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1. Introduction 

In recent years, deep learning has shown strong 
performance in diagnostic imaging [1], particularly for 
automated knee injury detection using MRI. MRNet [2] 
is a widely used baseline model for classifying 
conditions such as anterior cruciate ligament (ACL) and 
meniscal tears by processing sagittal T2-weighted, 
coronal T1-weighted, and axial proton density (PD)-
weighted sequences with convolutional neural networks. 

However, MRNet [2] aggregates features from 
different sequences by simple averaging, which ignores 
the heterogeneous diagnostic importance of MRI 
modalities and the fact that only a subset of slices is 
clinically informative. T1- and T2-weighted images play 
a critical role in ligament and soft tissue assessment. 

To address these limitations, this study proposes a 
clinically informed framework that introduces slice-level 
attention and learnable sequence-level fusion weights 
initialized according to clinical knowledge, enabling 
more accurate and interpretable knee injury 
classification.  

 
2. Related Works 
2.1 Deep Learning Approaches for MRI Diagnosis 

Deep learning–based approaches have recently shown 
strong potential in automating MRI interpretation for 
musculoskeletal injuries by enabling data-driven 
extraction of complex anatomical and pathological 
patterns. Among them, U-Net [3] is a widely used 
segmentation model that employs an encoder–decoder 
architecture to capture multi-scale contextual 
information and extract pixel-level pathological features. 
It has demonstrated high performance across a variety of 
medical imaging tasks, including brain tumor 
segmentation and musculoskeletal lesion detection. 

For classification-based diagnosis, a representative 
model is MRNet [2], developed by Bien et al. at Stanford 
University. MRNet analyzes multiple anatomical 
views—sagittal, coronal, and axial—to detect clinically 
important conditions such as ACL tears, meniscal tears, 
and general abnormalities. Each plane is processed 
independently using convolutional neural networks to 
extract slice-level features, which are aggregated to 
produce plane-level predictions. The final classification 
score is obtained by combining per-plane probabilities 
through a logistic regression layer. Figure 1 shows the 
network architecture and multi-plane aggregation.

 
Fig. 1. The model architecture of MRNet [2]. 

 
2.2. Public Knee MRI Datasets 

Some knee MRI datasets based on functional MRI 
(fMRI) are primarily intended for image reconstruction 
research [4]. These datasets often lack clinical labels for 
injury presence, making them unsuitable for supervised 
classification tasks. 

In contrast, the MRNet dataset [2] includes labeled 
MRI examinations with annotations for ACL tears, 
meniscal tears, and abnormalities. Its structured and 
well-annotated design makes it well suited for training 
deep learning models aimed at knee injury detection.  
 
3. Proposed Method 

We propose an enhanced MRNet-based framework 
that incorporates clinically guided sequence-level fusion 
and slice modeling strategies. The proposed design 
reflects radiological practice by emphasizing 
diagnostically important MRI sequences and slices in a 
task-dependent manner. The overall architecture is 
illustrated in Figure 2. 
3.1. Softmax-weighted Sequence Fusion with 
Diagnostic Priors 

While MRNet simply averages features across MRI 
sequences, our model introduces learnable fusion 
weights guided by clinical prior knowledge. Specifically, 
T1- and T2-weighted images are emphasized for ACL 
and meniscal tear detection, whereas all sequences are 
treated as equally informative for abnormality detection. 

Let 𝑓!, 𝑓", 𝑓# ∈ 𝑅$ denote the feature vectors 
extracted from the three MRI sequences and let 𝛼 =
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤) ∈ 𝑅$  be the learned fusion weights, 
normalized such that the sum of all elements equals one.  
These weights control the relative contribution of each 
sequence to the final fused representation.



 
Fig. 2. Architecture of Proposed Method. (a) Slice selection via attention pooling. (b) Anatomical continuity modeling via Bi-GRU. Both models 

incorporate clinically prioritized sequence-level fusion. 

TABLE 1 AUC SCORES FOR EACH MODEL ACROSS 
DIAGNOSTIC TASKS 

Model ACL Tear Meniscus Tear Abnormality 

MRNet (Baseline) 0.852 0.856 0.847 

Attention + Clinical Prior(Ours) 0.910 0.899 0.877 

Bi-GRU + Clinical Prior(Ours) 0.934 0.924 0.918 

 
The final fused feature vector 𝑓%&'($ is computed as 

𝑓%&'($ =	𝛼! ∙ 𝑓! + 𝛼" ∙ 𝑓" + 𝛼# ∙ 𝑓#, (1) 
where α₁, α₂, and α₃ represent the fusion weights for the 
sagittal, coronal, and axial sequences, respectively. 

