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1.  Introduction 
  Pose-Guided Human Image generation is a task 
which generates new human-centric images based 
on conditional inputs, such as text prompt and 
pose image. The new image should follow the text 
description and pose guidance. Early methods 
mainly relied on GANs [1] and VAEs [2], in which 
the generated human images suffer from poor 
quality and weak pose alignment. With the 
emergence of Stable diffusion model (SD) [3], the 
quality of generated images has improved 
significantly. Current research mainly follows two 
approaches. One is directly fine-tuning SD on pose 
conditions. The other way is ControlNet [4], which 
introduces an additional learnable branch to the 
frozen SD for conditional generation. 
  However, directly fine-tuning SD requires high 
computational resources and a large custom 
dataset and carries a risk of training collapse due 
to distribution shift. As a result, it’s difficult to 
reproduce. ControlNet is widely used, but the 
original method still struggles to achieve precise 
pose control, meaning the generated image may 
not align well with the pose condition. Therefore, 
we propose a multi-stage fine-tuning method for 
ControlNet to improve pose accuracy in human 
image generation based on pose input. In the first 
stage, we train the ControlNet from scratch using 
original latent denoising loss until convergence. In 
the second stage, we apply a heatmap-guided 
denoising loss. We conduct extensive evaluations 
of our method, which show that it significantly 
improves pose fidelity while keeps the original 
generation quality compared with the baseline. 
2.  Related Work 
2.1 ControlNet 
  ControlNet is a neural network architecture 
that allows diffusion models to integrate 
additional conditioning inputs for more precise 
structural control during image generation. It 
introduces conditional inputs such as human pose, 
depth map, sketch and so on. It copies a partial 
backbone of SD and attaches it as an extra branch 
to the original model. The parameters of the 
original SD remain frozen, while only the extra 
branch is trained. This design preserves the 

capability of pre-trained SD model, while enabling 
the model to learn new conditions with relatively 
low computational cost. However, it still has 
problems generating fine details of human body or 
handling complex poses. 
2.2 Heatmap-guided denoising loss 
  The heatmap-guided denoising loss is originally 
from method HumanSD [5], which is used for 
fine-tuning SD model on pose conditions. The 
purpose of this loss is to create a heatmap mask in 
the latent space that assigns higher weights to the 
pose-relevant regions, guiding SD to focus on the 
pose areas instead of the background. The loss is 
calculated as follows: 
𝑳𝒉 = 𝑬𝒕,𝒛,𝜺 $%𝑾𝒂 ⋅ (𝜺 − 𝜺𝜽+,(�̄�𝒕)𝒛𝟎 +,(𝟏 − �̄�𝒕)𝜺, 𝒄, 𝒕78%

𝟐
9 , (𝟏)   

where 𝑊! = 𝑤 ⋅ 𝐻" + 1, 𝐻" is heatmap mask. 
  Our method is inspired by their loss design and 
attempts to apply this heatmap-guided denoising 
to the fine-tuning of ControlNet, which further 
improves the pose accuracy of generated human 
images. 
3.  Proposed Method 
  We propose a multi-stage fine-tuning method 
for ControlNet to improve the pose alignment 
between the generated image and pose condition. 
As shown in Fig.1, during fine-tuning, we freeze 
the parameters of VAE encoder and SD model, 
only update the parameters of ControlNet. We 
apply two different loss functions at separate 
stages. In the first stage, we use the original 
denoising loss. The goal is to obtain a converged 
ControlNet that enables the generated human 
image to roughly follow the input pose. The 
objective of this stage is to make the model 
responsive to diverse pose conditions. In the 
second stage, we apply the heatmap-guided 
denoising loss. The training objective is to refine 
the model to accurately follow the input pose. 
This loss encourages model to focus more on the 
human structure. Through this second stage of 
continued fine-tuning, ControlNet is further 
optimized to improve pose alignment accuracy. 
As a result, the keypoints of the generated 
human images more closely match the input 
pose.



