.7 The Advanced Results 

Although the LKI scheme has been succeeded to be used for estimating motion 

directly from sequential fisheye images, the capability of this method can still be evaluated 

in further measurement scenarios. One of the scenarios is to handle a sudden movement or 

a motion that is larger than a couple of pixels. To be able to implement the sudden 

movements of objects, the input pair of fisheye images can be obtained from one (frame1 

and frame2), two (frame1 and frame3), three (frame1 and frame 4), four (frame1 and 

frame5); or five (frame1 and frame6) image difference inside sequential fisheye images 

[35]. There are four sequential fisheye images used in this experiment. These sequential 

fisheye images are the Hand, Man, Cube, and Truck I. Moreover, the same as the previous 

experiment, the performance of motion vectors is determined from the quality of the 

reconstructed fisheye image (RI). 

In the quantitative evaluation, it can be seen from Figure 2.26 to Figure 2.29 that the 

performance of the LKI goes down gradually proportional to a reduction of image 

difference. When the image difference reaches 5, the PSNR of each sequence generally 

reduces until about 15 dB from the maximum value (when the image difference is 2). 

However, this condition is far better in comparison with the result obtained by using block-

based (BB) motion estimation scheme. The gap can reach about 14 dB in the worst situation. 

The results can also be seen in the qualitative evaluation. The quality of the RI for 

each sequence are presented in Figure 2.30. Each RI’s inside that figure represents a sample 

from each sequence. It can be seen that the RI for the Man and Cube sequence is still good, 

while the RI for the Hand sequence is distorted slightly. In case of the Truck I, since the 

position of the object in the frame1 and frame3 is very different (it caused by the different 

speed of truck while it was captured at t=1 and t=3), the obtained motion vectors cannot be 

determined very well. Therefore, the RI becomes worst. This sequential fisheye images can 

be categorized as an unpredictable movement of the object, or it is worse than the sudden 

movements of the object.
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Figure 2.26. PSNR versus frame number for the hand sequence (HQ) (The advanced results). 

 

 
Figure 2.27 PSNR versus frame number for the man sequence (MQ) (The advanced results). 

 

 
Figure 2.28. PSNR versus frame number for the cube sequence (CQ) (The advanced results). 

 

 
Figure 2.29 PSNR versus frame number for the truck I sequence (TQ-I) (The advanced results). 
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(a) The RI for hand sequence (The Advanced 

Results) 
(b) The RI for man sequence (The Advanced 

Results) 
  

  
(c) The RI for cube sequence (The Advanced 

Results) 
(d) The RI for truck I sequence (The Advanced 

Results) 
  

Figure 2.30. The qualitative performance of the estimated motion shown by the reconstructed 
images (RI) 

2.5 Chapter Conclusion 

In this research, the design and analysis of the optical-based motion estimation with 

the automatic self-improvement scheme (LKI) for sequential fisheye images is shown. The 

final result proves that this proposed scheme can increase the performance of the MV. In 

the visual observation, the MV obtained from the LKI scheme can produce the finest RI 

that is almost the same as the fisheye image reference. That result also causes increases in 

the PSNR number. The PSNR obtained from the LKI scheme remain at a higher level in 

comparison with the ones obtained by using the original LK, HS, or ES. This condition 

occurs for every kind of sequential fisheye images trained. Furthermore, the PSNR results 

obtained from the LKI scheme are also better than the ones derived from the seven types 

of block-based motion estimations, including ES, TSS, SETSS, NTSS, FSS, DS, and ARPS.  
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Besides, to some extent, the LKI scheme also works very well to obtain MV from a 

sequential fisheye image with complex characteristics, such as inconsistent brightness, 

fluctuating number of object motion, changing shape of object motion, or poor camera 

stability. To be able to obtain MV from such kinds of fisheye images, the LKI process needs 

only below one second. However, when the characteristic of the fisheye images becomes 

more complex, the processing time increases slightly, but its performance remains at a high 

level. 