In practice, the initial values of the weight vector w 
are set according to clinical prior knowledge as follows: 
• ACL / Meniscal tear detection: (0.45, 0.45, 0.10) 
• Abnormality detection: (0.33, 0.33, 0.33)  
3.2. Slice Modeling Strategies 

To improve diagnostic accuracy, we propose two 
complementary strategies for identifying salient slices 
within each MRI sequence. 
3.2.1. Slice-Level Attention Pooling 

The per-slice attention mechanism assigns adaptive 
importance weights to individual slices based on their 
latent diagnostic relevance. Given slice-level feature 
vectors fᵢ, the aggregated plane-level representation is 
computed as 

𝐹)** =	4𝛼+

,

+-!

𝑓+ . (２) 

This formulation enables the model to emphasize 
diagnostically informative slices while suppressing 
redundant regions, resulting in improved sensitivity to 
localized abnormalities. 
3.2.2. Continuity-aware Modeling with Bi-GRU 

To capture anatomical consistency across adjacent 
slices, we further employ a Bi-GRU to model slice 
features as an ordered sequence. The network 
reconstructs each slice feature from its contextual 
representation, and the continuity score is defined as 

𝑐+ =	 |	𝑓+ −	{𝑓}.; |", (3) 
where fᵢ and f̂ᵢ denote the original and reconstructed slice 
features, respectively. Higher continuity scores indicate 
anatomical irregularities and guide the model to 
emphasize pathological regions during aggregation. 

4. Experiment 
We re-implement MRNet under identical training 

conditions to ensure a fair comparison. Table 2 reports 
the AUC results for ACL tear, meniscal tear, and 
abnormality detection. Both proposed variants 
consistently outperform the baseline across all tasks, 
with the Bi-GRU–based continuity-aware model 
achieving the highest performance, followed by the slice-
level attention model. 

The largest improvement is observed in ACL tear 
detection, indicating that modeling inter-slice anatomical 
continuity is particularly effective for capturing subtle 
structural abnormalities. These results demonstrate the 
benefit of incorporating clinical priors and anatomical 
context for knee MRI classification. 

 
5. Conclusion  

In this paper, we propose an enhanced MRNet-based 
framework with clinically guided fusion and slice 
modeling for knee MRI classification. The proposed 
method consistently outperforms the baseline, with the 
Bi-GRU–based model achieving the best performance, 
highlighting the benefit of integrating clinical priors and 
anatomical continuity. This framework offers a general 
and clinically meaningful approach for multi-sequence 
medical image classification. 
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Abstract 

 

Accurate diagnosis of anterior cruciate ligament (ACL) and meniscal tears using magnetic 

resonance imaging (MRI) is essential for timely and effective treatment. However, existing deep 

learning approaches often aggregate slice and sequence features without explicitly modeling 

inter-slice continuity, limiting their ability to localize diagnostically relevant regions. 

To address this limitation, we propose a continuity-aware evidence fusion framework that 

explicitly models inter-slice relationships to identify where to look before determining what to 

trust across MRI planes. Our method leverages a bidirectional recurrent architecture to quantify 

slice-level continuity disruption, producing interpretable evidence scores that guide plane-level 

feature aggregation. These evidence-driven representations are further integrated using clinically 

informed fusion priors, reflecting radiologists’ diagnostic reasoning across coronal, sagittal, and 

axial views. 

Experiments on the MRNet dataset demonstrate that the proposed framework consistently 

improves diagnostic performance across ACL tear, meniscal tear, and abnormality detection 

tasks, while providing enhanced interpretability through explicit modeling of inter-slice 

continuity. 

Keywords: Convolutional neural networks, deep neural networks, medical diagnostic 

imaging, magnetic resonance imaging. 
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Chapter 1 Introduction 

 

1.1 Introduction 

Knee injuries such as anterior cruciate ligament (ACL) and meniscal tears are prevalent in 

sports medicine and frequently require magnetic resonance imaging (MRI) for accurate diagnosis 

[1]. Timely and reliable assessment of these injuries is critical for appropriate treatment planning, 

rehabilitation, and return-to-play decisions. In recent years, deep learning has demonstrated 

significant potential in medical image analysis, including the automated detection of 

musculoskeletal injuries from knee MRI scans. MRI provides excellent soft-tissue contrast without 

ionizing radiation and enables detailed visualization of ligamentous and cartilaginous structures in 

the knee [6] [7]. 