 
Fig. 1. Overview of multi-stage ControlNet Fine-tuning 

 
4.  Experiment 
4.1 Training Details 
  We conduct our experiments on the Captioned 
COCO-Pose[6] dataset. The dataset includes 
61.4k image-pose-caption triplets in the training 
split and 2.69k pairs for evaluation. We use Stable 
Diffusion 1.5[7] as the base model for fine-tuning 
of ControlNet. During training, we adopt different 
configurations for the two stages. In the common 
setup, we set batch size to 1, the learning rate to 
5 × 10#$,and the gradient accumulation steps to 1. 
The primary differences lie in the number of 
training epochs and the loss function used. We 
apply 4 training epochs in stage 1 and 2 epochs in 
stage 2. In the first stage, we employ the original 
denoising loss from SD. In the second stage, we 
apply the heatmap-guided denoising loss. 
4.2 Evaluation 
  We use checkpoint 255000 as stage 1 model and 
checkpoint 380000 as stage 2 model. To evaluate 
the effectiveness of our proposed multi-stage 
fine-tuning method, we compare both stage 
models against baseline model, ControlNet- 
OpenPose. The evaluation is based on three main 
criteria: OKS for pose accuracy, LIPIS for 
accessing image quality, and CLIP score for 
measuring text-image alignment. We conduct both 
qualitative and quantitative evaluations of our 
method. Table 1 presents the quantitative 
comparison with the baseline, showing that our 
stage 2 model significantly improves pose 
accuracy while preserving the original model’s 
generative capabilities. 
 
Table 1: Quantitative comparison with the baseline in terms 
of pose accuracy, image quality, and text-image alignment 

 
   
 

  For the qualitative evaluation, we select serval 
generated images from our stage 1, 2 and baseline 
using the same text prompt and pose condition. As 
shown in Fig. 2, the stage 2 model achieves more 
accurate pose alignment. Fig.3 highlights the 
superiority of our stage 2 model in terms of 
text-image alignment. In the example, the prompt 
explicitly mentions a bicycle, and only the image 
generated by our stage 2 model successfully 
reflects this detail. 

 
Fig. 2. Qualitative results illustrating pose accuracy 

 

 
Fig. 3. Qualitative results illustrating text-image alignment 

 
5. Conclusion 
  We propose a multi-stage fine-tuning method 
for ControlNet to enhance the pose accuracy of 
generated human images.In the first stage,we 
adopt the original latent denoising loss.In the 
second stage,we contine fine-tuning the model 
using a heatmap-guided denoising loss, which 
encourges the model’s generation to better align 
with the input pose condition.Our extensive 
evalution shows that our method siginificanlty 
improve pose fidelity compared to the baseline. 
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1 Introduction

1.1 Research Background

Pose-guided human image generation is a task that aims to synthesize human-centric images based

on given conditions such as human pose and text. It has found applications in various real-world

scenarios, including avatar generation and human motion transfer, attracting significant attention

from both academia and industry.

Early approaches[5, 6] to pose-guided human image generation were based on generative adver-

sarial networks[1] (GANs) and variational autoencoders[2] (VAEs). However, these methods often

suffered from poor image generation quality and weak pose alignment. With the emergence of diffu-

sion models[3], the quality of generated human images has improved significantly. Recent research

mainly follows two approaches:

(1) Direct fine-tuning of Stable Diffusion model (SD)[3] on pose conditions.

(2) ControlNet[4], which introduces an additional learnable diffusion branch on top of a frozen

pre-trained SD model. This extra branch allows for the enforcement of various conditions,

such as skeleton poses, during image generation.

However, directly fine-tuning the SD model requires large datasets, significant computational

resources, and training time. If the distribution of the fine-tuning dataset deviates too much from

that of the original SD training data, it may lead to training collapse or performance degradation.

