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1. Introduction 
Social media platforms like TikTok, Instagram, and 
YouTube dominate modern digital life but have sparked 
concerns about “brain rot,” a term for compulsive 
scrolling and overstimulation. Such behaviors, common 
in the young generation, are linked to reduced focus, 
anxiety, and other mental health issues. Traditional 
research methods, like surveys or lab experiments, cannot 
fully capture large-scale, real-world engagement patterns. 
This thesis aims to identify measurable indicators of 
addiction and provide a foundation for ways to confront 
social media addiction by focusing on actual social media 
platform metadata. For this purpose, we  utilize user 
interaction logs and short videos for analyzing trends and 
patterns. 
2. Related Work 
Studies on social media addiction have primarily focused 
on psychological and neuroscientific perspectives, 
linking excessive use to altered brain activity, attention 
deficits, and negative emotional outcomes. Common 
methods such as EEG [1], fMRI [2], and self-reported 
surveys [3] offer valuable insights but are limited by 
small sample sizes, subjective biases, and a lack of 
real-world scalability. 

In contrast, computational research that uses 
large-scale user interaction data remains scarce. This 
thesis addresses this gap by not only modeling user 
interaction trends through social media log metadata but 
also examining video content via text-based methods 
such as ASR and video caption generation, aiming to 
capture a more holistic view of social media addiction. 
3. Method 
3.1. Large-scale User Activity Log  
For this study, we make use of the KuaiSAR dataset [4], 
originally designed for recommendation system research, 
which provides detailed user interaction logs but lacks 
explicit labels for “brain rot.” To address this, we define a 
hypothetical ground truth by identifying behavioral 
patterns common among addicted users, focusing on 
metrics such as the number of active days and average 
views per day. The dataset includes core features of user 
actions, such as follows, likes, clicks, forwards, playing 
time, timestamps, and search activity. To enhance 
analysis, we derive new features (e.g. watch efficiency 
and hour entropy) and evaluate categorical ratios of the 
content viewed to better capture user engagement trends.  

 
Fig. 1. SHAP result of the user activity features that display 
relevance to brain rot. Feature values define its impact based 

on the horizontal direction (left: non-brain rot, right: brain rot). 

 
Fig. 2. SHAP result of TF-IDF indicators for BLIP-2 generated 

captions. Feature values define its impact based on the 
horizontal direction (left: non-addictive, right: addictive). 

3.2. Social Media Short Videos 
We utilize the short-video dataset by Shang et al. [5], 
originally designed for recommendation system research, 
which provides both video content and associated 
metadata. As with the user activity log, we establish a 
hypothetical ground truth for “brain rot” by evaluating 
users’ active days and average views per day. While the 
dataset includes default ASR-generated text for each 
video, we supplement this by using BLIP-2 [6], an image 
captioning model, to produce three captions per video 
based on the first, middle, and last frames. This approach 
not only enriches the analysis but also demonstrates how 
captions can be generated when ASR text is unavailable. 
For this research, we select BLIP-2 over state-of-the-art  



 
Fig. 3. SHAP result of TF-IDF indicators for provided ASR 
text. Feature values define its impact based on the horizontal 

direction (left: non-addictive, right: addictive). 

