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1. Introduction

In recent years, deep learning has shown strong
performance in diagnostic imaging [1], particularly for
automated knee injury detection using MRI. MRNet [2]
is a widely used baseline model for classifying
conditions such as anterior cruciate ligament (ACL) and
meniscal tears by processing sagittal T2-weighted,
coronal Tl-weighted, and axial proton density (PD)-
weighted sequences with convolutional neural networks.

However, MRNet [2] aggregates features from
different sequences by simple averaging, which ignores
the heterogeneous diagnostic importance of MRI
modalities and the fact that only a subset of slices is
clinically informative. T1- and T2-weighted images play
a critical role in ligament and soft tissue assessment.

To address these limitations, this study proposes a
clinically informed framework that introduces slice-level
attention and learnable sequence-level fusion weights
initialized according to clinical knowledge, enabling
more accurate and interpretable knee injury
classification.

2. Related Works
2.1 Deep Learning Approaches for MRI Diagnosis
Deep learning—based approaches have recently shown
strong potential in automating MRI interpretation for
musculoskeletal injuries by enabling data-driven
extraction of complex anatomical and pathological
patterns. Among them, U-Net [3] is a widely used
segmentation model that employs an encoder—decoder
architecture to capture multi-scale contextual
information and extract pixel-level pathological features.
It has demonstrated high performance across a variety of
medical imaging tasks, including brain tumor
segmentation and musculoskeletal lesion detection.

For classification-based diagnosis, a representative
model is MRNet [2], developed by Bien et al. at Stanford
University. MRNet analyzes multiple anatomical
views—sagittal, coronal, and axial—to detect clinically
important conditions such as ACL tears, meniscal tears,
and general abnormalities. Each plane is processed
independently using convolutional neural networks to
extract slice-level features, which are aggregated to
produce plane-level predictions. The final classification
score is obtained by combining per-plane probabilities
through a logistic regression layer. Figure 1 shows the
network architecture and multi-plane aggregation.
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Fig. 1. The model architecture of MRNet [2].
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2.2. Public Knee MRI Datasets

Some knee MRI datasets based on functional MRI
(fMRI) are primarily intended for image reconstruction
research [4]. These datasets often lack clinical labels for
injury presence, making them unsuitable for supervised
classification tasks.

In contrast, the MRNet dataset [2] includes labeled
MRI examinations with annotations for ACL tears,
meniscal tears, and abnormalities. Its structured and
well-annotated design makes it well suited for training
deep learning models aimed at knee injury detection.

3. Proposed Method
We propose an enhanced MRNet-based framework

that incorporates clinically guided sequence-level fusion
and slice modeling strategies. The proposed design
reflects radiological practice by emphasizing
diagnostically important MRI sequences and slices in a
task-dependent manner. The overall architecture is
illustrated in Figure 2.
3.1. Softmax-weighted Sequence
Diagnostic Priors

While MRNet simply averages features across MRI
sequences, our model introduces learnable fusion
weights guided by clinical prior knowledge. Specifically,
T1- and T2-weighted images are emphasized for ACL
and meniscal tear detection, whereas all sequences are
treated as equally informative for abnormality detection.

Let fi,f2 fs € R® denote the feature vectors
extracted from the three MRI sequences and let a =
softmax(w) € R be the learned fusion weights,
normalized such that the sum of all elements equals one.
These weights control the relative contribution of each
sequence to the final fused representation.
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Fig. 2. Architecture of Proposed Method. (a) Slice selection via attention pooling. (b) Anatomical continuity modeling via Bi-GRU. Both models

incorporate clinically prioritized sequence-level fusion.

TABLE 1 AUC SCORES FOR EACH MODEL ACROSS

DIAGNOSTIC TASKS
Model ACL Tear  Meniscus Tear ~ Abnormality
MRNet (Baseline) 0.852 0.856 0.847
Attention + Clinical Prior(Ours)  0.910 0.899 0.877
Bi-GRU + Clinical Prior(Ours) 0.934 0.924 0.918

The final fused feature vector ffyseq is computed as
frusea = a1 fitaz fo +as-fs, (1)

where a1, a2, and as represent the fusion weights for the

sagittal, coronal, and axial sequences, respectively.