As for ControlNet, the original method still struggles to achieve precise positional control, often

producing images that are misaligned with complex poses and lack detail in areas such as hands and

fingers.

Therefore, there remains substantial room for improvement in enhancing pose accuracy and

achieving better alignment in pose-guided human image generation.

2



Chapter 1. Introduction 3

1.2 Research Objectives

Our research aims to improve pose accuracy in human image generation conditioned on pose input.

Current ControlNet models conditioned on pose images still struggle to generate fine details of the

human body and often fail to reproduce complex poses accurately. To address these limitations, we

propose a two-stage fine-tuning method for ControlNet. In the Stage 1, ControlNet is trained from

scratch until the model starts to converge. In the Stage 2, we apply a heatmap-guided denoising loss

and continue fine-tuning the model. This approach significantly enhances the pose accuracy of the

generated human images. We conduct a series of qualitative and quantitative evaluations on image

quality, pose accuracy, and text-image consistency, comparing our fine-tuned model with the original

ControlNet baseline, demonstrating the efficiency and effectiveness of our method.

1.3 Thesis Outline

The outline of this thesis is as follows:

Chapter 1: This chapter introduces the research background and objectives of the thesis.

Chapter 2: We discuss related work, including previous methods used in pose-guided human

image generation and their limitations. We also introduce the foundational research on ControlNet

and heatmap-guided loss, which form the basis for our proposed multi-stage fine-tuning method.

Chapter 3: We explain the details of our multi-stage fine-tuning approach, including the inspira-

tion behind it and the different objectives targeted at each training stage.

Chapter 4: We present the experiments conducted to demonstrate the effectiveness and effi-

ciency of our method. This includes a description of the dataset used, training details and setups for

each stage, and both quantitative and qualitative evaluations compared to the baseline ControlNet-

OpenPose checkpoint.

Chapter 5: We conclude by summarizing our contributions. Our method preserves the origi-

nal model’s generation capability while significantly improving the pose accuracy of the generated

human images.



2 Related Work

2.1 Pose-guided human image generation

During the past few years, pose-guided human image generation has become a popular research

topic due to the pose’s validity in motion description[7]. With source images and pose conditions,

a generative model can output a realistic image with the source image’s appearance and the desired

pose. These methods[5, 6] are mainly based on GANs or VAEs. These methods do not generate a

completely new person but transform the person in the source image into a desired pose. Because

these methods focus on natural scene manipulation, they usually fail under arbitrary pose conditions

and diverse cross-modality feature alignment, and the generated image quality strongly depends on

the source image. However, compared with an image, text can be a more flexible and informative

condition. With the emergence of Stable Diffusion[3], text-to-image models can generate high-

quality human images with text descriptions. However, if we want to precisely control the pose of

the generated image, text is not accurate and may require creating a complex prompt to guide the

generation process.

Among the very recent works, there are two main directions that introduce precise pose control

for human image generation. The first one is HumanSD[8], they directly fine-tune the SD model

on the pose condition image, which first inputs the pose image into the VAE encoder the same way

as SD, obtains the pose latent embedding, and then concatenates it with the noisy latent embedding

generated by diffusion and inputs it into the UNet. The other is called ControlNet[4]. ControlNet

is a method that introduces arbitrary conditions to the diffusion model, such as Canny edge, human

pose, and depth. ControlNet freezes the parameters of the original SD and only trains the conditional

branch, aiming to reuse the image generation capability of the original SD. It is widely adopted due to

its modular design, which allows integration of various conditional inputs. Compared with the first

method, training Controlnet has the advantage of being trainable with fewer computing resources

on a smaller dataset than directly fine-tuning Stable diffusion. However, the current Controlnet

model[9], which is conditioned on the OpenPose image, still failed to replicate pose conditions

accurately. To improve the model’s accuracy regarding pose condition, in this paper, we propose a

4



Chapter 2. Related Work 5

method to fine-tune Controlnet with multi-stage training.