The evaluation of the LKI scheme for handling four sequential fisheye images with a 

sudden movement of the object has been conducted. The LKI scheme works well to produce 

motion vectors from at least three frames difference. This means that to some extent, the 

LKI can estimate motion from sequential fisheye images with sudden movements of objects. 
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Chapter 3 

3-D Optical Flow-Based Motion Estimation (Scene Flow) for 
Sequential Stereo Fisheye Images 

3.1 Introduction 

3.1.1 Background and Motivation 

Estimating the three dimensional (3-D) scene flow directly from multi- view general 

perspective images has successfully developed in recent years. This technique has become 

a valuable tool to reveal real-world motion [3] [36]. Therefore, this method can be used for 

reconstructing the 3-D object, analyzing 3-D motion, developing 3-D videos, or 

autonomous vehicle [37]. Generally, to be able to generate the 3-D scene flow, many 

developed algorithms use multiple sequential images that are obtained from multiple 

general perspective cameras as well. Indeed, some recent developments have been 

succeeded to generate the 3-D motion by using only two general perspective cameras. This 

camera system is then mainly known as the stereo camera system [38]. Besides being more 

efficient, to some extent, this camera system is extremely good to reveal the motion of non-

complex objects completely. 

Nevertheless, to some other extent, either a stereo camera system or a multiple 

cameras system is not too efficient anymore, particularly if they use general perspective 

cameras. This condition is caused by the camera system maybe need more space to 

accommodate many cameras. Generally, to cover larger field-of-view (FoV), the camera 

system needs more than one general perspective camera. This because the general 

perspective camera has narrow FoV. Furthermore, in the stereo general perspective camera 

system, the FoV is obviously very limited. It might be needed more effort to maximize the 

capability of the FoV. 

To be able to simplify a stereo camera system, while at the same time the stereo 

camera system has maximum FoV, one of the possible solutions is to employ two fisheye 

cameras. Recently, many kinds of fisheye cameras are available in the market. One of them 

is very small, and it has large FoV (2 x 1800) [32]. By employing two fisheye camera, the 

capability of view of the stereo camera system can be expanded. As a result, it can be used 

for estimating the 3-D motion located surrounding the camera.   
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Even though the stereo fisheye camera has large FoV, the fisheye camera itself suffers 

from distortion. This distortion actually has been discussed in section 2. Hence, to be able 

to develop the 3-D motion estimation directly from sequential stereo fisheye images, we 

need to decide a suitable method carefully. In this research, we propose to make use of the 

optical flow and disparity calculation to obtain the 3-D scene flow. 

3.1.2 Problem Formulation 

In similar form to the optical flow, which is interpreted as the 2-D motion of objects 

or pixels on an image plane, scene flow is illustrated as the 3-D motion field of objects or 

points in the real-world [3] [39] [40]. This term also means that an uncomplicated projection 

of the 3-D scene flow onto an image plane is the 2-D optical flow. The relation between the 

two kinds of motion is very tight. Firstly, by considering a 3-D point of A (X,Y,Z) positioned 

in the real-world, the projection of this point onto an image coordinate an (xn,yn) of camera 

n is define by the equation (3.1) and equation (3.2), in which [Pi]j is jth row of the projection 

matrix Pi. Those equations can be expressed as follows: 

𝑥𝑥𝑛𝑛 =
[𝑃𝑃𝑖𝑖]1(𝑋𝑋,𝑌𝑌,𝑇𝑇)𝑇𝑇

[𝑃𝑃𝑖𝑖]3(𝑋𝑋,𝑌𝑌,𝑇𝑇)𝑇𝑇
                                                                                             (3.1) 

and 

𝑦𝑦𝑛𝑛 =
[𝑃𝑃𝑖𝑖]2(𝑋𝑋,𝑌𝑌,𝑇𝑇)𝑇𝑇

[𝑃𝑃𝑖𝑖]3(𝑋𝑋,𝑌𝑌,𝑇𝑇)𝑇𝑇
                                                                                             (3.2). 

