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Abstract—Image Coding for Machines (ICM) has become
increasingly important with the rapid integration of computer
vision technology into real-world applications. However, most
neural network-based ICM frameworks operate at a fixed rate,
thus requiring individual training for each target bitrate. This
limitation may restrict their practical usage. Existing variable
rate image compression approaches mitigate this issue but often
rely on additional training, which increases computational costs
and complicates deployment. Moreover, variable rate control
has not been thoroughly explored for ICM. To address these
challenges, we propose a training-free framework for quantiza-
tion strength control which enables flexible bitrate adjustment.
By exploiting the scale parameter predicted by the hyperprior
network, the proposed method adaptively modulates quantization
step sizes across both channel and spatial dimensions. This
allows the model to preserve semantically important regions
while coarsely quantizing less critical areas. Our architectural
design further enables continuous bitrate control through a single
parameter. Experimental results demonstrate the effectiveness of
our proposed method, achieving up to 11.07% BD-rate savings
over the non-adaptive variable rate baseline. The code is available
at https://github.com/qwert-top/AQVR-ICM.

Index Terms—Image coding for machines, learned image
compression, variable rate.

I. INTRODUCTION

As research on computer vision advances, more image
recognition models have become deeply integrated into real-
world applications such as camera surveillance, smart agricul-
ture, and autonomous driving. Since these applications contin-
uously generate large amounts of data under limited network
and storage resources, efficient compression optimized for
machine analysis rather than human perception has become in-
dispensable. Unlike conventional image compression designed
for human eyes, Image Coding for Machines (ICM) aims
to preserve only the information necessary for downstream
machine vision tasks including classification, object detection,
and segmentation [1] - [11]. Because machine vision tasks
rely primarily on structural and semantic cues rather than
perceptual fidelity, ICM models achieve reduced bitrates while
preserving recognition accuracy.

One of the major challenges in deploying Learned Image
Compression (LIC)-based ICM models in practice lies in
their limited ability to operate at variable bitrates. Traditional
codecs such as JPEG and VVC [12] can support a wide
range of bitrates using a single model, simply by adjusting

the quantization parameter. In contrast, most existing LIC
approaches [13] - [19] require a distinct model for each bitrate,
necessitating the training and storage of multiple parameter
sets. This limitation hinders their practical use, as real-world
systems often require adaptive bitrate control depending on
network bandwidth, device capability, or task requirements.

To address this, several variable rate LIC methods have
been proposed [20] - [30]. These approaches often require
training with multiple rate-control knobs or conditional lay-
ers that enable a single network to operate across multiple
bitrates. While effective, such training-based approaches re-
quire substantial computational costs, time, and complicated
deployment pipelines. Furthermore, most of these methods are
developed for human-oriented compression, and little attention
has been paid to variable rate control specifically for ICM,
despite its growing importance for machine-centric applica-
tions. A straightforward, training-free alternative is to vary the
quantization step size of a pretrained ICM model to control
bitrate. However, this strategy injects noise uniformly across
all latent features. While this may be tolerable for human
viewing, it often leads to significant degradation in recognition
performance, as task-relevant regions can be distorted.

In this paper, we propose a training-free variable rate frame-
work for ICM. Our method enables flexible bitrate adjustment
by dynamically controlling the quantization strength according
to both channel-wise and spatial characteristics of the latent
representation. Consequently, it preserves semantically impor-
tant regions while coarsely quantizing redundant areas. The
proposed design further allows continuous bitrate control with
a single parameter, without requiring additional training or
side information. Owing to its simplicity and generality, our
method can be readily integrated into existing ICM architec-
tures for practical deployment.

II. RELATED WORK

A. Learned Image Compression

Representative LIC approaches are mainly based on vari-
ational autoencoders with a hyperprior network, as intro-
duced by J. Ballé et al. [13] and D. Minnen et al.
[14]. Building on these foundations, the channel-wise au-
toregressive entropy model (Ch-ARM) [15] divides the la-
tent representation y along the channel dimension into N



(a) Average Scale of Each Channel (b) Average Scale of Each Slice

Fig. 1. Visualization of average scale values of each (a) channel and (b) slice.
Deeper colors represent larger values.