2.1.1 Adding Conditional Control to Text-to-Image Diffusion Models (Con-

trolNet)

ControlNet[4] is a neural network architecture that allows diffusion models to integrate additional

conditioning inputs for more precise structural control during image generation. It works by dupli-

cating the backbone network of Stable Diffusion (SD) and attaching it as an auxiliary branch to the

original model. The parameters of the original model remain frozen, while only the newly added

components are trained. This design preserves the capabilities of the pre-trained large model, while

enabling the model to learn new conditional controls with relatively low computational cost and a

smaller training dataset compared to full fine-tuning of Stable Diffusion.

ControlNet has been applied to various tasks, including pose-guided image generation, where it

offers more precise control compared to the original text-to-image Stable Diffusion model. However,

it still struggles with accurately generating fine details of the human body or handling complex poses.

To address this, our method proposes a multi-stage fine-tuning strategy to enhance the pose accuracy

of the ControlNet baseline when conditioned on pose inputs.

2.1.2 Heatmap-guided denoising loss

The Heatmap-guided denoising loss was originally invented from the method HumanSD[8], which is

used to fine-tune the SD model. The purpose of this custom loss is to make sure the diffusion model

can learn better with greater concentration on the condition(human pose) processing. It is realized

by assigning a bigger priority factor Wa for feature pixels that are more related to the condition, for

example, the human pose area. The heatmap-guided loss is revised from the Vallina LDM[10] loss

function:

LLDM = Et,z,ε

[∥∥∥ε − εθ

(√
ᾱtz0 +

√
1− ᾱtε,c, t

)∥∥∥2
]
. (2.1)

The first step is to obtain a difference map that is recognized by the pose estimator. To achieve this,

ε − εθ is input into the VAE decoder and get :

M = VAEdecoder (ε − εθ ) , (2.2)

where M is the resulting difference map.

Next, a state-of-the-art human pose estimation model[11] is applied to the difference map to
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generate a pose heatmap, defined as:

H = F(M), (2.3)

where F is the pose estimation model.

To obtain the heatmap mask, a threshold is applied to the heatmap H, resulting in a binary mask

HM . This mask is then passed through the VAE encoder to produce the heatmap embedding.

HE =VAEencoder(HM), (2.4)

where HE is the heatmap embedding.

Finally,the weighted loss is calculated as follows:

Lh = Et,z,ε

[∥∥∥Wa ·
(

ε − εθ

(√
ᾱtz0 +

√
1− ᾱtε,c, t

))∥∥∥2
]
, (2.5)

where Wa = w ·HE +1 ,w is set 0.05 by default.

Our method is inspired by their loss design and attempts to apply this heatmap-guided loss to

fine-tune ControlNet. We aim to enable ControlNet to focus more on the pose-conditioned regions

during the generation process.



3 Proposed Method

3.1 Multi-Stage ControlNet Fine-Tuning

The concept of multi-stage training or fine-tuning is inspired by the training paradigm of large lan-

guage models (LLMs). Models such as ChatGPT are typically trained in multiple stages, includ-

ing pre-training, post-training, and supervised fine-tuning. Each stage progressively enhances the

model’s capabilities, evolving from basic text completion to more complex tasks such as zero-shot

question answering. Notably, each stage often employs distinct training strategies and datasets tai-

lored to specific objectives[12, 13].

Fig. 3.1. Overview of multi-stage Controlnet Fine-tuning.
Note: Original and pose condition images are from the Captioned COCO-Pose dataset

Following this paradigm, our method, illustrated in Fig. 3.1, adopts a two-stage fine-tuning strat-

egy for ControlNet[4]. We freeze the parameters of the VAE encoder and the Stable Diffusion

7



Chapter 3. Proposed Method 8

model[3], and update only the parameters of ControlNet[4] during fine-tuning. In the Stage 1, the

goal is to obtain a converged ControlNet that enables the generated human image to roughly follow

the input pose. Precise pose fidelity is not required at this stage; instead, the objective is to make

the model responsive to diverse pose conditions. We use the original denoising loss[10] from Stable

Diffusion[3] during this phase.