In practice, the initial values of the weight vector w
are set according to clinical prior knowledge as follows:
e  ACL/ Meniscal tear detection: (0.45, 0.45, 0.10)

e  Abnormality detection: (0.33, 0.33, 0.33)
3.2. Slice Modeling Strategies

To improve diagnostic accuracy, we propose two
complementary strategies for identifying salient slices
within each MRI sequence.

3.2.1. Slice-Level Attention Pooling

The per-slice attention mechanism assigns adaptive
importance weights to individual slices based on their
latent diagnostic relevance. Given slice-level feature
vectors fi, the aggregated plane-level representation is

computed as
N

Faee = Z a; fi- (2)
i=1

This formulation enables the model to emphasize
diagnostically informative slices while suppressing
redundant regions, resulting in improved sensitivity to
localized abnormalities.
3.2.2. Continuity-aware Modeling with Bi-GRU

To capture anatomical consistency across adjacent
slices, we further employ a Bi-GRU to model slice
features as an ordered sequence. The network
reconstructs each slice feature from its contextual
representation, and the continuity score is defined as

. G = |fl - {f}llza (3)

where f; and f; denote the original and reconstructed slice
features, respectively. Higher continuity scores indicate
anatomical irregularities and guide the model to
emphasize pathological regions during aggregation.

4. Experiment

We re-implement MRNet under identical training
conditions to ensure a fair comparison. Table 2 reports
the AUC results for ACL tear, meniscal tear, and
abnormality detection. Both proposed variants
consistently outperform the baseline across all tasks,
with the Bi-GRU-based continuity-aware model
achieving the highest performance, followed by the slice-
level attention model.

The largest improvement is observed in ACL tear
detection, indicating that modeling inter-slice anatomical
continuity is particularly effective for capturing subtle
structural abnormalities. These results demonstrate the
benefit of incorporating clinical priors and anatomical
context for knee MRI classification.

5. Conclusion

In this paper, we propose an enhanced MRNet-based
framework with clinically guided fusion and slice
modeling for knee MRI classification. The proposed
method consistently outperforms the baseline, with the
Bi-GRU-based model achieving the best performance,
highlighting the benefit of integrating clinical priors and
anatomical continuity. This framework offers a general
and clinically meaningful approach for multi-sequence
medical image classification.
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Abstract

Accurate diagnosis of anterior cruciate ligament (ACL) and meniscal tears using magnetic
resonance imaging (MRI) is essential for timely and effective treatment. However, existing deep
learning approaches often aggregate slice and sequence features without explicitly modeling
inter-slice continuity, limiting their ability to localize diagnostically relevant regions.

To address this limitation, we propose a continuity-aware evidence fusion framework that
explicitly models inter-slice relationships to identify where to look before determining what to
trust across MRI planes. Our method leverages a bidirectional recurrent architecture to quantify
slice-level continuity disruption, producing interpretable evidence scores that guide plane-level
feature aggregation. These evidence-driven representations are further integrated using clinically
informed fusion priors, reflecting radiologists’ diagnostic reasoning across coronal, sagittal, and
axial views.

Experiments on the MRNet dataset demonstrate that the proposed framework consistently
improves diagnostic performance across ACL tear, meniscal tear, and abnormality detection
tasks, while providing enhanced interpretability through explicit modeling of inter-slice
continuity.

Keywords: Convolutional neural networks, deep neural networks, medical diagnostic

imaging, magnetic resonance imaging.
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Chapter 1 Introduction

1.1 Introduction

Knee injuries such as anterior cruciate ligament (ACL) and meniscal tears are prevalent in
sports medicine and frequently require magnetic resonance imaging (MRI) for accurate diagnosis
[1]. Timely and reliable assessment of these injuries is critical for appropriate treatment planning,
rehabilitation, and return-to-play decisions. In recent years, deep learning has demonstrated
significant potential in medical image analysis, including the automated detection of
musculoskeletal injuries from knee MRI scans. MRI provides excellent soft-tissue contrast without
ionizing radiation and enables detailed visualization of ligamentous and cartilaginous structures in
the knee [6] [7].

One of the most widely adopted baselines in this domain is MRNet [2], introduced by Stanford
University, which performs binary classification of knee injuries using three orthogonal MRI
planes: sagittal, coronal, and axial sequences. In MRNet, features are independently extracted from
each plane using convolutional neural networks (CNNs), and the final prediction is obtained by
uniformly aggregating these plane-level features. While this approach achieves strong baseline
performance, it implicitly assumes that all slices and all planes contribute equally to diagnosis.