Fig. 2. Visualization of scale parameters in the first channel. Brighter colors
indicate larger values.

slices {y(1),y(2), . . . ,y(N)}, and the entropy parameters of
each slice are predicted from the previously decoded ones.
This structure effectively captures inter-channel correlations,
achieving higher compression efficiency and faster decod-
ing. Many subsequent LIC frameworks adopt Ch-ARM, such
as TCM [17], which enhances the entropy model using a
parameter-efficient Swin-Transformer–based attention module.
D. He et al. [16] further observe that in Ch-ARM, earlier slices
tend to contain more critical information due to the sequential
dependency. Based on this insight, they propose ELIC, which
allocates higher capacity to earlier slices through an un-
even grouping strategy, and achieve improved rate–distortion
performance. This observation motivates our channel-wise
quantization control design described later in this paper.

Most LIC models share the following loss function, which
jointly optimizes bitrate and reconstruction quality:

L = R(y) +R(z) + λ ·mse(x, x̂). (1)

In (1), y and z are the outputs of the encoder and hyperprior-
encoder of the LIC model, respectively. R(·) denotes the
estimated bitrate of each latent component. x represents the
input image, and x̂ is the reconstructed image. mse is the
mean squared error function. The Lagrange multiplier λ bal-
ances rate and distortion. Since it is fixed during training,
multiple models with different λ values must be trained to
accommodate various rate–distortion trade-offs.

B. Image Coding for Machines

In recent years, more ICM methods have been proposed.
ROI-based approaches [1] - [3] utilize region-of-interest (ROI)
maps to allocate more bits to important regions, thus require
prior analysis before compression. Task-loss-based methods
[4] - [6] directly incorporate the performance of downstream

recognition tasks into the training process. However, these
methods must be retrained for each specific task and model,
which limits their scalability in practical deployment. In
contrast, region-learning-based approaches [7] - [10] aim to
achieve task-agnostic compression by learning to preserve
spatial regions that are generally important for recognition.
A notable example is SA-ICM [7], which retains object
boundaries while discarding other areas such as texture, as
formulated by the following loss function:

maskx = canny(sam(x, α)), (2)
L = R(y) +R(z) + λ ·mse(x⊙maskx, x̂⊙maskx) (3)

In (2), sam and canny denote region segmentation using the
Segment Anything Model (SAM) [31] and Canny edge detec-
tion, respectively. A constant value α denotes the confidence
threshold for segmentation. SAM is used only during training.
SA-ICM is built upon LIC-TCM and thus employs the Ch-
ARM. Note that region-learning-based ICM requires fine-
tuning of the downstream recognition model. This limitation,
however, can be addressed by deploying fine-tuned recognition
models on the cloud, whereas task-loss-based approaches
demand separate task-specific codecs on edge devices. Ad-
ditionally, SA-ICM can be extended to scalable image coding
for humans and machines [32] - [34].

Delta-ICM [10] further advances the ICM framework by
redesigning the entropy model to adaptively switch between
a Gaussian distribution for informative regions and a delta
function for uninformative ones. This selective modeling
allows less important areas to be decoded more coarsely,
which results in greater bitrate savings without sacrificing
recognition accuracy in downstream machine vision tasks.
This finding motivates the spatially dependent quantization
control introduced later in this paper.

C. Variable Rate Image Compression

While conventional LIC models are trained for a fixed rate,
some studies have explored variable rate methods to accommo-
date diverse bandwidth and quality requirements. Early works
adopt Recurrent Neural Network (RNN)–based frameworks
[20]– [22], though they often require high computational cost
due to their progressive coding. Subsequent studies introduce
conditional autoencoder–based approaches [23]– [25], fol-
lowed by quantization-based rate control methods [26], [27].
For instance, QVRF [26] employs a quantization regulator to
manage the overall quantization error of latent representations,
enabling both discrete and continuous bitrate adjustment.
Another line of work explores mask-based selective coding. J.
Lee et al. [28] achieve variable rate compression by selectively
encoding essential latent representations using a learned 3D
importance map generated from the hyperprior outputs.