In the Stage 2, the training objective shifts to refining the model to accurately follow the input

pose. Specifically, the goal is for the keypoints in the generated human image to align closely with

those in the input pose. To achieve this, we introduce a heatmap-guided denoising loss[8], which

applies a spatial mask in the latent space to assign higher weights to pose-relevant regions. This

encourages the model to focus more on human structure rather than the background. Through this

fine-tuning stage, the ControlNet model is further optimized to improve alignment accuracy between

the generated image and the pose condition.



4 Experiment

4.1 Dataset

We conduct training and evaluation using the Captioned COCO-Pose[15] dataset, which consists

of three data modalities: images, control poses, and corresponding textual captions. The dataset

includes 61.4k image-pose-caption triplets in the training split and 2.69k pairs for evaluation. All

images are resized to 512×512 resolution to meet the input requirements of Stable Diffusion 1.5[14].

During inference, the generated images are resized back to their original resolution for evaluation

purposes.

4.2 Training Details

We use Stable Diffusion 1.5[14] (SD 1.5) as the base model in our fine-tuning of ControlNet. A

consistent training setup is maintained across the two fine-tuning stages, with the primary differences

lying in the number of epochs and the loss functions used.

In the Stage 1, we train the ControlNet from scratch for 4 epochs with a batch size of 1, a gradient

accumulation step of 1, and a learning rate of 5×10−7. The loss function employed is the original

denoising loss from Stable Diffusion[3]. In the Stage 2, we retain the same batch size, learning rate,

and gradient accumulation setting, but reduce the number of training epochs to 2. In this phase,

we replace the standard denoising loss with a heatmap-guided denoising loss[8] to better emphasize

human pose conditions.The training loss and learning rate schedules for both stages are illustrated

in Fig. 4.1.

As an example, we take a single image from the training batch at timestep 859 of the forward

diffusion process to illustrate how the heatmap-guided loss is calculated during training, as shown

in Fig 4.2. After obtaining HM , we feed it into the VAE encoder to produce HE . We inspect the

minimum and maximum values of HE and find that they range from −3.14 to 3.34. Given that the

weight w is set to 0.05, the computation of Wa ensures that the mask has a tangible effect on the final

9
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loss calculation.

Fig. 4.1. Training loss and learning rate curves for the two-stage fine-tuning process.

Fig. 4.2. An illustration explaining the calculation of heatmap-guided loss.
Note: Original image is from the Captioned COCO-Pose dataset

4.3 Evaluation Strategy

We use checkpoint 255000 as our Stage 1 model and checkpoint 380000 as our Stage 2 model.

To evaluate the effectiveness of our proposed multi-stage fine-tuning method, we compare both Stage

1 and Stage 2 models against the baseline model, ControlNet-OpenPose[9]. The evaluation is based

on three main criteria: pose accuracy, image quality, and text-image alignment. While the primary

goal of our method is to improve the pose accuracy of the generated images, it is also crucial to

maintain the overall generative capabilities of the original ControlNet. Therefore, we include image

quality and text-image alignment as additional evaluation metrics to ensure that improvements in

pose fidelity do not compromise general generation performance.

Pose Accuracy: We adopt Object Keypoint Similarity[16] (OKS) as the primary metric for

evaluating pose accuracy. To extract keypoint positions from the generated images, we utilize the

YOLOv8x[17] pose estimation model. The OKS score is then computed by comparing the predicted

keypoints with the ground-truth annotations. Our objective is to achieve higher OKS scores relative

to the baseline models, indicating more accurate pose alignment in the generated outputs.
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Image quality: To assess image quality, we use LPIPS [18](Learned Perceptual Image Patch

Similarity), which measures perceptual similarity between generated and original images. Lower

scores indicate better quality. Our goal is to maintain LPIPS performance comparable to the baseline

to ensure pose improvements do not degrade image quality.