(SOTA) video captioning models due to practical 
constraints, such as the dataset’s size being over 1TB of 
video and the excessive time required for full 
video-based captioning. 
4. Experiment 
4.1. Evaluation for User Activity Log 
For the user activity log analysis, we first downsample 
non-brain-rot users to match the number of users labeled 
as brain rot, ensuring balanced training data. We employ 
a Random Forest Classifier with 100 estimators and a 
maximum depth of 8 to capture non-linear patterns in 
user behaviors. To better understand feature contributions, 
we rely on SHAP (SHapley Additive exPlanations), 
which quantifies the impact of each feature on the 
model's predictions. Since our brain rot labels are 
hypothetical and not empirically verified by clinical 
experts, we focus more on SHAP-based interpretability 
rather than metrics like accuracy or precision, due to the 
true baseline performance being inherently unknown. 
4.2. Evaluation for Short Videos 
For the short video analysis, we label videos 
viewed by brain-rot users as addictive and those 
viewed by others as non-addictive. To ensure 
balance, we sample 15,000 videos from each group, 
removing any overlapping content that was 
watched by both user types. We apply a TF-IDF 
(Term Frequency–Inverse Document Frequency) 
approach to the ASR and BLIP-2 caption texts, 
using logistic regression combined with SHAP 
analysis to identify key terms contributing to the 
classification of addictive versus non-addictive 
content. As a complementary approach, we 
employ Latent Dirichlet Allocation (LDA) with 10 
latent topics, assigning a dominant topic to each 
video’s text data to uncover broader thematic 
patterns. 
5. Results and Discussion 
As shown in the SHAP analysis of Fig. 1, watched half 
count, duration_ms, and interaction_sum are the most 
influential indicators separating brain-rot users, with 
derived metrics like watch efficiency and hour entropy 
also contributing significantly. For the short videos, 

 

TABLE I.  LDA TOPICS OF TOP KEYWORDS FOR ASR AND CAPTIONS 

 
TF-IDF feature importance highlights several key caption 
terms (Fig. 2) and ASR terms (Fig. 3) that correlate with 
addictive versus non-addictive content, though these 
signals are weaker compared to user activity logs. The 
LDA topic modeling results found in Table 1 reveal clear 
differences between ASR and caption text: while ASR 
topics emphasize abstract or conversational words (e.g., 
look, good, money, people), the captions focus on 
concrete visual elements (e.g., holding, person, car, shirt). 
This contrast reflects the inherent difference between 
spoken or transcribed video content and image-based 
descriptions. 
6. Conclusion 
In this thesis, we explore social media overuse, or “brain 
rot,” by analyzing large-scale user activity logs and short 
video content. Using the KuaiSAR dataset, we derive 
behavioral features such as watch efficiency and hour 
entropy, with SHAP analysis revealing that metrics found 
in activity logs strongly indicate addictive behaviors. 
Complementary analysis of ASR text and BLIP-2 
captions, using TF-IDF and LDA, showed differences 
between abstract conversational terms in ASR and 
concrete visual descriptions in captions, offering 
additional insights into content patterns. Overall, our 
data-driven approach demonstrates that user behavior 
features provide the clearest signal for detecting overuse, 
while content-level analysis adds valuable context for 
understanding how addictive content is consumed. 
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Chapter 1

Introduction

1.1 Research Background

Social media platforms have become an integral part of modern life, shaping how individuals com-

municate, consume information, and spend their leisure time. With countless number of active users

across platforms such as Instagram, TikTok, YouTube, and X (formerly Twitter), these services of-

fer unparalleled connectivity, real-time interaction, and endless streams of entertainment [1]. While

these benefits are undeniable, a growing body of research has raised concerns about the long-term

psychological and behavioral effects of excessive social media use. In particular, the phenomenon

of compulsive engagement, characterized by habitual scrolling [2], binge-watching short-form con-

tent [3], and a persistent need for digital stimulation, has become increasingly prevalent, especially

among adolescents and young adults [4].

This pattern of usage, often referred to colloquially as “brain rot,” reflects a broader public unease

about the addictive design of modern social platforms. The term, once considered informal internet

slang, gained significant cultural traction in recent years and was notably chosen as Oxford’s Word

of the Year in 2024 [5]. This selection reflects not only the ubiquity of the concept but also a grow-

ing societal recognition of the potential harm associated with unmoderated content consumption. A

closely related behavior, “doom scrolling”—the act of continuously consuming negative or emotion-

ally charged content—has similarly been shown to exacerbate psychological fatigue and diminish

users’ emotional resilience [6]. Both terms underscore a cultural shift in how we conceptualize dig-

ital overexposure, especially in environments driven by endless feeds and algorithmic engagement

maximization.