One of the most widely adopted baselines in this domain is MRNet [2], introduced by Stanford 

University, which performs binary classification of knee injuries using three orthogonal MRI 

planes: sagittal, coronal, and axial sequences. In MRNet, features are independently extracted from 

each plane using convolutional neural networks (CNNs), and the final prediction is obtained by 

uniformly aggregating these plane-level features. While this approach achieves strong baseline 

performance, it implicitly assumes that all slices and all planes contribute equally to diagnosis. 

However, this assumption does not align with clinical practice. Radiologists interpret knee MRI 

by selectively focusing on diagnostically relevant slices and by weighting information across 

planes based on the suspected pathology. For example, ACL and meniscal tears are primarily 

evaluated using sagittal and coronal views, while axial slices often play a secondary role. 
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Furthermore, even within a single MRI sequence, only a limited subset of slices may contain 

pathological evidence, whereas many slices provide little or no diagnostic value. Ignoring this 

variability can dilute critical information and reduce diagnostic robustness. 

To address these limitations, recent studies have explored attention mechanisms and slice 

selection strategies to emphasize informative regions or sequences. While these methods improve 

performance, most of them treat slice importance as a static or appearance-based property and do 

not explicitly model the inter-slice continuity inherent to volumetric MRI data. In clinical settings, 

pathological abnormalities often manifest as localized disruptions across consecutive slices, rather 

than isolated anomalies in a single slice. Failure to capture such continuity patterns can limit both 

interpretability and generalization. 

 

1.2 Thesis Purpose 

In this work, we propose a multi-view knee MRI classification framework that integrates 

clinical knowledge into both slice-level evidence modeling and sequence-level feature fusion. 

Rather than treating slice importance as a static property, the proposed method explicitly models 

inter-slice continuity to identify diagnostically salient regions, enabling the model to determine 

where to look by detecting localized disruptions across consecutive slices. 

The resulting slice-level evidence is aggregated into plane-level representations, which are 

further combined using a learnable sequence fusion module guided by clinically informed priors 

reflecting the diagnostic relevance of each MRI view. By decoupling evidence localization from 

plane-wise decision fusion, the proposed framework selectively emphasizes meaningful features 

across both dimensions in a clinically interpretable manner. 
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1.3 Thesis Outline 

The structure of this paper is as follows. 

Chapter 1 is the main chapter and describes the background and purpose of this study. 

Chapter 2 describes the research related to this study. 

Chapter 3 describes the proposed methodology of this study. 

Chapter 4 describes the results and discussion of the evaluation experiments of the proposed 

method. 

In Chapter 5, we present the conclusions and future issues of this study. 
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Chapter 2 Related Works 

 

2.1 Introduction 

This section reviews prior work on automated knee injury diagnosis using magnetic resonance 

imaging (MRI), with a particular focus on deep learning-based multi-plane analysis frameworks.  

2.2 Deep Learning Approaches for MRI Diagnoses 

Deep learning–based methods are increasingly effective for automating MRI interpretation in 

musculoskeletal imaging. Among them, U-Net [3], an encoder–decoder segmentation model, 

demonstrates strong performance in lesion localization tasks such as brain tumour and 

musculoskeletal abnormality detection. 

For classification-based diagnosis, MRNet [2], developed at Stanford University, is a widely 

used framework for knee injury assessment. The model independently analyzes sagittal, coronal, 

and axial MRI sequences using convolutional neural networks to extract slice-level features, which 

are aggregated to predict clinically important conditions such as ACL and meniscal tears. Owing 

to its standardized design and public availability, MRNet serves as a common baseline in multi-

view MRI classification studies. 

Figure 1 shows the model architecture of MRNet. Each view is processed by a 2D CNN to 

extract slice-level features, which are pooled and passed through fully connected layers. The final 

prediction is obtained by combining outputs from all views.  
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Fig. 1. The model architecture of MRNet [2]. 

 

2.3 Public Knee MRI Datasets 

Some publicly available knee MRI datasets, such as those based on functional MRI (fMRI), 

have been primarily developed for tasks in image reconstruction or signal modelling [4]. These 

datasets typically lack clinical annotations regarding injury presence or type, limiting their utility 

for supervised learning in diagnostic applications. 

