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Abstract—Image representation is a fundamental task in
computer vision. Recently, Gaussian Splatting has emerged as
an efficient representation framework, and its extension to 2D
image representation enables lightweight, yet expressive modeling
of visual content. While recent 2D Gaussian Splatting (2DGS)
approaches provide compact storage and real-time decoding,
they often produce blurry or indistinct boundaries when the
number of Gaussians is small due to the lack of contour
awareness. In this work, we propose a Contour Information-
Aware 2D Gaussian Splatting framework that incorporates object
segmentation priors into Gaussian-based image representation.
By constraining each Gaussian to a specific segmentation re-
gion during rasterization, our method prevents cross-boundary
blending and preserves edge structures under high compression.
We also introduce a warm-up scheme to stabilize training and
improve convergence. Experiments on synthetic color charts
and the DAVIS dataset demonstrate that our approach achieves
higher reconstruction quality around object edges compared to
existing 2DGS methods. The improvement is particularly evident
in scenarios with very few Gaussians, while our method still
maintains fast rendering and low memory usage.

Index Terms—2D Gaussian Splatting, image representation,
segmentation.

I. INTRODUCTION

Image representation has long been a central problem in
computer vision and graphics. With the rise of deep learning,
Implicit Neural Representations (INRs) have emerged as a
powerful paradigm for encoding images and scenes in a
continuous and compact manner. By parameterizing visual sig-
nals with neural networks, INRs enable resolution-independent
rendering and flexible content representation. However, INR-
based methods often rely on large multilayer perceptrons
(MLPs) or high-dimensional feature grids, which result in
heavy memory usage and slow inference, limiting their prac-
ticality for interactive or resource-constrained applications.

To address these challenges, recent research has explored
alternatives based on Gaussian Splatting. In particular, 2D
Gaussian Splatting (2DGS) methods such as Image-GS [1]
and GaussianImage [2] represent images with adaptive sets

of Gaussian primitives, achieving compact storage and real-
time decoding while retaining competitive visual quality.
These methods completely avoid large networks, making them
highly efficient and interpretable compared to traditional INRs.
Despite their advantages, existing 2DGS techniques struggle
in scenarios with extreme compression, i.e., when only a
very limited number of Gaussians are available. Under such
conditions, object boundaries often become blurry or indistinct
because there is a lack of explicit incorporation of structural
and contour information to guide Gaussian placement and
blending.

To overcome this limitation, we propose a novel image
representation framework that incorporates contour priors into
2DGS. Our method leverages segmentation masks obtained
from pre-trained models such as SAM to assign region-based
constraints to each Gaussian during training and rendering.
Specifically, we associate each Gaussian with a segmentation
region and restrict its contribution to pixels within that region,
thereby preserving structural consistency. This design enables
more accurate reconstruction around object boundaries, even
under a limited Gaussian budget with very few Gaussians.

Through experiments on synthetic and real-world images,
we demonstrate that the proposed method achieves higher
reconstruction quality, particularly around edges, compared to
conventional 2DGS under the same Gaussian budget. Further-
more, our approach remains compatible with standard 2DGS
rasterizers and retains the advantages of fast rendering speed
and low memory footprint.

Our contributions are summarized as follows:
• We propose a contour-aware 2D Gaussian Splatting

framework for efficient image representation, which im-
proves edge fidelity under a limited Gaussian budget.

• We introduce a region-constrained rasterization strategy
with a warm-up scheme to enforce contour consistency
and stabilize training.

• We validate our method on synthetic color charts and
real-world images, demonstrating superior reconstruction



Fig. 1. Overview of the proposed method. Top: The pipeline of our framework. In addition to the conventional 2DGS pipeline, we feed the target image
(to be represented with 2D Gaussians) into a segmentation model to obtain object-wise segmentation masks. These masks are integrated into the Gaussian
Rasterizer as Object Domain Information. Bottom: Details inside the Gaussian Rasterizer. Each segmentation mask is represented using only the 2D Gaussians
that fall within its region.

performance while retaining fast rendering and low mem-
ory usage.

II. RELATED WORK

A. Implicit Neural Representation

Implicit Neural Representations (INRs) have become a ver-
satile tool for encoding visual and signal data, enabling contin-
uous and compact parameterizations across diverse domains.
With the advent of deep learning, INRs have been widely ap-
plied to diverse tasks such as 3D scene representation [3], [4],
2D image representation [5], [6] and video representation [7],
super-resolution [8], and compression [9]. A common class of
INR methods relies on multilayer perceptrons (MLP) to map
input spatial coordinates to color values, often using positional
encodings [5] or periodic activation functions [4] to improve
high-frequency detail modeling. Although these approaches
achieve impressive reconstruction quality, they typically suffer
from long training times, high GPU memory consumption,
and slow decoding speeds, especially when applied to high-
resolution content. To address these issues, more efficient vari-
ants have been proposed. However, even optimized methods
remain computationally demanding for real-time or resource-
constrained scenarios due to heavy memory access and limited
content adaptivity. In contrast, our work explores an alternative
framework that eliminates the reliance on large MLPs, instead

leveraging 2DGS for fast, efficient, and interpretable image
encoding.