However, this assumption does not align with clinical practice. Radiologists interpret knee MRI
by selectively focusing on diagnostically relevant slices and by weighting information across
planes based on the suspected pathology. For example, ACL and meniscal tears are primarily

evaluated using sagittal and coronal views, while axial slices often play a secondary role.



Furthermore, even within a single MRI sequence, only a limited subset of slices may contain
pathological evidence, whereas many slices provide little or no diagnostic value. Ignoring this
variability can dilute critical information and reduce diagnostic robustness.

To address these limitations, recent studies have explored attention mechanisms and slice
selection strategies to emphasize informative regions or sequences. While these methods improve
performance, most of them treat slice importance as a static or appearance-based property and do
not explicitly model the inter-slice continuity inherent to volumetric MRI data. In clinical settings,
pathological abnormalities often manifest as localized disruptions across consecutive slices, rather
than isolated anomalies in a single slice. Failure to capture such continuity patterns can limit both

interpretability and generalization.

1.2 Thesis Purpose

In this work, we propose a multi-view knee MRI classification framework that integrates
clinical knowledge into both slice-level evidence modeling and sequence-level feature fusion.
Rather than treating slice importance as a static property, the proposed method explicitly models
inter-slice continuity to identify diagnostically salient regions, enabling the model to determine
where to look by detecting localized disruptions across consecutive slices.

The resulting slice-level evidence is aggregated into plane-level representations, which are
further combined using a learnable sequence fusion module guided by clinically informed priors
reflecting the diagnostic relevance of each MRI view. By decoupling evidence localization from
plane-wise decision fusion, the proposed framework selectively emphasizes meaningful features

across both dimensions in a clinically interpretable manner.



1.3 Thesis Outline

The structure of this paper is as follows.

Chapter 1 is the main chapter and describes the background and purpose of this study.

Chapter 2 describes the research related to this study.

Chapter 3 describes the proposed methodology of this study.

Chapter 4 describes the results and discussion of the evaluation experiments of the proposed
method.

In Chapter 5, we present the conclusions and future issues of this study.



Chapter 2 Related Works

2.1 Introduction

This section reviews prior work on automated knee injury diagnosis using magnetic resonance

imaging (MRI), with a particular focus on deep learning-based multi-plane analysis frameworks.

2.2 Deep Learning Approaches for MRI Diagnoses

Deep learning—based methods are increasingly effective for automating MRI interpretation in
musculoskeletal imaging. Among them, U-Net [3], an encoder—decoder segmentation model,
demonstrates strong performance in lesion localization tasks such as brain tumour and
musculoskeletal abnormality detection.

For classification-based diagnosis, MRNet [2], developed at Stanford University, is a widely
used framework for knee injury assessment. The model independently analyzes sagittal, coronal,
and axial MRI sequences using convolutional neural networks to extract slice-level features, which
are aggregated to predict clinically important conditions such as ACL and meniscal tears. Owing
to its standardized design and public availability, MRNet serves as a common baseline in multi-
view MRI classification studies.

Figure 1 shows the model architecture of MRNet. Each view is processed by a 2D CNN to
extract slice-level features, which are pooled and passed through fully connected layers. The final

prediction is obtained by combining outputs from all views.
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Fig. 1. The model architecture of MRNet [2].
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2.3 Public Knee MRI Datasets

Some publicly available knee MRI datasets, such as those based on functional MRI (fMRI),
have been primarily developed for tasks in image reconstruction or signal modelling [4]. These
datasets typically lack clinical annotations regarding injury presence or type, limiting their utility
for supervised learning in diagnostic applications.

In contrast, the MRNet dataset [2] provides a large-scale, clinically annotated collection of
knee MRI exams labelled for anterior cruciate ligament (ACL) tears, meniscal tears, and general
abnormalities. Each exam includes three orthogonal MRI sequences: sagittal T2-weighted, coronal
T1-weighted, and axial proton density (PD)-weighted: capturing complementary diagnostic
information across anatomical planes. Representative examples of these MRI sequences are shown
in Figure 2, where the sagittal T2-weighted, coronal T1-weighted, and axial PD-weighted images

are displayed from left to right.



The dataset encompasses a diverse patient population and imaging variations across sequences.
Detailed statistics, including the number of exams, patient demographics, and sequence
distribution, are provided in Table 1. These characteristics make MRNet a suitable and widely
adopted benchmark for multi-view knee MRI classification.