In contrast, the MRNet dataset [2] provides a large-scale, clinically annotated collection of 

knee MRI exams labelled for anterior cruciate ligament (ACL) tears, meniscal tears, and general 

abnormalities. Each exam includes three orthogonal MRI sequences: sagittal T2-weighted, coronal 

T1-weighted, and axial proton density (PD)-weighted: capturing complementary diagnostic 

information across anatomical planes. Representative examples of these MRI sequences are shown 

in Figure 2, where the sagittal T2-weighted, coronal T1-weighted, and axial PD-weighted images 

are displayed from left to right. 
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The dataset encompasses a diverse patient population and imaging variations across sequences. 

Detailed statistics, including the number of exams, patient demographics, and sequence 

distribution, are provided in Table 1. These characteristics make MRNet a suitable and widely 

adopted benchmark for multi-view knee MRI classification.  

The MRNet dataset was obtained from the official Stanford ML Group website 

(https://stanfordmlgroup.github.io/competitions/mrnet/) and used under the terms of the MRNet 

Dataset Research Use Agreement, which permits non-commercial research use only and prohibits 

redistribution or commercial use. 

 

Fig. 2. Three MRI sequences from the MRNet dataset [2].  

(a) Sagittal T2-weighted. (b) Coronal T1-weighted. (c) Axial PD-weighted views. These orthogonal planes are 

used as input for classification models in multi-view knee MRI analysis.  

 
 

TABLE 1 THE DEMOGRAPHIC INFORMATION OF THE DATASET 
Statistics Training Validation 

Number of exams 1130 120 
Number of patients 1088 111 
Number of female patients (%) 480 (42.5%) 50 (41.7%) 

Age, mean (SD) 38.3 (16.9) 36.3 (16.9) 

(a) Sagittal T2 (b) Coronal T1 (b) Axial PD
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2.4 Conclusion 

This section reviews representative deep learning–based frameworks for knee MRI diagnosis 

and publicly available datasets supporting such studies. While multi-plane classification models 

such as MRNet effectively integrate information from multiple anatomical views and serve as 

strong baselines, they generally process individual slices independently and rely on simple feature 

aggregation. Consequently, anatomical continuity across adjacent slices is not explicitly modelled. 

This limitation motivates the proposed approach, which aims to capture inter-slice anatomical 

transitions to further improve diagnostic robustness and sensitivity. 
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Chapter 3 Proposed Method 

 

3.1 Introduction 

We propose an enhanced model of MRNet that integrates clinically prioritized multi-plane 

fusion and inter-slice continuity modelling using Bi-GRU. This allows the model to consider both 

diagnostic relevance and anatomical consistency across slices. The overall architecture is shown 

in Figure 3. 

 

(a) 

 

(b) 

Fig. 3. The architecture of Proposed Method. (a) Slice selection via attention pooling. (b) Anatomical continuity 

modeling via Bi-GRU. Both models incorporate clinically prioritized sequence-level fusion. 
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3.2 Softmax-weighted Sequence Fusion with Diagnostic Priors 

While MRNet [2] simply averages features from the sagittal, coronal, and axial MRI sequences, 

our model introduces learnable fusion weights to capture the task-specific diagnostic relevance of 

each sequence. These weights are initialized using established clinical knowledge and further 

optimized during training to adapt to different diagnostic tasks. 

Each MRI sequence provides complementary diagnostic information. T1-weighted images 

offer detailed visualization of bone and soft tissue anatomy and are useful for assessing structural 

abnormalities, T2-weighted images are sensitive to fluid-related pathological changes associated 

with acute injuries such as ligament tears, and PD-weighted images enhance tissue interface 

contrast, facilitating the detection of subtle structural irregularities [5]. 

These complementary roles are summarized in Table 2. By incorporating such modality-

specific knowledge into the fusion process, our model emphasizes diagnostically salient features 

across imaging planes, thereby better reflecting radiological interpretation strategies and 

improving classification reliability. 

 

TABLE 2 DIAGNOSTIC CHARACTERISTICS OF DIFFERENT MRI SEQUENCES 

 

MRI Sequences  Diagnostic Strength  
T1-Weighted Clearly shows anatomical structures of bones and soft tissues. 

Useful for identifying bone morphology and structural 
abnormalities. 

T2-Weighted Highlights tissues with high water content (e.g., inflammation, 
swelling, hematoma). Effective for detecting abnormalities in 
soft tissues. 