From then on, by assuming the cameras are static, the relationship between the optical flow 

(𝐯𝐯�⃗ = 𝑑𝑑𝐚𝐚𝑛𝑛 𝑑𝑑𝑡𝑡⁄ ) and the scene flow (𝕍𝕍��⃗ = 𝑑𝑑𝐀𝐀 𝑑𝑑𝑡𝑡⁄ ) can be stated as follows: 
𝑑𝑑𝐚𝐚𝑛𝑛
𝑑𝑑𝑡𝑡

=
𝜕𝜕𝐚𝐚𝑛𝑛
𝜕𝜕𝐀𝐀

𝑑𝑑𝐀𝐀
𝑑𝑑𝑡𝑡

                                                                                                       (3.3). 

According to [39], the scene flow then can be estimated by at least two cameras. Therefore, 

it has to be composed as a linear equation VB = U. This linear equation can be expressed as 

follows: 

𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑥𝑥1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦1
𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥2
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥2
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥2
𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦1
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

,𝑈𝑈 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑥𝑥1
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦1
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦2
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

,𝑉𝑉𝐵𝐵 = 𝑈𝑈                                            (3.4).  
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The 3-D coordinate A in a stereo setup has an interesting association with disparity 

(d) and corresponding image coordinates (xRight and yRight are the right views, while xLeft and 

yLeft are the left views). Their relationship can be approximated as follows: 

 𝑋𝑋 = 𝑇𝑇(𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡+𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡)
2𝑑𝑑

,𝑌𝑌 = 𝑇𝑇(𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡+𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡)
2𝑑𝑑

,𝑍𝑍 = 𝑓𝑓𝑇𝑇
𝑑𝑑

                                 (3.5), 

where T denotes as the baseline (distance between the two cameras), while f defines as the 

focal length of the cameras (assume that the two fisheye cameras have similar focal length, 

f = 1). 

To be able to get V (VB = U) mentioned by the equation (3.4), we need to carefully 

obtain each partial derivative element inside the B and U. In this research, those elements 

can be obtained from the optical flow and the disparity between two fisheye images. 

3.1.3 Contribution and Constrain 

This research aims to estimate the 3-D scene flow directly from sequential stereo 

fisheye images. The main advantage of developing this research is to extend the FoV of the 

stereoscopic camera system by using low-cost fisheye cameras. Therefore, it can be used 

for further applications, particularly for the 3-D motion analysis in a fisheye domain, the 3-

D video system, and the 3-D reconstruction system. 

In this research, the 3-D scene flow estimation is developed by employing the 2-D 

motion estimation and the disparity between a stereo fisheye images. We start from the idea 

proposed by S. Vidula et al. to build understanding about utilizing the optical flow for 

generating the 3-D motion [39]. However, we avoid using more than two cameras. Hence, 

we need to consider the idea proposed by R. Li, and S. Sclaroff [40]. They use a stereo 

general perspective camera to get the optical flow and the disparity for calculating the 3-D 

motion. Although our proposed idea seems to be the same as them, we use a different way 

of calculating the optical flow and the disparity. Firstly, we make use of a stereo camera 

rather than a stereo general perspective camera. Secondly, since we found a promising 

result after making use of the Lucas and Kanade’s optical flow approximation for 

calculating the optical flow directly from sequential fisheye images, we focus on extending 

this approximation to be used for the disparity calculation as well. 

Furthermore, this research is constrained by some assumptions. Firstly, the stereo 

fisheye camera and its sequential fisheye images are made by using the blender software 

[41]. The use of this synthetic sequential fisheye images makes the quantitative 
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measurement of the result becomes easy. The qualitative evaluation can also be evaluated 

easily. Secondly, this research assumes that the sequential stereo fisheye images have the 

same sampling time. Lastly, the stereo fisheye camera has no rotation, and it works in the 

maximum FoV. 

In term of calculating the quantitative performance of the 3-D scene flow, this 

research uses average angular error (AAE) and standard deviation angular error (SAE) [42]. 

The angular error (AE) can be computed as follows: 

𝐴𝐴𝑀𝑀 = 𝑐𝑐𝑙𝑙𝑠𝑠−1(𝑎𝑎.𝑎𝑎�)                                                                                              (3.6), 

where 𝑎𝑎 is the correct vector, while 𝑎𝑎� is the estimated vector. 

3.2 Related Works 

In our observation, the concept of generating the 3-D scene flow is started by S. 