The MRNet dataset was obtained from the official Stanford ML Group website
(https://stanfordmlgroup.github.io/competitions/mrnet/) and used under the terms of the MRNet
Dataset Research Use Agreement, which permits non-commercial research use only and prohibits

redistribution or commercial use.

(a) Sagittal T2 (b) Coronal T1 (b) Axial PD

Fig. 2. Three MRI sequences from the MRNet dataset [2].
(a) Sagittal T2-weighted. (b) Coronal T1-weighted. (c) Axial PD-weighted views. These orthogonal planes are

used as input for classification models in multi-view knee MRI analysis.

TABLE 1 THE DEMOGRAPHIC INFORMATION OF THE DATASET

Statistics Training Validation
Number of exams 1130 120
Number of patients 1088 111
Number of female patients (%) 480 (42.5%) 50 (41.7%)
Age, mean (SD) 38.3 (16.9) 36.3 (16.9)




2.4 Conclusion

This section reviews representative deep learning—based frameworks for knee MRI diagnosis
and publicly available datasets supporting such studies. While multi-plane classification models
such as MRNet effectively integrate information from multiple anatomical views and serve as
strong baselines, they generally process individual slices independently and rely on simple feature
aggregation. Consequently, anatomical continuity across adjacent slices is not explicitly modelled.
This limitation motivates the proposed approach, which aims to capture inter-slice anatomical

transitions to further improve diagnostic robustness and sensitivity.



Chapter 3 Proposed Method

3.1 Introduction

We propose an enhanced model of MRNet that integrates clinically prioritized multi-plane
fusion and inter-slice continuity modelling using Bi-GRU. This allows the model to consider both
diagnostic relevance and anatomical consistency across slices. The overall architecture is shown
in Figure 3.
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Fig. 3. The architecture of Proposed Method. (a) Slice selection via attention pooling. (b) Anatomical continuity

modeling via Bi-GRU. Both models incorporate clinically prioritized sequence-level fusion.



3.2 Softmax-weighted Sequence Fusion with Diagnostic Priors

While MRNet [2] simply averages features from the sagittal, coronal, and axial MRI sequences,
our model introduces learnable fusion weights to capture the task-specific diagnostic relevance of
each sequence. These weights are initialized using established clinical knowledge and further
optimized during training to adapt to different diagnostic tasks.

Each MRI sequence provides complementary diagnostic information. T1-weighted images
offer detailed visualization of bone and soft tissue anatomy and are useful for assessing structural
abnormalities, T2-weighted images are sensitive to fluid-related pathological changes associated
with acute injuries such as ligament tears, and PD-weighted images enhance tissue interface
contrast, facilitating the detection of subtle structural irregularities [5].

These complementary roles are summarized in Table 2. By incorporating such modality-
specific knowledge into the fusion process, our model emphasizes diagnostically salient features
across imaging planes, thereby better reflecting radiological interpretation strategies and

improving classification reliability.

TABLE 2 DIAGNOSTIC CHARACTERISTICS OF DIFFERENT MRI SEQUENCES

MRI Sequences  Diagnostic Strength

T1-Weighted Clearly shows anatomical structures of bones and soft tissues.
Useful for identifying bone morphology and structural
abnormalities.

T2-Weighted Highlights tissues with high water content (e.g., inflammation,

swelling, hematoma). Effective for detecting abnormalities in
soft tissues.

PD-Weighted Emphasizes contrast between bones and soft tissues. Suitable
for detecting subtle boundary abnormalities.




Based on these clinical characteristics, we initialize the fusion weights to prioritize sagittal and
coronal sequences (T2- and T1-weighted images) for tasks such as ACL and meniscal tear
detection, where soft tissue integrity and joint structure are critical. For general abnormality
detection, where diverse pathologies may appear across all planes, we adopt a uniform
initialization to reflect the balanced diagnostic relevance of each sequence.

Let f, f2, and f; denote the feature vectors extracted from the three MRI sequences, and let
aq, @y, and as represent the corresponding normalized fusion weights obtained via a softmax
function, satisfying @; + a, + a3 = 1. The final fused feature vector is computed as a weighted
linear combination

frusea = @1 i+ az - fo +as- fa (1)

In practice, the initial fusion weights are summarized in Table 3.