PD-Weighted Emphasizes contrast between bones and soft tissues. Suitable 
for detecting subtle boundary abnormalities. 
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Based on these clinical characteristics, we initialize the fusion weights to prioritize sagittal and 

coronal sequences (T2- and T1-weighted images) for tasks such as ACL and meniscal tear 

detection, where soft tissue integrity and joint structure are critical. For general abnormality 

detection, where diverse pathologies may appear across all planes, we adopt a uniform 

initialization to reflect the balanced diagnostic relevance of each sequence. 

Let 𝑓!, 𝑓", and 𝑓# denote the feature vectors extracted from the three MRI sequences, and let 

𝛼! , 𝛼" , and 𝛼#  represent the corresponding normalized fusion weights obtained via a softmax 

function, satisfying 𝛼! + 𝛼" + 𝛼# = 1. The final fused feature vector is computed as a weighted 

linear combination 

𝑓$%&'( =	𝛼! ∙ 𝑓! + 𝛼" ∙ 𝑓" + 𝛼# ∙ 𝑓#. (1) 

In practice, the initial fusion weights are summarized in Table 3.  

 

TABLE 3 WEIGHTING SCHEMES FOR EACH TASK 

 

3.3 Slice Modelling Strategies 

In addition to sequence-level fusion, our framework incorporates slice modeling strategies to 

identify diagnostically important slices within each MRI sequence. We employ slice-level 

attention pooling to capture local saliency and Bi-GRU–based continuity modeling to account for 

anatomical consistency across adjacent slices. These strategies enable robust feature aggregation 

and improve sensitivity to spatially coherent abnormalities. 

Task Weighting Scheme (T1/T2/PD) 
ACL Tear (0.45/0.45/0.1) 

Meniscus Tear (0.45/0.45/0.1) 
Abnormality  (0.33/0.33/0.33) 
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3.3.1 Slice-Level Attention Pooling 

In conventional slice-based MRI classification frameworks such as MRNet, a fixed 

aggregation method, typically max or average pooling, is employed to compress slice-wise 

features into a single sequence representation. This approach implicitly assumes that all slices 

contribute equally to the final prediction. However, in clinical practice, radiologists often focus on 

a limited subset of diagnostically informative slices, such as those capturing ligament tears or 

abnormal joint morphology, while ignoring irrelevant or redundant views. 

To better reflect this clinical reasoning process, we introduce a slice-level attention pooling 

mechanism that adaptively weights each slice according to its latent diagnostic relevance. 

Let the sequence of slice features be denoted as 

{𝑓!, 𝑓", … , 𝑓)},			𝑓* ∈ 	𝑅(, (2) 

where N is the number of slices and d is the feature dimension.  

For each slice feature 𝑓𝑖, a scalar attention score	𝛼* is computed using a shallow feed-forward 

network with tanh activation 

𝑎! 	= 	𝑊" · tanh(𝑊"𝑓! +	𝑏!) +	𝑏".	 (3) 

The attention scores are normalized across the slice dimension using the softmax function 

𝛼! =	
exp(𝑎!)

𝛴{#$%}
{'}()*+𝑎#,

	.	 (4) 

The final sequence-level feature representation F is obtained as a weighted sum of the slice 

features 

𝐹	 = 	/𝛼!

'

!$%

𝑓! .	 (5) 

This attention mechanism allows the model to selectively emphasize slices containing 

pathology, such as torn ligaments or displaced menisci, while suppressing irrelevant frames. 
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Unlike fixed pooling strategies, this learnable approach enhances sensitivity to subtle 

abnormalities and improves interpretability by explicitly revealing which slices contribute most to 

the model’s prediction. 

Empirically, we observe that attention weights often concentrate on clinically meaningful 

regions—for example, midsagittal slices showing the intercondylar notch in ACL tear detection—

demonstrating that our model aligns well with diagnostic behavior in real-world radiology. 

3.3.2 Inter-Slice Continuity Modeling with Bi-GRU 

While slice-level attention focuses on selecting diagnostically salient slices, many 

musculoskeletal injuries manifest as gradual structural changes spanning multiple adjacent slices. 

For example, anterior cruciate ligament (ACL) ruptures or meniscal tears often appear as 

continuous anatomical disruptions rather than isolated abnormalities in a single slice. 