From a psychological standpoint, excessive social media use has been linked to various ad-

verse outcomes, including decreased attention span, disrupted sleep patterns, heightened anxiety,

and symptoms of depression [7]. Neuro-cognitive studies suggest that the constant influx of novel

1
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stimuli—likes, comments, and algorithmically curated videos—can rewire reward pathways in the

brain, mimicking the effects observed in substance-based addictions [8, 9]. This is particularly con-

cerning among adolescents, whose brains are still in critical stages of development and are more

susceptible to reinforcement-driven behaviors. Moreover, the fear of missing out (FOMO), online

social comparison, and performance pressures contribute to a deteriorating sense of well-being, am-

plifying the mental health burden among heavy users [10].

1.2 Research Objectives

The convergence of behavioral, social, and technological factors has prompted researchers across

disciplines to investigate the underlying mechanisms of digital addiction. In the field of computer

science, there is an urgent need to develop data-driven frameworks to quantify and classify usage pat-

terns that may signal problematic engagement. By leveraging large-scale behavioral logs, machine

learning models, and explainable AI techniques, it becomes possible to identify indicators of overuse

and detect at-risk individuals. This thesis aims to contribute to this growing research effort by an-

alyzing user interaction data from short-form video platforms, with the ultimate goal of developing

interpretable models that can assist in the early detection of social media overexposure—colloquially

described as “brain rot.”

Detecting such addiction-like behavior remains a significant challenge, largely due to the com-

plex, multifaceted nature of user interaction patterns and the diversity of content formats. Traditional

approaches, which often rely on surveys, interviews, or psychological self-assessment question-

naires, have limitations in scalability, objectivity, and temporal resolution [11, 12, 13, 14]. While

these methods have been instrumental in shaping foundational understanding, they fall short of cap-

turing real-time, large-scale behavioral nuances necessary for modeling digital addiction. In contrast,

the growing availability of user interaction logs such as view histories, like or forward activities, and

time-series engagement data presents a powerful but underutilized opportunity to identify problem-

atic usage behaviors through computational means.

Notably, existing research on social media addiction and brain rot is dominated by approaches

rooted in medicine and neuroscience. Many studies employ electroencephalography (EEG), func-

tional MRI, or controlled observation of brain signals to analyze the neurological underpinnings of

addictive digital behavior [15, 16, 17]. These efforts, while scientifically valuable, are often con-

strained by small sample sizes and laboratory settings, limiting their applicability to the broader

population. Furthermore, within computer science, relatively few studies have explored this topic in

depth, despite its growing relevance to digital well-being and human-computer interaction. The lack

of large-scale, data-driven studies represents a critical research gap—particularly when considering
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that billions of users interact with algorithm-driven social platforms on a daily basis.

To date, very few studies have directly applied real-world social media usage data to study the

phenomena of digital overuse or addiction. Most research either simulates user behavior or extrap-

olates findings from indirect user-reported measures. There is virtually no precedent for applying

machine learning to comprehensive, high-volume social media interaction datasets with the specific

aim of detecting addiction-like patterns at scale. Such datasets are essential not only for building

generalizable models but also for ensuring that proposed detection methods can scale to real-world

applications. Given the widespread impact of social media across age groups, regions, and de-

mographics, research that embraces the computational potential of big behavioral data is urgently

needed.

This thesis responds to that need by utilizing a large-scale dataset of user activities on short-form

video platforms to uncover indicators of “brain rot” behavior. Through the integration of temporal

features, interaction metadata, and machine learning interpretability tools, we aim to provide both

a methodological foundation and empirical insight into how social media addiction manifests in

measurable digital behavior. Our ultimate goal is to establish a data-driven framework that advances

the understanding of social media overuse and offers viable pathways for detection and intervention

in practical settings.

1.3 Thesis Outline

The outline of this thesis is as follows:

Chapter 1: This chapter provides an overview of social media addiction and the societal discourse

surrounding “brain rot.” It outlines the research objectives and presents the structure of the thesis.