Vidula et al. [39]. The approach provides an enormous opportunity for obtaining the 3-D 

scene flow with or without taking geometry information continuously from the real 3-D 

surface. One of the options will make generating the 3-D scene flow more efficient since 

we can depend on 2-D information greatly, although in the same time we will face greater 

noise that makes the 3-D scene flow seems to be unreliable. This condition means that the 

3-D scene flow can be generated by using the 2-D optical flow information, but it has to 

come from multiple cameras. 

Another researcher, R. Li, and S. Sclaroff propose a different idea [40]. They combine 

the optical flow and the disparity between images into calculation framework of 3-D scene 

flow. They firstly construct a binocular camera system to produced sequential stereo images, 

therefore, in the following process, this information can be used for obtaining the optical 

flow and the disparity. Finally, the 3-D scene flow can be generated. 

Another way of generating the 3-D scene flow is also developed by J. Quiroga et al. 

[43]. Instead of using multiple cameras, they construct a single camera together with RGBD 

sensor to obtain 2-D motion and depth before doing 3-D motion estimation in the final step. 

The result seems to be useful to be used for generating 3-D scene flow of a very close 

phenomenon. 

A. Wedel et al. build the 3-D motion by using a stereoscopic scene flow estimation 

framework [36]. This framework is mainly constructed from the latest development of 
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optical flow and stereo matching estimation. It seems like combining the 2-D motion 

estimation and depth information to obtain the 3-D scene flow. 

All of the above works successfully develop the 3-D scene flow estimation directly 

from general perspective images. Generating it directly from sequential fisheye images 

seems to be challenging now. 

3.3 Proposed Approach 

This section discussed the method of obtaining 3-D scene flow in this research 

comprehensively. The method is developed to follow a conceptual diagram, as shown in 

Figure 3.1 [44] [45]. At the beginning step, two identical fisheye cameras are configured to 

capture the same scene phenomenon, as it can be seen on the left side of the figure. The 

configuration of the two fisheye camera follows the general stereo configuration system 

that previously has been designed for two general perspective cameras [2] [3]. Having 

captured the scene phenomenon, each camera ideally will produce the same sequential 

fisheye images but has a different point of view.  

 

 
Figure 3.1. The conceptual diagram of obtaining 3-D scene flow [44] [45]. 

 

One fisheye camera provides the left point of view, while the other one presents the right 

one. Each of them is then fed to the second step, in which the calculation of the optical flow 

and disparity between two fisheye images perform. For each side (right and left), every two 

successive fisheye images from the time-varying fisheye images can be used for obtaining 

the optical flow, while every two adjacent fisheye images from both time-varying fisheye 

images can be used for obtaining the disparity between two fisheye images. The outputs of 
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this step will then be ready for feeding to the 3-D scene flow calculation process denoted 

by the equation (3.4). As a result, at the end of the process, the 3-D scene flow can be 

generated. This is also well known as the estimated motion in the 3-D domain. 

The process of calculating both the optical flow and disparity between two fisheye 

images in the second step can be described as Figure 3.2 [44] [45]. In this figure, the fisheye 

camera 1 corresponds to the left-side camera, while the fisheye camera 2 correlates to the 

right-side camera. Either the optical flow or disparity calculation performs as a problem of 

finding an interrelated point between two images. Since one of the more straightforward 

ways of finding those points is to calculate the brightness similarity, we prefer to use the 

Lucas and Kanade’s (LK) optical flow concept for calculating both the optical flow and 

disparity between two fisheye images. This concept is the same as the one used for 

estimating the 2-D motion in section 2.3.2.1. To be able to describe clearly about the use 

of the LK’s approximation for those calculations, the equation (2.18) is rewritten, as 

follows:  

�
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                                      (3.7). 

 
Figure 3.2. The process of calculating the optical flow and disparity between 

 two fisheye images [44]. 
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Note that Ix and Iy are the horizontal and vertical gradient of the fisheye image, while It is 

the image difference between two fisheye images. The number of neighboring pixels used 

in the calculation is denoted by n. In term of the optical flow calculation, the two fisheye 

images term means the two successive fisheye images taken from a sequential fisheye 

image. This calculation performs for either the left-side of sequential fisheye images or the 

right-side one. On the other hand, in case of the computation of disparity between two 

fisheye images, the two images are a pair of the fisheye images obtained from the two-side 

of sequential fisheye images. Additionally, for the two-side sequential fisheye images, the 

calculation of either the optical flow or disparity between two fisheye images performs 

every two successive fisheye images or two adjacent fisheye images respectively.  