To capture such structural consistency, we model each MRI sequence as an ordered slice series 

and introduce an inter-slice continuity modeling module based on a bidirectional gated recurrent 

unit (Bi-GRU). This module explicitly learns how anatomical structures evolve across slices by 

incorporating contextual information from both preceding and succeeding slices. 

Let the sequence of slice features be denoted as (2).  

where N is the number of slices and d is the feature dimension. A forward GRU processes the 

sequence from the first slice to the last 

ℎ*→ = 	𝐺𝑅𝑈$-./0.(1$!,3{!#$}→ 4, (6) 

and a backward GRU processes the sequence in the reverse order 

ℎ* =	 [	ℎ*→; 	ℎ*←]. (7) 
To derive a sequence-level feature representation, we apply temporal average pooling over all 

continuity-aware slice representations 
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𝐹	 = 	 ?
1
𝑁BCℎ*

)

*6!

.	 (8) 

This representation encodes both local slice appearance and global anatomical transitions 

across the entire sequence. 

To further quantify anatomical consistency across slices, we introduce a continuity score that 

measures how well each slice conforms to its surrounding anatomical context as modeled by the 

Bi-GRU. 

After obtaining the continuity-aware hidden representationsℎ!, ℎ", …, ℎ), we reconstruct each 

slice representation from its contextual embedding using a linear projection layer 

𝑓D* =	𝑊.ℎ* +	𝑏., (9) 

where  𝑓D* 	denotes the reconstructed feature of slice i, and 𝑊. and 𝑏. are trainable parameters. 

The continuity score𝑐* 	for slice i is defined as the reconstruction error between the original 

slice feature  𝑓* and its reconstructed feature 𝑓D* 

𝑐* =	 ||	𝑓* 		− 	𝑓D*||". (10) 

This score reflects the degree of structural inconsistency between the slice and its anatomical 

context. 

Slices with low continuity scores indicate anatomically consistent transitions, whereas high 

continuity scores suggest abnormal structural deviations, such as ligament discontinuities or 

distorted meniscal morphology. 

To obtain a sequence-level continuity score, we aggregate slice-level scores by averaging 

across all slices 

𝐶	 = 	?
1
𝑁BC𝑐* ,

)

*6!

 (11) 
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here C represents the overall continuity deviation of the MRI sequence. 

By explicitly modeling slice dependencies and quantifying structural consistency, the proposed 

Bi-GRU module enables the network to detect continuity violations that are difficult to capture 

using independent slice processing or attention-based selection alone. 

Compared to slice-level attention, which emphasizes where abnormalities appear, continuity 

modeling focuses on how anatomical structures evolve across slices. This complementary 

perspective allows the proposed framework to better reflect radiological reasoning and improves 

robustness in detecting subtle or spatially distributed knee injuries. 

 

3.4 Conclusion 

This section introduced two slice modeling strategies: attention-based slice selection and Bi-

GRU-based continuity modeling. While the former emphasizes localized pathological evidence, 

the latter captures structural transitions across slices. Their combination enables both saliency-

aware and structure-aware MRI representation, forming a robust basis for clinically prioritized 

sequence-level fusion and final classification. 
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4. Experiments 

 

4.1 Introduction 

This section outlines the experimental setup and evaluation protocol for the proposed 

methods. 

 

4.2 Implementation Details 

4.2.1 Training 

All experiments were conducted on the MRNet [2] dataset using three MRI planes (coronal, 

sagittal, axial). To ensure a fair comparison, we trained all methods under identical experimental 

conditions and used a re-implementation of the original MRNet pipeline as the baseline. 

4.2.2 Data Loading and Augmentation 

Each MRI exam was loaded with batch size 1 and represented as a set of slices for each plane. 

During training, we applied data augmentation consisting of random rotation (±12°), random affine 

translation (up to 3%), and horizontal flipping (p = 0.1). Since the backbone encoder is an 

ImageNet-pretrained ResNet-18, each grayscale slice was replicated to three channels to match the 

expected input format. 

4.2.3 Optimization and Scheduling 

We optimized the model using Adam with an initial learning rate of 3×10^(-5) and weight 

decay of 1×10^(-4). A ReduceLROnPlateau scheduler was used to adapt the learning rate based 
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on the validation loss (patience = 2, factor = 0.5, minimum learning rate = 3×10^(-6)). Training 

was performed for up to 50 epochs with early stopping (patience = 4) based on validation AUC 

improvement. Gradient clipping (max norm = 1.0) was applied to stabilize training, and batch 

normalization layers in the ResNet backbone were frozen to reduce overfitting. 