TABLE 3 WEIGHTING SCHEMES FOR EACH TASK

Task Weighting Scheme (T1/T2/PD)
ACL Tear (0.45/0.45/0.1)
Meniscus Tear (0.45/0.45/0.1)
Abnormality (0.33/0.33/0.33)

3.3 Slice Modelling Strategies

In addition to sequence-level fusion, our framework incorporates slice modeling strategies to
identify diagnostically important slices within each MRI sequence. We employ slice-level
attention pooling to capture local saliency and Bi-GRU-based continuity modeling to account for
anatomical consistency across adjacent slices. These strategies enable robust feature aggregation

and improve sensitivity to spatially coherent abnormalities.
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3.3.1 Slice-Level Attention Pooling

In conventional slice-based MRI classification frameworks such as MRNet, a fixed
aggregation method, typically max or average pooling, is employed to compress slice-wise
features into a single sequence representation. This approach implicitly assumes that all slices
contribute equally to the final prediction. However, in clinical practice, radiologists often focus on
a limited subset of diagnostically informative slices, such as those capturing ligament tears or
abnormal joint morphology, while ignoring irrelevant or redundant views.

To better reflect this clinical reasoning process, we introduce a slice-level attention pooling
mechanism that adaptively weights each slice according to its latent diagnostic relevance.

Let the sequence of slice features be denoted as

{fu.for - fn} fi € RY, (2)
where N is the number of slices and d is the feature dimension.

For each slice feature f, a scalar attention score @; is computed using a shallow feed-forward

network with tanh activation
a1 = Wz . tanh(W2f1 + bl) + bz. (3)
The attention scores are normalized across the slice dimension using the softmax function

. exp(a;) )
T GiNlexp
50 (g)

The final sequence-level feature representation F is obtained as a weighted sum of the slice

features

N

i=1
This attention mechanism allows the model to selectively emphasize slices containing

pathology, such as torn ligaments or displaced menisci, while suppressing irrelevant frames.

11



Unlike fixed pooling strategies, this learnable approach enhances sensitivity to subtle
abnormalities and improves interpretability by explicitly revealing which slices contribute most to
the model’s prediction.

Empirically, we observe that attention weights often concentrate on clinically meaningful
regions—for example, midsagittal slices showing the intercondylar notch in ACL tear detection—

demonstrating that our model aligns well with diagnostic behavior in real-world radiology.

3.3.2 Inter-Slice Continuity Modeling with Bi-GRU

While slice-level attention focuses on selecting diagnostically salient slices, many
musculoskeletal injuries manifest as gradual structural changes spanning multiple adjacent slices.
For example, anterior cruciate ligament (ACL) ruptures or meniscal tears often appear as
continuous anatomical disruptions rather than isolated abnormalities in a single slice.

To capture such structural consistency, we model each MRI sequence as an ordered slice series
and introduce an inter-slice continuity modeling module based on a bidirectional gated recurrent
unit (Bi-GRU). This module explicitly learns how anatomical structures evolve across slices by
incorporating contextual information from both preceding and succeeding slices.

Let the sequence of slice features be denoted as (2).
where N is the number of slices and d is the feature dimension. A forward GRU processes the
sequence from the first slice to the last

h;y = GRUforward(fi'h{_i)—l})’ i

and a backward GRU processes the sequence in the reverse order

hy = [hi7; hi]. (7)
To derive a sequence-level feature representation, we apply temporal average pooling over all

continuity-aware slice representations
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i=1

This representation encodes both local slice appearance and global anatomical transitions
across the entire sequence.

To further quantify anatomical consistency across slices, we introduce a continuity score that
measures how well each slice conforms to its surrounding anatomical context as modeled by the
Bi-GRU.

After obtaining the continuity-aware hidden representationshy, h,, ..., hy, we reconstruct each
slice representation from its contextual embedding using a linear projection layer

fi = Weh; + by, )
where f; denotes the reconstructed feature of slice i, and W, and b, are trainable parameters.

The continuity scorec; for slice i is defined as the reconstruction error between the original
slice feature f; and its reconstructed feature f;

a=Ilfi = fill2 (10)
This score reflects the degree of structural inconsistency between the slice and its anatomical
context.

Slices with low continuity scores indicate anatomically consistent transitions, whereas high
continuity scores suggest abnormal structural deviations, such as ligament discontinuities or
distorted meniscal morphology.