3.4 Experimental Setting 

In this experiment, all sequential stereo fisheye images are made synthetically by 

using blander software [41]. By making use of this software, the two fisheye camera can 

be configured in an ideal stereo condition to produce some preferred synthetic fisheye 

images. Therefore, both qualitative and quantitative evaluation according to the generated 

3-D scene flow output can be observed easily. The configuration of the two fisheye cameras 

with an object used for this experiment is described in Figure 3.3 [44] [45]. In that figure, 

two fisheye cameras are composed in a stereo configuration. The distance between the two 

cameras is 4 or 6 cm. The stereo fisheye camera is set up to capture an object that moves 

monotonically. The object is a cube with an edge of 10 cm, and it is placed in front of the 

stereo fisheye camera. The distance between the stereo fisheye camera and the cube is 15 

cm. This cube then is moved forward 1, 2, 3, or 4 cm per step, started from a left-side 

position, and finished to a right-side position. The stereo fisheye camera then captures the 

movement of the cube (e.g., the first fisheye image shows the cube at the original position, 

the second fisheye image shows the cube after moving one cm, the third fisheye image 

displays the cube after moving two cm, etc.). From this scenario, there will be 190 fisheye 

images from each sequential fisheye images. Finally, the sequential fisheye images are 

applied to the scene flow calculation framework written in Table 3.1. 
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Figure 3.3. The stereo fisheye camera configuration with an object moving [44].  

 

3.5 Research Results 

In this section, the qualitative and quantitative performance of the 3-D scene flow 

estimation is discussed predominantly. In the qualitative assessment, there are three kinds 

of the position of the cube to be investigated, and they are mainly displayed in this chapter. 

Each of them aims to reveal the 3-D motion of cube according to the point of view of the 

stereo fisheye camera. The first position exploits the cube moving forward from the left side. 

This is also indicated that the cube is located in front of the stereo fisheye camera but on the 

left side. The second position reveals the cube that moves forward in the middle area. This 

condition means that the cube is exactly moving in front of the stereo fisheye camera. The 

last observe the cube moving forward to the left side, which means the cube is placed in 

front of the camera but on the right side. 

On the other hand, the quantitative measurement presents qualitative numbers that 

indicate the error of the generated 3-D scene flow. Each number represents for all position 

based on the size of the step of cube’s movement starting from the left side and finishing to 
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the right side. On the other hand, the quantitative measurement presents qualitative numbers 

that indicate the error of the generated 3-D scene flow. Each number represents for all 

position based on the size of the step of cube’s movement starting from the left side and 

finishing to the right side. 
 

Table 3.1. The 3-D scene flow algorithm. 
I. Input: Two successive fisheye images from either left 

or 
               right the fisheye camera  
The optical flow calculation: 
1: for each two successive images, do 
2:  im1st & im2nd ← converting the two images  to 

                            grayscale 
3:  im1st & im2nd ← smoothing the two grayscale 

                            images by using the Gaussian 
                            smooth filter 

4:  Ix, Iy & It ← obtaining spatial and temporal 
                     gradient of the images 

5:  u & v ← calculating vector flows by using matrix 
                equation 3.7.                                                                

6: end for 
7: Return  
II. Input: The two stereo fish-eye images from either 

t=1 
            or t=2   

The disparity calculation: 
1: for each two successive images, do 
2:    imLeft & imRight ← converting the two images to 

                               grayscale 
3:    imLeft & imRight ← smoothing the two grayscale 

images 
                               by using the Gaussian 
                               smooth filter 

4:    Ix, Iy & It (imLeft & imRight ) ← obtaining spatial and 
                                                  stereo gradient of the 
                                                  images                             

5:    d ← calculating disparity by using equation 
           3.7 and then calculating rate of disparity 