 

4.3. Dataset 

All experiments were conducted using the publicly available MRNet dataset, a benchmark 

dataset for automated knee MRI diagnosis annotated for anterior cruciate ligament (ACL) tears, 

meniscal tears, and gene ral abnormalities across the entire sequence. 

Each examination consists of three orthogonal MRI sequences: coronal T1-weighted, sagittal 

T2-weighted, and axial proton density (PD)-weighted images. 

We followed the official data split provided by the dataset authors, which divides the dataset 

into 1,130 training cases, 120 validation cases, and 120 test cases with no patient-level overlap. 

This protocol was adopted throughout our experiments to ensure reproducibility and fair 

comparison with prior studies. 

 

4.4 Evaluation Metrics 

Following the evaluation protocol of the original MRNet study, model performance was 

assessed using the area under the receiver operating characteristic curve (AUC). AUC is a 

threshold-independent metric that quantifies the ability of a classifier to distinguish between 

positive and negative samples across all possible decision thresholds and is widely adopted in 

medical image analysis. 
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Formally, AUC can be interpreted as the probability that a randomly selected positive sample 

is assigned a higher prediction score than a randomly selected negative sample 

𝐴𝑈𝐶	 = 	𝑃K	𝑠(𝑥7) > 	𝑠(𝑥8)O, (12) 

where s(·) denotes the model’s predicted score, x⁺ represents a positive sample, and x⁻ represents 

a negative sample. 

This definition is equivalent to the ROC-based computation implemented in our experiments 

and enables robust evaluation under class imbalance, while allowing direct comparison with 

previously reported results on the MRNet benchmark. 

 

4.5 Experimental Results 

We report experimental results on the MRNet dataset and compare the proposed methods with 

the original MRNet baseline. The evaluation focuses on the effectiveness of clinically prioritized 

fusion, attention-based slice selection, and Bi-GRU-based continuity modeling. Performance is 

measured using AUC for three diagnostic tasks: ACL tear, meniscal tear, and abnormality 

detection.  

 

TABLE 4 AUC SCORES FOR EACH MODEL ACROSS DIAGNOSTIC TASKS 

 

 

Model ACL Tear Meniscus Tear Abnormality 

MRNet (Baseline) 0.852 0.856 0.847 

Attention + Clinical Prior (Ours) 0.910 0.899 0.877 
Bi-GRU + Clinical Prior (Ours) 0.934 0.924 0.918 
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Table 4 reports the AUC performance of the MRNet baseline and the proposed methods on 

ACL tear detection, meniscal tear detection, and abnormality detection 

By introducing attention-based slice selection with clinically prioritized fusion, the proposed 

method significantly outperforms the baseline across all tasks, achieving improvements of +0.058, 

+0.043, and +0.030 AUC for ACL tear, meniscal tear, and abnormality detection, respectively. 

This demonstrates that incorporating domain knowledge into the sequence-level fusion process 

effectively enhances the model’s ability to focus on diagnostically relevant MRI planes. 

More notably, the proposed Bi-GRU-based continuity modeling further improves performance 

in a consistent and substantial manner, reaching AUC scores of 0.934 for ACL tear detection, 

0.924 for meniscal tear detection, and 0.918 for abnormality detection. Compared to the MRNet 

baseline, this corresponds to relative improvements of +0.082, +0.068, and +0.071, respectively. 

These results highlight the importance of explicitly modeling anatomical continuity across 

adjacent slices. Unlike attention-based slice selection, which emphasizes localized pathological 

evidence, continuity modeling captures gradual structural disruptions that span multiple slices, 

such as ligament fiber discontinuity or progressive meniscal deformation. This capability is 

particularly critical for musculoskeletal MRI interpretation, where abnormalities often manifest as 

spatially coherent patterns rather than isolated appearances. 

Overall, the experimental results indicate that the integration of clinically prioritized fusion 

and continuity-aware slice modeling provides a robust and generalizable framework for knee 

injury detection, substantially outperforming the conventional slice-aggregation strategy adopted 

in MRNet, particularly in its ability to capture subtle and spatially coherent pathological patterns 

across MRI sequences. 
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4.6 Ablation Studies 

To further assess the contribution of each MRI sequence to model performance, we conducted 

a targeted ablation study focusing on the ACL tear classification task. Specifically, we compared 

the proposed learnable fusion strategy with three fixed-weight configurations, each constructed by 

omitting one sequence through assigning its fusion weight to zero. Table 5 reports the AUC results 

for each configuration. 