To obtain a sequence-level continuity score, we aggregate slice-level scores by averaging
across all slices

- (33 an

=1
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here C represents the overall continuity deviation of the MRI sequence.

By explicitly modeling slice dependencies and quantifying structural consistency, the proposed
Bi-GRU module enables the network to detect continuity violations that are difficult to capture
using independent slice processing or attention-based selection alone.

Compared to slice-level attention, which emphasizes where abnormalities appear, continuity
modeling focuses on how anatomical structures evolve across slices. This complementary
perspective allows the proposed framework to better reflect radiological reasoning and improves

robustness in detecting subtle or spatially distributed knee injuries.

3.4 Conclusion

This section introduced two slice modeling strategies: attention-based slice selection and Bi-
GRU-based continuity modeling. While the former emphasizes localized pathological evidence,
the latter captures structural transitions across slices. Their combination enables both saliency-
aware and structure-aware MRI representation, forming a robust basis for clinically prioritized

sequence-level fusion and final classification.
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4. Experiments

4.1 Introduction

This section outlines the experimental setup and evaluation protocol for the proposed

methods.

4.2 Implementation Details

4.2.1 Training

All experiments were conducted on the MRNet [2] dataset using three MRI planes (coronal,
sagittal, axial). To ensure a fair comparison, we trained all methods under identical experimental

conditions and used a re-implementation of the original MRNet pipeline as the baseline.

4.2.2 Data Loading and Augmentation

Each MRI exam was loaded with batch size 1 and represented as a set of slices for each plane.
During training, we applied data augmentation consisting of random rotation (£12°), random affine
translation (up to 3%), and horizontal flipping (p = 0.1). Since the backbone encoder is an
ImageNet-pretrained ResNet-18, each grayscale slice was replicated to three channels to match the

expected input format.

4.2.3 Optimization and Scheduling

We optimized the model using Adam with an initial learning rate of 3x107(-5) and weight

decay of 1x10”(-4). A ReduceLROnPlateau scheduler was used to adapt the learning rate based
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on the validation loss (patience = 2, factor = 0.5, minimum learning rate = 3x107(-6)). Training
was performed for up to 50 epochs with early stopping (patience = 4) based on validation AUC
improvement. Gradient clipping (max norm = 1.0) was applied to stabilize training, and batch

normalization layers in the ResNet backbone were frozen to reduce overfitting.

4.3. Dataset

All experiments were conducted using the publicly available MRNet dataset, a benchmark
dataset for automated knee MRI diagnosis annotated for anterior cruciate ligament (ACL) tears,
meniscal tears, and gene ral abnormalities across the entire sequence.

Each examination consists of three orthogonal MRI sequences: coronal T1-weighted, sagittal
T2-weighted, and axial proton density (PD)-weighted images.

We followed the official data split provided by the dataset authors, which divides the dataset
into 1,130 training cases, 120 validation cases, and 120 test cases with no patient-level overlap.
This protocol was adopted throughout our experiments to ensure reproducibility and fair

comparison with prior studies.

4.4 Evaluation Metrics

Following the evaluation protocol of the original MRNet study, model performance was
assessed using the area under the receiver operating characteristic curve (AUC). AUC is a
threshold-independent metric that quantifies the ability of a classifier to distinguish between
positive and negative samples across all possible decision thresholds and is widely adopted in

medical image analysis.
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Formally, AUC can be interpreted as the probability that a randomly selected positive sample
is assigned a higher prediction score than a randomly selected negative sample
AUC = P(s(x%) > s(x7)), (12)
where s(-) denotes the model’s predicted score, x* represents a positive sample, and X~ represents
a negative sample.
This definition is equivalent to the ROC-based computation implemented in our experiments
and enables robust evaluation under class imbalance, while allowing direct comparison with

previously reported results on the MRNet benchmark.