Most of the previous approaches are designed for human-
oriented compression, and only a few studies address variable
bitrate control for ICM [29], [30]. M. Song et al. [29] have
proposed a spatially adaptive framework based on the Spatial
Feature Transform, which enables variable rate compression
conditioned on a pixel-wise quality map. This method can be



Fig. 3. Image coding process with the proposed method. The figure illustrates
N = 2 slices, whereas our experiments use N = 5.

extended to task-aware compression by optimizing the map for
downstream recognition tasks. Although existing variable rate
methods for both LIC and ICM provide promising flexibility,
they require training, which increases computational cost and
complicates practical deployment. These challenges highlight
the need for a training-free variable rate framework for ICM.

III. PROPOSED METHOD

A. Preliminary Findings

Since the scale parameter predicted by the hyperprior net-
work determines bit allocation, we hypothesize that in ICM, it
correlates with the feature importance required for recognition.
To investigate the channel-wise characteristics of the scale
values, we conduct a preliminary experiment using an image
from the Kodak dataset [35]. The image is compressed with
SA-ICM, and the average scale values across channels and
slices are visualized in Fig. 1. The results reveal that channels
belonging to earlier slices tend to have larger scale values,
which indicates the greater bit allocation, whereas those in
later slices contain more redundant information. This trend is
consistent with the observations reported by D. He et al. [16],
although their study utilized human-oriented LIC.

We also examine the spatial characteristics of the scale pa-
rameters, as illustrated in Fig. 2. Larger scale values align with
object boundaries, while smaller values appear in other regions
such as object interiors and backgrounds. Given that SA-ICM
is designed to preserve edge information effectively, these
results indicate that the scale parameter reflects the region-
wise importance for recognition. This observation forms the
key intuition behind our proposed method.

B. Overview of Proposed Quantization Controller

In this paper, we propose a training-free variable rate
method for ICM. The compression process is illustrated in
Fig. 3. Since our preliminary findings reveal that the scale
parameter serves as an indicator of feature importance for
recognition, our approach adaptively adjusts the quantization
strength according to this parameter to achieve variable bi-
trates without degrading recognition accuracy. Specifically, the
quantization controller first decides a channel-wise range of

allowable quantization step sizes by utilizing scale charac-
teristics. The actual step size for each latent pixel is then
determined within this range based on spatial scale variations.
Note that the bitrate can be continuously controlled by a
single parameter d, which facilitates deployment in real-world
scenarios. The d value is defined for d > 0; as d increases, the
transmitted bitrate decreases. When d = 1, the bitrate matches
that of the base model. While the quantization step size of the
latent representation y is adaptively varied for rate control, that
of the hyper latent z is fixed at 1 because coarse quantization
of z would impair its role in predicting the variance of y.
Moreover, since the bitrate contribution of z is relatively small
[27], its variation has negligible impact on overall rate control.

C. Channel-Aware Quantization Step Size Control

The preliminary experiments reveals that the scale param-
eter varies across channels. However, in Ch-ARM, the exact
scales for all slices are not available simultaneously, making
direct scheduling based on the true scales infeasible. Motivated
by the empirical observation that earlier slices carry more crit-
ical information while later slices are increasingly redundant,
we assign larger quantization step sizes to channels in later
slices. Specifically, the user-specified parameter d determines
the quantization step size bounds. When 0 < d < 1, the
minimum quantization step size for the n-th slice is linearly
decreased, while when d > 1, the maximum size is linearly
increased. The minimum and maximum quantization step size
of the n-th slice, ∆(n)

min and ∆
(n)
max, are defined as:

∆
(n)
min =


d+

n− 1

N
(1− d), 0 < d < 1,

1, d = 1,

1, d > 1,

(4)

∆(n)
max =


1, 0 < d < 1,

1, d = 1,

1 +
n

N
(d− 1), d > 1,

(5)

where N denotes the number of slices and n = 1, 2, . . . , N
represents the slice index. This design ensures that earlier
slices retain finer details, while later slices are quantized more
coarsely, preserving the slice-wise importance.