B. Gaussian Splatting for Visual Representation

Gaussian Splatting has recently emerged as a highly efficient
and expressive method for 3D scene representation [10],
and has been extended to segmentation [11], [12], dynamic
scenes [13], [14], and generative modeling [15], [16]. Encour-
aged by its success in 3D vision, recent works have begun
adapting Gaussian Splatting to 2D image representation. Re-
cent works have explored Gaussian Splatting as a lightweight
alternative for image representation. In this framework, an
image I(x, y) is approximated by a weighted sum of 2D
anisotropic Gaussians:

I(x, y) =

N∑
i=1

αi · N ((x, y);µi,Σi) · ci, (1)

where each Gaussian primitive is parameterized by its center
µi, covariance Σi, opacity αi, and color ci. Unlike 3D Gaus-
sian Splatting [10], which requires depth-sorted α-blending,
2DGS does not involve ordering along the depth dimension
and therefore adopts this additive formulation as standard
practice [1], [2].

Building on this idea, Image-GS [1] places Gaussians ac-
cording to image gradient magnitudes, assigning more prim-
itives to high-frequency regions such as edges and textures.



GaussianImage [2] instead proposes a fixed view 2DGS frame-
work and introduces a rasterizer that accumulates Gaussian
contributions through summation, rather than traditional alpha
blending. Beyond static images, several works have also begun
extending 2DGS to video representation [17], demonstrating
its potential for efficient spatio-temporal encoding. These
approaches highlight that 2DGS offers compact storage and
efficient rendering competitive with neural implicit represen-
tations. However, existing methods struggle to preserve sharp
contours under extreme compression, where the number of
Gaussians is severely limited.

Our work builds upon this foundation by introducing
contour-aware masking and Gaussian region control during
rendering. This improves edge fidelity without sacrificing
compression performance, bridging the gap between semantic
structure preservation and efficient image encoding.

III. PROPOSED METHOD

A. Contour Information-Aware 2D Gaussian Splatting

To improve the preservation of object boundaries under
limited Gaussian capacity, we propose a segmentation-guided
2DGS framework that explicitly incorporates semantic region
constraints during rendering. Let Igt ∈ RH×W×3 denote
the ground truth image, and M ∈ {1, . . . , R}H×W be a
segmentation mask that assigns each pixel (x, y) to one
of R regions. These masks are obtained using an existing
segmentation model such as SAM [18], [19], DINO [20], and
LSeg [21]. Each 2D Gaussian gi is parameterized by a tuple:

gi = (µi,Σi, ci, αi, ri) , (2)

where µi and Σi denote the 2D mean and covariance matrix, ci
is the RGB color vector, αi is the opacity, and ri ∈ {1, . . . , R}
is the assigned region ID.Importantly, ri is not a learnable pa-
rameter, but a fixed assignment derived from the segmentation
mask. For rendering, we assign a region ID rxy to each pixel
(x, y) using the segmentation map: rxy = M(x, y). The final
rendered image Ipred ∈ RH×W×3 is then computed as:

Ipred(x, y) =
∑

i:ri=rxy

αi · N ((x, y);µi,Σi) · ci, (3)

where N ((x, y);µi,Σi) is the Gaussian kernel centered at µi

with covariance Σi, evaluated at the pixel (x, y). This region-
aware masking enforces that each Gaussian only contributes
to the pixels within its assigned semantic region, preventing
boundary artifacts and improving edge fidelity. Crucially, the
masking is implemented using integer ID comparisons (i.e.,
ri = rxy), which ensures that rendering remains parallelizable
and GPU-efficient. We do not modify the loss function, which
remains the standard image-reconstruction loss:

L = ∥Igt − Ipred∥1, (4)

allowing optimization to focus on global reconstruction qual-
ity, while the mask constraints encourage more accurate local
(edge) reconstruction. Fig. 1 provides an overview of the
proposed region-constrained rendering pipeline.

B. Region Assignment of Gaussians

The region ID ri of each Gaussian is determined by
referencing its 2D position µi in the segmentation mask M.
Specifically, at initialization, we assign:

ri = M(⌊µx
i ⌋, ⌊µ

y
i ⌋) , (5)

where (µx
i , µ

y
i ) denotes the center position of Gaussian gi.