6: end for 
7: Return 

III. Input: The optical flow and disparity 
1: Calculating equation 3.4 
2: Displaying 3D scene flow 
3: Calculating AAE and SAE using equation 3.6 
4: Return  
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3.5.1 The Qualitative Performance 

As we have discussed in the previous section, the first step of the 3-D scene flow 

estimation process is to calculate the optical flow directly from two successive fisheye 

images obtained from each of fisheye cameras in the stereo composition. The intake of the 

two successive fisheye images is also applicable for each sequential fisheye images. In 

Figure 3.4, those fisheye images input is presented clearly. Explicitly, in the first two rows 

of that figure, either (a) and (b) comprises two successive fisheye images. Each of them is 

obtained from left and right fisheye camera (LR and RC) respectively. These fisheye images 

tell the cube’s position at the left side of the fisheye image area. Both (c) and (d) also come 

from the same sources (LR and RC), but these fisheye images present the cube’s position in 

the middle of the fisheye image area. The rest of parts of that figure, (e) and (f) are also taken 

from the similar fisheye cameras; however, they show the cube’s position at the right side 

of the fisheye image area.  

From there on, by using the equation (2.18), the optical flow can be obtained, and the 

results can be seen in the last two rows of Figure 3.4. In this figure, (g), (h), (i), (j), (k), and 

(l) are the optical flow output for the consecutive images mentioned by  (a), (b), (c), (d), (e), 

and (f) respectively. The optical flow output seems to occur densely only in the border area 

of the cube since there is a strong difference in intensity level between the cube and the 

background area. However, since the intensity around the edge of the cube (in the middle 

area of the cube) is almost constant, the optical flow cannot be obtained very well in this 

area. This phenomenon is visible clearly, especially when the cube is located in front of the 

stereo fisheye camera. Interestingly, when the cube is located at the left or right side position, 

the optical flow occurs almost the same, although it appears strongly only around the left 

and right edge of the cube. This condition means that there is a specific threshold of the 

difference in the intensity between the two areas, where the optical flow can still be 

generated by the system calculation. Besides, the results presented by Figure 3.4 are 

produced when the distance between the two fisheye cameras (the baseline) is 6 cm.  

The second step is the computation of disparity between two fisheye images provided 

by the LC and RC. In that figure, (a) and (b) behave as a stereo fisheye image showing the 

cube’s position at the left side of the fisheye image area, while (c) and (d) are a stereo fisheye 

image telling the cube in the middle position of the fisheye image area. 
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Figure 3.4. The example of two consecutive fisheye images produced by each fisheye camera. The distance 
between the two cameras is 6 cm. In the first two rows, (a), (c), and (e) are two consecutive fisheye images 
taken by the LC, while (b), (d), and (f) are two consecutive fisheye images captured by the RC. In the last two 
rows, (g), (h), (i), (j), (k), and (l) show the optical flow for the above consecutive images of (a), (b), (c), (d), 
(e), and (f) respectively. 
 
 

The rest, (e) and (f) are also a stereo fisheye image presenting the cube’s position at the right 

side of the fisheye image region. Furthermore, the disparity of each stereo fisheye image can 

be seen from the last two rows of Figure 3.5. In this figure, the computation of the disparity 

between each stereo fisheye image is composed when the distance between the two fisheye 

cameras is 6 cm. 

The disparity of a stereo fisheye image occurs more often around the border area 

between the edge of the cube and the background. A consistent result can be obtained when 

the cube is placed in the middle side, although it is not too visible if the edge area of the 

cube tends to have uniform intensity. On the contrary, the disparity output obtained when 

the cube's position at the left side, is different with the disparity output obtained when the 

cube's position at the right side. It seems like there are so many false vectors appears when 

the cube’s position at the right side.  
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Figure 3.5. The example of the pair of fisheye images produced by the stereo camera. The distance between 
the two cameras is 6 cm. In the first row, (a) and (b), (c) and (d), and (e) and (f) are stereo fisheye images 
showing the position of the cube at the left, middle, and right side respectively. In the last two rows, (g), (h), 
and (i) show the disparity between the stereo fisheye images. 
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However, they will be ignored by the opposite one during the calculation of scene flow. 