D. Spatial-Aware Quantization Step Size Control

Within each channel, the quantization step size is further
adapted per spatial position according to the scale parameter
predicted by the hyperprior network. Given the scale tensor σ
and the slice-wise bounds ∆

(n)
min and ∆

(n)
max determined above,

the adaptive quantization step size ∆c,h,w is computed as

σ(c)
max = max

h,w
σc,h,w, (6)

σ
(c)
min = min

h,w
σc,h,w, (7)

∆c,h,w = ∆(n)
max −

(σc,h,w − σ
(c)
min)(∆

(n)
max −∆

(n)
min)

σ
(c)
max − σ

(c)
min + ϵ

, (8)



Fig. 4. Examples of reconstructed images with different quantization control methods. (a) Original image, (b) Non-adaptive quantization which uniformly
scales the step size across all latents, and (c) Adaptive quantization step size control by the proposed method.

where σ
(c)
min and σ

(c)
max denote the minimum and maximum

scale values for each channel, and ϵ is a small constant.
This linear mapping assigns smaller quantization steps to
regions with higher scale values and larger steps to those with
lower scale, enabling spatially adaptive quantization. Mapping
functions other than linear are evaluated in the ablation study.

E. Adaptive Quantization in the Compression Process

During compression, the main encoder extracts the latent
feature y from an input image, which is then quantized. The
quantization is usually performed by the following equation:

ŷ = round(y − µ) + µ, (9)

where µ is the predicted mean parameter. In our proposed
method, each latent slice is quantized using the adaptive ∆
tensor determined by the quantization controller:

ŷ = round(
y − µ

∆
)×∆+ µ. (10)

The quantized feature is then compressed using an entropy
model, which predicts the mean and scale parameters of the
encoding distribution. In standard LIC models which assume
a Gaussian distribution and a unit quantization step size, the
entropy model is formulated as follows:

pŷ|ẑ(ŷ|ẑ) =
∏
i

pŷ|ẑ(ŷi|ẑ), (11)

pŷ|ẑ(ŷi|ẑ) = N (µi, σi
2) ∗ U

(
−1

2
,
1

2

)
(ŷi), (12)

=

∫ ŷi+1/2

ŷi−1/2

N (t|µi, σi
2)dt. (13)

However, in our proposed method, the quantization step size
is adaptively varied. To correctly reflect this operation in the
probability formulation, we modify the Gaussian model as
expressed in the following equation:

pŷ|ẑ(ŷi|ẑ,∆i) =

∫ ŷi+∆i/2

ŷi−∆i/2

N (t|µi, σ
2
i )dt. (14)

Note that this modification is only applied during the in-
ference. The entropy model itself and its parameters remain
unchanged.

IV. EXPERIMENT

A. Experimental Settings

We evaluate our proposed method on multiple machine vi-
sion tasks using SA-ICM as a base model, though the proposed
quantization control scheme can be applied to other ICM
frameworks with Ch-ARM structure. SA-ICM is pre-trained
on 118,287 images from the COCO-train dataset [36], with
a fixed confidence threshold α = 0.78, N = 5 latent slices,
and λ = 0.05 in the loss function represented in (3). This base
model achieves 0.227 [bpp] on average. By varying the quanti-
zation step size with parameter d, we achieve variable bitrates.
Evaluation is performed on 5,000 images from the COCO-val
dataset. We compare our method against 1) Fixed-rate SA-
ICM trained separately with λ = {0.02, 0.03, 0.04, 0.05}, 2)
Non-Adaptive Quantization, which utilizes a single quantiza-
tion step size globally without adaptive control, 3) Progressive
decoding introduced by D. Minnen et al. [15], where only the
first n slices are transmitted, and the rest are substituted with
hyperprior-predicted mean values to achieve discrete bitrate
control by varying n, and 4) Fixed-rate LIC-TCM, a codec for



(a) Object Detection by YOLOv5 (b) Object Detection by Mask R-CNN (c) Instance Segmentation by Mask R-CNN

Fig. 5. Image compression performance for different recognition tasks. (a) Object detection by YOLOv5, (b) Object detection by Mask R-CNN, and (c)
Instance segmentation by Mask R-CNN.