To account for positional updates of Gaussians during op-
timization, we introduce a warm-up strategy for region ID
assignment. In practice, ri is refreshed every 1000 iterations
until half of the total training iterations (warm-up stage). After
this stage, ri is fixed, stabilizing the training process while
ensuring that Gaussians near the boundary of the object are
correctly assigned in the early learning phase.

C. Clamping-Free Training

In conventional 2DGS, pixel values are often clamped to
the range [0, 1] during training. This clamping stabilizes
the optimization process and accelerates convergence, since
it avoids extreme pixel values in early iterations. However,
clamping also restricts the expressive ability of Gaussians,
especially in terms of intermediate color representation, such
as dark green, orange, purple, or cyan. Intermediate colors
are usually obtained by combining multiple Gaussians with
different color weights. Therefore, when clamping is enforced,
a larger number of Gaussians are required to reproduce such
colors faithfully. In our design, we remove the clamping
operation. Although this could normally lead to blurred bound-
aries when only a few Gaussians are used, our region-guided
rasterization compensates for this drawback. Because object
boundary information is explicitly introduced via segmentation
masks, sharp contours can still be preserved even without
clamping. Consequently, our method prioritizes the accurate
reproduction of intermediate colors while maintaining contour
fidelity, which is especially beneficial under limited Gaussian
budgets.

IV. EXPERIMENTS

A. Experimental Setup

We conduct both synthetic and real-world experiments to
evaluate the effectiveness of our proposed segmentation mask-
guided 2DGS framework. For synthetic tests, we use two types
of color chart images: a 2×3 chart (200×300 resolution) and a
pie chart (300×300). The 2×3 chart consists only of straight-
line boundaries between color blocks, making it a highly
ideal case for our method, which explicitly preserves object
contours. In contrast, the pie chart contains curved and slightly
blurred boundaries when zoomed in, providing a challenging
scenario to test the robustness of edge representation. For real-
world evaluation, we employ the DAVIS dataset [22], [23],
which was originally designed for video object segmentation,
but contains high-quality, pixel-level annotated segmentation
masks. We utilize the first frame of each video sequence
to form a set of static test images. In this experiment,
we assume access to ground truth segmentation masks and



Fig. 2. Quantitative results on the synthetic color charts. From left to right: PSNR and MS-SSIM over the entire image, PSNR and SSIM around edge regions.

Fig. 3. Qualitative results on the synthetic color chart with high compression, where the number of Gaussians is 20. From left to right: ground truth, baseline
with clamping, baseline without clamping, ours with clamping, and ours without clamping.

directly use them during training to validate whether our
method functions effectively under almost perfect domain
guidance. This setup allows us to isolate and test the core
effectiveness of our framework, without being affected by
segmentation model accuracy. All models are trained with an
NVIDIA RTX A6000 GPU. Rotation and scaling matrices
of the 2D Gaussians are efficiently computed via Cholesky
decomposition for numerical stability and speed. Evaluation
metrics include the peak signal-to-noise ratio (PSNR) and the
Structural Similarity index (SSIM). In addition, to quantify
the effectiveness of contour preservation, we also perform an
edge-focused evaluation. Specifically, we extract a band of 5
pixels inward and outward from the ground truth segmentation
boundary and compute the reconstruction metrics only within
this narrow edge region. We refer to the PSNR measured
in this band as Edge-focused PSNR (EF-PSNR). For edge-
focused evaluation, we use SSIM instead of MS-SSIM, as the
latter can be less stable on a narrow edge region.

B. Color Chart Results

Fig. 2 summarizes the reconstruction performance in syn-
thetic color charts. Under a constrained number of Gaussians
(20 Gaussians, 50,000 training iterations), our method consis-
tently outperforms baseline 2DGS in both PSNR and SSIM,

especially within the edge regions. In the 2 × 3 chart, where
the boundary lines are straight and well defined, our contour
information-guided approach is highly effective in preserving
the sharpness of edges. In contrast, while both methods
struggle more with the curved and partially blurred transitions
in the pie chart, our method still shows superior localization of
boundaries and better perceptual quality. These results indicate
that explicit incorporation of contour information not only
improves reconstruction accuracy but also enhances structural
consistency in challenging compression settings.

Fig. 3 further provides qualitative comparisons under dif-
ferent clamping strategies. We consider four conditions: 1)
baseline without clamping, 2) baseline with clamping, 3) our
method with clamping, and 4) our method without clamping.
Without clamping, the baseline can reproduce intermediate
colors, i.e., colors where the RGB channels take values other
than 0 or 1 (such as dark green, orange, and purple), but suffers
from blurry contours. With clamping, the baseline produces
sharper boundaries but fails to represent intermediate colors
since only extreme RGB values dominate the blending. In
contrast, our method without clamping successfully repro-
duces intermediate colors, while simultaneously maintaining
sharp contours thanks to region-guided rasterization. This
demonstrates that removing clamping, when combined with



Fig. 4. Quantitative results on the DAVIS dataset. From left to right: PSNR and MS-SSIM over the entire image, PSNR and SSIM around edge regions.
Here, GaussianImage refers to the original method with clamping, while GaussianImage∗ indicates its variant without clamping.