The 3-D scene flow calculation finally performs in the last step, and the results can be 

seen in Figure 3.6. In this figure, (a), (b), and (c) show the scene flow obtained when the 

cube is located at the left, center and right side position consecutively. The distance between 

the two fisheye cameras is 6 cm. From that figure, it can be seen that the scene flow can be 

generated although the cube’s position in the stereo fisheye image is placed at the left, 

middle, or right side. However, when the stereo fisheye image shows the cube at the left or 

right side position, they occur more sparsely. It seems like the 3-D scene flow estimation is 

significantly affected by the results of optical flow and disparity calculation. 

 

 
Figure 3.6. The visual performance of the 3-D scene flow according to different object location. The distance 
between the two cameras is 6 cm. The cube is moving in front of the stereo camera. (a), (b), and (c) show the 
3-D scene flow obtained when the cube is located at the left, center, and right side respectively. 
 

3.5.2 The Quantitative Performance 

In the quantitative performance, the average angular error (AAE) and the standard 

deviation average angular error (SAE) of the estimated 3-D scene flow are presented in 

Figure 3.7, Figure 3.8, Figure 3.9, and Figure 3.10. While Figure 3.7 and Figure 3.8 show 

the AAE and SAE of the estimated 3-D scene flow obtained when the distance between two 

fisheye cameras is 4 cm, Figure 3.9 and Figure 3.10 illustrate the same quantitative 

evaluations, but they are obtained when the distance between the two fisheye cameras is 6 

cm. In those figures, the frame number denoted by the horizontal axis also tells the cube’s 

position in each fisheye image. It starts from 1 (left side position), and it finishes at 190 
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(right side position). The evaluation is applied to different types of cube’s movements (1, 2, 

3, and 4 cm), and different types of legend colors denote each movement.  

Based on Figure 3.7 and Figure 3.8, it can be seen that the AAE and SAE are lower 

than around 0.1ᵒ and 1.5ᵒ respectively. Those conditions happen especially when the 

movement of the cube is 1 cm. However, the AAE and SAE increase slightly to around 0.2ᵒ 

and 2.5ᵒ consecutively, and those situations occur when the movement of the cube rises from 

1 cm until 4 cm. These results are achieved when the distance between the two fisheye 

cameras is set up to either 4 or 6 cm, and the cube’ position is located at the right or left side 

of the stereo fisheye images. Nevertheless, either AAE or SAE stays at higher levels, 

especially when the cube’ position is located in the middle side of the stereo fisheye images.  

Specifically, when the cube’s movement is only 1 cm, both AAE and SAE remains low at 

0.22ᵒ and 2.7ᵒ respectively. This situation occurs when the distance between the two fisheye 

cameras is set up to either 4 or 6 cm. Nevertheless, the results become worst when the cube’s 

movement is increased to 4 cm. The AAE and SAE rise to around 0.7ᵒ and 5ᵒ consecutively, 

particularly when the distance between the stereo fisheye cameras is set up to 4 cm. However, 

for the same cube’s position (in the middle side), and the distance between the two fisheye 

cameras is set up to 6 cm, either AAE and SAE only increases to around 0.5ᵒ and 4.5ᵒ 

consecutively. 

3.6 Chapter Conclusion 

In this research, estimating 3-D scene flow directly from sequential stereo fisheye 

images can be done by incorporating the optical flow and disparity calculation 

simultaneously. Both of them can be calculated by using Lucas and Kanade’s 

approximation with different composition of the fisheye images input. Based on the visual 

investigation, the 3-D scene flow can be estimated very well particularly in the area where 

the intensity difference occurs significantly, otherwise it is difficult to generate the 3-D 

vectors. The performance of the 3-D scene flow also depends on the motion of the object, 

the location of the object and the distance between the two fisheye cameras. Making further 

investigation regarding those aspects is essential. Therefore, the system calculation can 

adapt to these three aspects very well. To some extent, the results have provided a promising 

output. 
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Figure 3.7. The AAE performance of the 3-D scene flow estimation. The baseline is 4 cm. 
 