4.5 Experimental Results

We report experimental results on the MRNet dataset and compare the proposed methods with
the original MRNet baseline. The evaluation focuses on the effectiveness of clinically prioritized
fusion, attention-based slice selection, and Bi-GRU-based continuity modeling. Performance is

measured using AUC for three diagnostic tasks: ACL tear, meniscal tear, and abnormality

detection.
TABLE 4 AUC SCORES FOR EACH MODEL ACROSS DIAGNOSTIC TASKS
Model ACL Tear Meniscus Tear Abnormality
MRNet (Baseline) 0.852 0.856 0.847
Attention + Clinical Prior (Ours) 0.910 0.899 0.877
Bi-GRU + Clinical Prior (Ours)  0.934 0.924 0.918
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Table 4 reports the AUC performance of the MRNet baseline and the proposed methods on
ACL tear detection, meniscal tear detection, and abnormality detection

By introducing attention-based slice selection with clinically prioritized fusion, the proposed
method significantly outperforms the baseline across all tasks, achieving improvements of +0.058,
+0.043, and +0.030 AUC for ACL tear, meniscal tear, and abnormality detection, respectively.
This demonstrates that incorporating domain knowledge into the sequence-level fusion process
effectively enhances the model’s ability to focus on diagnostically relevant MRI planes.

More notably, the proposed Bi-GRU-based continuity modeling further improves performance
in a consistent and substantial manner, reaching AUC scores of 0.934 for ACL tear detection,
0.924 for meniscal tear detection, and 0.918 for abnormality detection. Compared to the MRNet
baseline, this corresponds to relative improvements of +0.082, +0.068, and +0.071, respectively.

These results highlight the importance of explicitly modeling anatomical continuity across
adjacent slices. Unlike attention-based slice selection, which emphasizes localized pathological
evidence, continuity modeling captures gradual structural disruptions that span multiple slices,
such as ligament fiber discontinuity or progressive meniscal deformation. This capability is
particularly critical for musculoskeletal MRI interpretation, where abnormalities often manifest as
spatially coherent patterns rather than isolated appearances.

Overall, the experimental results indicate that the integration of clinically prioritized fusion
and continuity-aware slice modeling provides a robust and generalizable framework for knee
injury detection, substantially outperforming the conventional slice-aggregation strategy adopted
in MRNet, particularly in its ability to capture subtle and spatially coherent pathological patterns

across MRI sequences.
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4.6 Ablation Studies

To further assess the contribution of each MRI sequence to model performance, we conducted
a targeted ablation study focusing on the ACL tear classification task. Specifically, we compared
the proposed learnable fusion strategy with three fixed-weight configurations, each constructed by
omitting one sequence through assigning its fusion weight to zero. Table 5 reports the AUC results

for each configuration.

TABLE 5 ABLATION STUDY ON ACL TEAR DETECTION (AUC)

Fusion Weights (T1, T2, PD) AUC A vs.OQurs
(0.5, 0.5,0.0) 0.878 -0.032
(0.0, 0.5, 0.5) 0.864 -0.046
(0.5, 0.0, 0.5) 0.867 -0.043
Attention + Clinical Priors (Ours) 0.910 -

Among the fixed settings, the configuration with equal weighting of T1- and T2-weighted
sequences while excluding PD (0.5, 0.5, 0.0) achieved the highest AUC of 0.878. Nevertheless,
this result remained inferior to that of the proposed adaptive fusion method, which achieved an
AUC of 0.910. This performance gap highlights the limitations of manually predefined fusion
weights and demonstrates the advantage of data-driven optimization in capturing task-specific
diagnostic relevance across MRI sequences.

Furthermore, performance consistently deteriorated when any single modality was excluded,
indicating that all three sequences: T1, T2, and PD: provide complementary and non-redundant
diagnostic information. T1- and T2-weighted images contribute critical anatomical and
pathological cues related to ligament integrity, edema, and joint effusion, which are highly relevant

for ACL tear detection. Although PD-weighted images are often considered less dominant in
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clinical assessment, their enhanced contrast at soft tissue—bone interfaces appear to provide
auxiliary information that supports discrimination of subtle abnormalities.

Notably, the reduced performance of the (0.5, 0.5, 0.0) configuration suggests that even weakly
weighted modalities can supply complementary evidence that improves overall decision making.
These findings validate our design choice to adopt an attention-based fusion strategy that
dynamically learns task-specific sequence weights, enabling optimal integration of multi-sequence
information. Such adaptivity is particularly beneficial for complex musculoskeletal MRI analysis,
where pathological patterns may manifest across multiple anatomical planes and contrast

mechanisms.