Fig. 5. Qualitative results on the DAVIS dataset with high compression, where the number of Gaussians is 1250. From left to right: ground truth, input mask
for the rasterizer (object domain information), baseline without clamping, and ours.

region guidance, achieves the best trade-off between color
expressiveness and boundary fidelity.

C. Real-world Dataset Evaluation

We present the quantitative results using the DAIVS dataset
in Fig. 4. When representing images with the few number
of Gaussians, our proposed method outperforms the baseline
across all evaluation metrics, demonstrating the effectiveness
of providing masks as region guidance. Moreover, Fig. 5
shows the corresponding reconstructed images. Compared
to the baseline, our method yields clearer boundaries along
the masked regions and produces cleaner backgrounds as a
result of the improved boundary representation. On the other
hand, when the number of Gaussians increases, our method
sometimes performs worse than the baseline. This is because
with a larger Gaussian budget, the Gaussians can fit the target
image more accurately, even beyond the boundaries specified
by the masks. Therefore, the effectiveness of our method
is most evident in cases where the number of Gaussians is
insufficient to accurately represent the region boundaries.

In this experiment, the number of segmented regions was
much smaller than that of typical segmentation models. We
therefore expect this trend to become more pronounced as the
number of segmented regions increases: our method tends to
gain more advantage under high-compression (few Gaussians)

settings, while less under low-compression (many Gaussians)
settings.

D. Ablation Study

To validate the contribution of each component in our
framework, we conduct an ablation study on the real-world
DAVIS dataset. Following the same setting as in the main
experiments, we report results under two different Gaussian
budget conditions: Few Gaussians with 1250 primitives and
Many Gaussians with 7500 primitives. The quantitative results
are summarized in Table I. In addition to the standard PSNR
metric, we also report EF-PSNR, which emphasizes recon-
struction quality around object boundaries. We first observe
that removing clamping improves PSNR in both settings,
particularly in the many Gaussians case where the baseline
reaches the highest value. However, this comes at the cost of
blurrier contours, which is reflected in the lower edge-focused
PSNR. In contrast, when combined with contour guidance, the
removal of the clamping successfully reproduces intermediate
colors while maintaining sharper boundaries, which is con-
sistent with the qualitative results shown in Fig. 3. Contour
guidance alone brings limited benefits, especially under the
few Gaussians condition. However, when coupled with the
warm-up strategy, it leads to a clear improvement in edge-
focused PSNR, demonstrating that warm-up is essential for



TABLE I
ABLATION STUDY OF DIFFERENT COMPONENTS

Contour
Guidance

Warm
Up

Remove
Clamp

Few Gaussians Many Gaussians
PSNR↑ EF-PSNR↑ PSNR↑ EF-PSNR↑

27.10 22.73 33.41 30.33
✓ 27.29 22.92 33.57 30.48

✓ 26.98 22.72 33.25 29.36
✓ ✓ 27.15 22.92 33.20 29.31
✓ ✓ 27.06 23.09 33.28 29.44
✓ ✓ ✓ 27.31 23.41 33.44 29.18

stabilizing edge-aware optimization. Finally, the full model
that integrates contour guidance, warm-up, and clamp removal
achieves the best overall performance. It yields the highest
scores in the few Gaussians conditions for both PSNR and EF-
PSNR, highlighting its effectiveness under constrained Gaus-
sian budgets. Although the improvement is less pronounced in
the many Gaussians setting, where sufficient capacity already
alleviates edge degradation, our design still delivers compet-
itive PSNR while maintaining strong structural consistency.
These results confirm the validity of our proposed design and
the complementary roles of each component.

V. CONCLUSION

In this work, we presented a contour-guided 2DGS frame-
work that explicitly incorporates structural information into
the rasterization process. Our design integrates three key
components: contour guidance, warm-up training, and removal
of the clamping, which work in a complementary man-
ner. Experiments on synthetic charts and the DAVIS dataset
demonstrate that our method improves reconstruction quality,
particularly around edges and under constrained Gaussian
budgets, achieving higher PSNR and EF-PSNR with sharper
boundaries and richer intermediate colors. While the benefits
are most significant when the number of Gaussians is lim-
ited, our method also remains competitive in high-capacity
settings, indicating a strong generalization across different
reconstruction regimes. These findings confirm that explicit
structural guidance is an effective principle for improving
Gaussian-based representations. Future work includes extend-
ing our framework to dynamic scenes, incorporating semantic
or instance-level guidance, and exploring applications in video
compression and interactive image editing.
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