Text Alignment: We use the CLIP score[19] to evaluate text-image alignment. This metric

measures the similarity between generated images and their corresponding text, ranging from 1 to

100, with higher scores indicating better alignment. Our goal is to maintain CLIP scores comparable

to the baseline models.

4.4 Quantitative Results

The quantitative results shown in Table 4.1 demonstrate that our Stage 2 model achieves superior

performance in both image quality and text-image alignment. Most notably, compared with the

baseline[9], our Stage 2 model significantly improves pose accuracy, highlighting the effectiveness

and success of our proposed method.

Table 4.1: Quantitative comparison with the baseline in terms of pose accuracy, image quality, and
text-image alignment

Model CLIP Score ↑ LPIPS ↓ OKS ↑

Stage 1 32.3476 0.7762 0.6853
ControlNet-OpenPose 31.3786 0.7956 0.7186
Stage 2 (Ours) 31.9787 0.7657 0.7857

Additionally, regarding training time and resource efficiency, we used an RTX 3060 GPU to

train Stage 1 (31h) and Stage 2 (28h), totaling 59 hours to obtain the final model. In contrast,

the original ControlNet-OpenPose[9] checkpoint was trained on an A100 GPU for 300 hours. Our

method demonstrates significantly better efficiency. Moreover, our training dataset (64.1k image-

pose-caption pairs) is also smaller than the dataset used to train the original ControlNet.

4.5 Qualitative Results

As shown in Fig. 4.3 and Fig. 4.4 ,the Stage 2 model achieves more accurate pose alignment, with

the generated images’ keypoints aligning more closely to the input pose compared to the baseline.

In Fig. 4.3, the first row shows that the position of the boy’s right foot is more precisely aligned with

the pose condition in the results generated by the Stage 2 model. In the second row, the positions of

the girl’s hands are also better aligned in the Stage 2 results compared to earlier stages.
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Fig. 4.3. Qualitative results illustrating pose accuracy.
Note: Pose condition image is from the Captioned COCO-Pose dataset

Fig. 4.4. Qualitative results illustrating pose accuracy.
Note: Pose condition image is from the Captioned COCO-Pose dataset

Fig. 4.5 highlights the superiority of our Stage 2 model in terms of text-image alignment. In

this example, the prompt explicitly mentions a bicycle, and only the image generated by our Stage

2 model successfully reflects this detail. Fig. 4.6 further shows that our Stage 2 model generates a

more coherent composition in which the woman is holding an umbrella and sitting in a pose that

closely follows the guided condition.



Chapter 4. Experiment 13

Fig. 4.5. Qualitative results illustrating text alignment.
Note: Pose condition image is from the Captioned COCO-Pose dataset

Fig. 4.6. Qualitative results illustrating both pose accuracy and text alignment.
Note: Pose condition image is from the Captioned COCO-Pose dataset



5 Conclusion

In this paper, we propose a multi-stage fine-tuning strategy for ControlNet to enhance the pose ac-

curacy of generated human images. Our approach introduces two distinct denoising losses applied

across separate training stages. In the Stage 1, we adopt the original latent denoising loss to train

the ControlNet model until convergence. In the Stage 2, we continue fine-tuning the model using

a heatmap-guided denoising loss, which incorporates a heatmap mask in the latent space to empha-

size pose-relevant regions. This encourages the model to better preserve and align with the input

pose. We conduct extensive qualitative and quantitative evaluations in terms of pose accuracy, text-

image alignment, and overall image quality. Experimental results show that our method significantly

improves pose fidelity compared to the baseline.

Furthermore, our method is both efficient and practical, requiring only low-computation GPUs

and small datasets for fine-tuning, which leads to reduced training time. This demonstrates the

method’s suitability for resource-constrained environments.

14
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