4.7 Conclusion

This section demonstrates that the proposed framework consistently outperforms the baseline
MRNet across all evaluation tasks. In particular, the continuity-aware model based on Bi-GRU
achieves the highest performance, indicating the effectiveness of modeling anatomical
dependencies across slices. These results confirm that incorporating both clinically guided
sequence fusion and slice modeling strategies leads to more discriminative and robust

representations for knee MRI classification.
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Chapter 5 Conclusions and Future Works

5.1 Conclusions

In this study, we propose a clinically informed framework for knee MRI classification that
integrates adaptive slice modeling with sequence-level fusion to improve diagnostic accuracy and
robustness. The framework combines attention-based slice selection and Bi-GRU-based inter-
slice continuity modeling with clinically prioritized fusion weights.

By incorporating clinical prior knowledge: such as emphasizing T1- and T2-weighted
sequences for ligament-related injuries: the model learns task-specific fusion strategies consistent
with radiological practice. In addition, continuity modeling captures anatomical transitions across
adjacent slices via a reconstruction-based score, enabling the detection of gradual pathological
changes that are difficult to identify using independent slice analysis.

Experiments on the MRNet dataset demonstrate consistent performance improvements over
the baseline across all diagnostic tasks, with the Bi-GRU: based model achieving the highest AUC.
An ablation study further confirms the complementary roles of multiple MRI sequences and the
advantage of adaptive fusion over fixed weighting schemes.

Overall, the proposed architecture aligns with radiological reasoning by learning where to
attend within sequences, how structures evolve across slices, and which modalities are most
informative for each task, thereby improving both classification performance and clinical

interpretability.
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5.2 Future Works

Future research will focus on enhancing the interpretability and generalizability of the
proposed framework. Developing visualization techniques for slice-level attention and continuity
scores is expected to facilitate deeper understanding of model behavior and improve clinical trust.

In addition, external validation on datasets acquired under heterogeneous imaging conditions
will be necessary to establish robustness across domains. Extending the proposed approach to other
musculoskeletal regions may further demonstrate its broader applicability.

Finally, investigating the integration of the framework into clinical workflows and its effect on
diagnostic accuracy and efficiency represents an important direction toward real-world

deployment.

22



List of Publication

[1] Taira Kunitomi, Taiga Hayami, and Hiroshi Watanabe. “Clinically prioritized attention-based
fusion of multi-plane knee MRI for robust injury detection,” in 2025 IEEE 14th Global
Conference on Consumer Electronics (GCCE), pp. 485-488, Sep. 2025.

DOI:10.1109/GCCE65946.2025.11274947

23



Bibliography

[1] D. Shen, G. Wu, and H. Suk, “Deep learning in medical image analysis,” Annual Review of
Biomedical Engineering, vol. 19, pp. 221-248, Jun. 2017.

[2] N. Bien, P. Rajpurkar, R. L. Ball, J. Irvin, A. Park, E. Jones, M. Bereket, B. N. Patel, M. P.
Lungren, and A. Y. Ng, “Deep-learning-assisted diagnosis for knee magnetic resonance imaging:
Development and retrospective validation of MRNet,” PLOS Medicine, vol. 15, no. 11, 1002699,
Nov. 2018.

[3] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical
image segmentation,” in Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI), May 2015, pp. 234-241.

[4] J. Zbontar, F. Knoll, A. Sriram, T. Murrell, Z. Huang, M. J. Muckley, A. Defazio, R. Stern, P.
Johnson, M. Bruno, K. J. Geras, J. Katsnelson, H. Chandarana, Z. Zhang, M. Drozdzal, A. Romero,
M. Rabbat, P. Vincent, J. Pinkerton, D. Wang, N. Yakubova, E. Owens, C. L. Zitnick, M. P. Recht,
D. K. Sodickson, and Y. W. Lui, “fastMRI: An open dataset and benchmarks for accelerated MRI,”
arXiv preprint arXiv:1811.08839, Nov. 2018.

[S]M. P. Recht, R. E. Kramer, P. J. Marcelis, and R. A. Daffner, “MR imaging of the knee: Current
status and future directions,” American Journal of Roentgenology, vol. 167, no. 3, pp. 593-600,
Sep. 1996.

[6] J. R. Haaga, C. F. Lanzieri, and R. C. Gilkeson, CT and MRI of the Whole Body, 5th ed., vols.
1-2. Philadelphia, PA, USA: Elsevier, Mar. 2008.

[7] D. W. McRobbie, E. A. Moore, M. J. Graves, and M. R. Prince, MRI from Picture to Proton,
3rd ed. Cambridge University Press, Apr. 2017.

24