 

 

Figure 3.8. The SAE performance of the 3-D scene flow estimation. The baseline is 4 cm. 
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Figure 3.9. The AAE performance of the 3-D scene flow estimation. The baseline is 6 cm. 

 
 

 
Figure 3.10. The SAE performance of the 3-D scene flow estimation. The baseline is 6 cm. 
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Chapter 4 

Conclusion and Further Research  

4.1 Conclusion 

In this dissertation, innovative developments of motion estimation (ME) for 

sequential fisheye images has been discussed comprehensively. The development consists 

of the 2-D ME and 3-D ME. Both of them are developed by extending the optical flow 

concept. The 2-D ME is designed for estimating the 2-D motion directly from a sequential 

fisheye image. The 3-D ME is built for estimating the 3-D scene flow directly from 

sequential stereo fisheye images. By conducting this development, we will have a great 

possibility of implementing advanced visual applications with larger field-of-view (FoV) 

than the conventional visual application do. 

In the 2-D ME development, we have succeeded to make use of the Lucas and 

Kanade’s (LK) optical flow scheme as a fundamental methodology to estimate motion 

directly from sequential fisheye images. In the fisheye image circumstance, it turns out that 

this method works very efficient. This is because the basic approximation is very simple, 

and it can be exploited further. Although the initial approximation tends to be difficult to 

overcome a complex motion around the center area of the fisheye image, it can be exploited 

to work many times under the supervision of a parametric performance evaluation. This 

repetitive calculation scheme guides the estimated vector headed toward the right direction. 

The extended version of the LK’s approach named “LKI”, which is Lucas and Kanade’s 

concept with an improvement has been proven working properly so far to overcome a 

massive distortion around the center area of the fisheye image. Therefore, the performance 

of the estimated motion vectors throughout the fisheye image area remains the same at a 

high level. 

Another ME development written in this dissertation is the 3-D ME development. 

Sensible utilization of the fundamental LK’s concept for supporting the 3-D scene flow 

estimation has been conducted successfully in this development. The conventional LK’s 

approach has been proven to be an effective method for calculating not only the optical 

flow but also the disparity between stereo fisheye images. Hence, our 3-D scene flow 

estimation framework that employs the optical flow and disparity calculations can produce 

a promising result. The proposed scheme can generate the 3-D scene flow directly from a 



60 
 

stereo fisheye camera. This condition is applicable wherever the moving object occurs in 

the fisheye image area. In other words, our approach can reveal the 3-D motion captured 

from 1800 FoV. 

Nevertheless, the above achievements can be realized in certain constraints. These 

constraints firstly assume that there is only a small camera motion. Secondly, there is no 

camera rotation. The third one is that the processing circumstance is in a maximum FoV 

(1800). The last is that the stereo FoV is captured in the same period by each fisheye camera. 

4.2 Further Research 

There are some aspects that can be exploited further from the current results. In the 

research of the 2-D optical flow-based ME, at least there are two aspects that still become 

questions to be answered. Firstly, when the system calculation is used to estimate a sudden 

movement or a huge movement, and particularly, the movement of the object occurs on the 

center area of the fisheye image area, it cannot predict that motion very well. This condition 

might be equal to the problem to determine the motion vectors directly from almost five 

fisheye image differences in a sequential fisheye image. Solving this problem will be useful 

for making a video frame rate conversion or a motion analysis application. Secondly, 

although the optical flow can be used in every preferred FoV (or every different focal 

length), it is essential to investigate the motion in transition between two different FoV. In 

this condition, the shape of the object seems to change dramatically. By revealing the 2-D 

motion in this transition, it will give a smooth effect to the vision. 

In the 3-D development, on the other hand, it seems like the main problem is to obtain 

true 3-D motion vectors from an area, in which a feature cannot be defined very well. 

Extending the LK’s approach might be an interesting challenge to be exploited. Therefore, 

the 3-D scene flow can be obtained for the entire moving object. Another question to be 

answered is to obtain the 3-D scene flow from different FoV of the stereo fisheye camera. 

This condition will lead the same question regarding motion in the transition FoV, but now 

it is related to the view effect in the generated 3-D domain. 
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