 

TABLE 5  ABLATION STUDY ON ACL TEAR DETECTION (AUC) 

 

Among the fixed settings, the configuration with equal weighting of T1- and T2-weighted 

sequences while excluding PD (0.5, 0.5, 0.0) achieved the highest AUC of 0.878. Nevertheless, 

this result remained inferior to that of the proposed adaptive fusion method, which achieved an 

AUC of 0.910. This performance gap highlights the limitations of manually predefined fusion 

weights and demonstrates the advantage of data-driven optimization in capturing task-specific 

diagnostic relevance across MRI sequences. 

Furthermore, performance consistently deteriorated when any single modality was excluded, 

indicating that all three sequences: T1, T2, and PD: provide complementary and non-redundant 

diagnostic information. T1- and T2-weighted images contribute critical anatomical and 

pathological cues related to ligament integrity, edema, and joint effusion, which are highly relevant 

for ACL tear detection. Although PD-weighted images are often considered less dominant in 

Fusion Weights (T1, T2, PD) AUC ∆	#$. &'($ 
(0.5, 0.5,0.0) 0.878 -0.032 
(0.0, 0.5, 0.5) 0.864 -0.046 
(0.5, 0.0, 0.5)  0.867 -0.043 
Attention + Clinical Priors (Ours) 0.910 - 
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clinical assessment, their enhanced contrast at soft tissue–bone interfaces appear to provide 

auxiliary information that supports discrimination of subtle abnormalities. 

Notably, the reduced performance of the (0.5, 0.5, 0.0) configuration suggests that even weakly 

weighted modalities can supply complementary evidence that improves overall decision making. 

These findings validate our design choice to adopt an attention-based fusion strategy that 

dynamically learns task-specific sequence weights, enabling optimal integration of multi-sequence 

information. Such adaptivity is particularly beneficial for complex musculoskeletal MRI analysis, 

where pathological patterns may manifest across multiple anatomical planes and contrast 

mechanisms. 

 

4.7 Conclusion 

This section demonstrates that the proposed framework consistently outperforms the baseline 

MRNet across all evaluation tasks. In particular, the continuity-aware model based on Bi-GRU 

achieves the highest performance, indicating the effectiveness of modeling anatomical 

dependencies across slices. These results confirm that incorporating both clinically guided 

sequence fusion and slice modeling strategies leads to more discriminative and robust 

representations for knee MRI classification. 
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Chapter 5 Conclusions and Future Works 

 

5.1 Conclusions 

In this study, we propose a clinically informed framework for knee MRI classification that 

integrates adaptive slice modeling with sequence-level fusion to improve diagnostic accuracy and 

robustness. The framework combines attention-based slice selection and Bi-GRU–based inter-

slice continuity modeling with clinically prioritized fusion weights. 

By incorporating clinical prior knowledge: such as emphasizing T1- and T2-weighted 

sequences for ligament-related injuries: the model learns task-specific fusion strategies consistent 

with radiological practice. In addition, continuity modeling captures anatomical transitions across 

adjacent slices via a reconstruction-based score, enabling the detection of gradual pathological 

changes that are difficult to identify using independent slice analysis. 

Experiments on the MRNet dataset demonstrate consistent performance improvements over 

the baseline across all diagnostic tasks, with the Bi-GRU: based model achieving the highest AUC. 

An ablation study further confirms the complementary roles of multiple MRI sequences and the 

advantage of adaptive fusion over fixed weighting schemes. 

Overall, the proposed architecture aligns with radiological reasoning by learning where to 

attend within sequences, how structures evolve across slices, and which modalities are most 

informative for each task, thereby improving both classification performance and clinical 

interpretability. 
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5.2 Future Works 

Future research will focus on enhancing the interpretability and generalizability of the 

proposed framework. Developing visualization techniques for slice-level attention and continuity 

scores is expected to facilitate deeper understanding of model behavior and improve clinical trust. 

In addition, external validation on datasets acquired under heterogeneous imaging conditions 

will be necessary to establish robustness across domains. Extending the proposed approach to other 

musculoskeletal regions may further demonstrate its broader applicability. 

Finally, investigating the integration of the framework into clinical workflows and its effect on 

diagnostic accuracy and efficiency represents an important direction toward real-world 

deployment.  
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