Fig. 6. Visualization of quantization step sizes in the first channel determined
by the proposed method when d = 8. White colors indicate smaller steps.

human perception. The second and third methods are training-
free variable rate approaches.

We assess the recognition accuracy of compressed images
using YOLOv5 [37] for object detection and Mask R-CNN
[38] for both object detection and instance segmentation.
These models are selected for comparison with prior work,
though our method can be applied to any machine vision
model. All recognition models are fine-tuned on COCO-
train images decoded by SA-ICM with λ = 0.05 for the
proposed and first three comparative methods, and by TCM
with λ = 0.05 for the last one.

B. Experimental Results

Example outputs are shown in Fig. 4. Compared to the
Non-Adaptive Quantization approach, our proposed method
preserves clearer object boundaries crucial for recognition
tasks, while achieving equal or even lower bitrates. The Rate-
mAP curves of the proposed and comparative methods are
illustrated in Fig. 5. The gray dotted lines represent the
recognition accuracy on uncompressed images. Marker shapes
denote method categories: fixed-rate models are plotted with
stars, whereas training-free variable rate methods are plotted
with circles. It is shown that the variable rate model has
almost the same recognition accuracy even around 0.15 [bpp],
which is the lowest bitrate for pretrained SA-ICM model. Our
proposed method outperforms the baseline method especially
at lower bitrates. Fig. 6 visualizes the spatial distribution
of quantization step size assigned by the proposed method
when d = 8. It clearly shows that the smaller steps are

TABLE I
BD-RATE-MAP COMPARISON OF DIFFERENT SPATIAL-AWARE MAPPINGS

Method Detection Segmentation

YOLOv5 Mask R-CNN Mask R-CNN

Non-Adaptive Quantization 0.00 0.00 0.00
Sigmoid (k = 5) -10.84 -10.61 -11.41

Sigmoid (k = 10) -8.82 -8.53 -7.95
Linear (ours) -11.07 -10.88 -10.37

selected especially in object boundaries, which are important
for recognition.

Moreover, we measure encoding and decoding times on
COCO-val dataset at d = 8, averaging over five runs. The
proposed quantization controller introduces only minor dif-
ferences compared to the fixed-rate SA-ICM model, with the
encoding time increased by approximately 2 [ms] (≈ 1.5%)
and the decoding time by 2 [ms] (≈ 1.3%). These results
confirm that our adaptive quantization method adds negligible
computational overhead.

C. Ablation Study

We conduct an ablation study to investigate different
scheduling strategies for the spatial-aware quantization control.
Table I shows mAP-based BD-rates for the proposed linear
mapping and sigmoid-based mappings, measured relative to
the Non-Adaptive Quantization approach. The sigmoid map-
ping is defined as follows:

σ(c)
norm =

σc,h,w − σ
(c)
min

σ
(c)
max − σ

(c)
min + ϵ

, (15)

∆c,h,w = ∆
(n)
min + sigmoid

(
−k

(
σ
(c)
norm − 0.5

))
(∆

(n)
max −∆

(n)
min). (16)

In (16), sigmoid(x) denotes the sigmoid function defined as
1/(1 + exp(−x)), and the other variables are the same as in
(8). The linear mapping achieves superior or comparable per-
formance across recognition tasks, indicating its effectiveness
as a simple yet robust scheduling strategy.

V. CONCLUSION

In this paper, we propose a training-free quantization con-
troller for variable rate ICM that adaptively adjusts quantiza-
tion step size based on channel-wise and spatial characteristics.



By assigning larger quantization steps to later channels and
redundant regions according to the scale parameter predicted
by the hyperprior network, our method effectively reduces
bitrate without training. Additionally, the bitrate can be contin-
uously controlled by a single parameter. Experimental results
demonstrate that our proposed method outperforms a variable
rate baseline with non-adaptive quantization. Future work will
further extend this framework to scalable image coding for
humans and machines.
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