Chapter 2: We review prior research on social media addiction and cognitive decline, highlight-

ing both psychological studies and computational approaches.

Chapter 3: This chapter investigates behavioral traits associated with “brain rot” using large-scale

user activity data. We introduce a framework for hypothetically labeling users exhibiting addictive

behavior, propose relevant features, and construct derived features to enhance behavioral analysis.

Chapter 4: We explore methods for analyzing short-form video content to understand differ-

ences in user behavior. This includes the use of caption generation techniques to identify recurring

keywords and themes potentially linked to addictive engagement patterns.

Chapter 5: Building on Chapter 3, we introduce an alternative approach to user labeling and

reapply behavioral analysis techniques to evaluate consistency in detecting “brain rot” traits across
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different assumptions.

Chapter 6: The thesis concludes with a summary of findings, emphasizing the potential of large-

scale social media datasets for identifying behavioral markers of digital addiction and advancing

data-driven approaches in this domain.



Chapter 2

Related Work

2.1 Analytic Approaches to Social Media Addiction

A growing body of research seeks to analyze and predict social media addiction through compu-

tational and psychological approaches. These efforts are primarily rooted in the use of survey or

questionnaire-based data, through which participants self-report their usage patterns, emotional re-

sponses, and perceived levels of dependence. While such approaches have contributed foundational

knowledge to the field, they often lack the scale, granularity, and objectivity necessary for model-

ing real-world behavior. Nevertheless, these studies provide valuable insight into the psychological

dimensions of social media addiction and demonstrate the feasibility of applying statistical and ma-

chine learning techniques to subjective self-assessments.

Akter et al. [11] investigated the prediction of social media addiction during the COVID-19 pan-

demic by collecting responses from 504 participants in Bangladesh through structured questionnaires

and interviews. Participants were categorized into several addiction levels based on self-reported

behavioral patterns and psychological symptoms, such as restlessness and distraction. Utilizing ma-

chine learning classifiers such as logistic regression, decision trees, and support vector machines,

the study achieved high classification accuracy, with logistic regression performing best at approxi-

mately 94%. However, the data used in the study lacks behavioral granularity, such as timestamped

usage logs, types of consumed content, or frequency of engagement, thereby limiting its applicability

to real-time detection or deployment on actual social media platforms.

In a similar study, Mardiah and Kusnawi [12] analyzed user behavior using a publicly available

Kaggle dataset composed of 481 questionnaire responses. The study aimed to compare the effective-

ness of linear regression and Random Forest algorithms in predicting a user’s social media addiction

level. Features were selected through recursive feature elimination, and model performance was

evaluated using standard error metrics. Interestingly, linear regression slightly outperformed Ran-

5
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dom Forest in terms of root mean square error (RMSE) and mean absolute error (MAE), suggesting

that simpler models may suffice when working with limited and structured survey data. Despite this,

the study’s dataset was constrained by its small sample size and reliance on self-reported variables,

offering limited insights into temporal dynamics or content-specific engagement patterns.

Expanding on this paradigm, Ehsan and Basit [13] developed a machine learning framework to

classify users into addiction risk groups using behavioral and psychological indicators collected via

questionnaires. Their study employed a Random Forest classifier and examined correlations between

high social media use and symptoms such as irritability and mental fatigue. Feature importance

analysis identified social comparison behavior and the need for self-validation as strong predictors

of addiction. While their work emphasizes the link between social media use and mental health, it

also underscores the dependence on psychological self-disclosure, which is not readily accessible or

observable in actual platform usage logs.

Another notable contribution comes from Çiftci and Yıldız [14], who explored the relationship

between social media addiction and subjective well-being, particularly happiness and life satisfac-

tion. In their study of over 1,000 adults, they observed a negative correlation between addiction

scores and well-being measures. A mediation analysis revealed that life satisfaction partially me-

diated the effect of addiction on happiness. Moreover, they trained several regression models to

predict happiness levels, with elastic net regression emerging as the most effective. SHAP (Shap-

ley Additive Explanations) [21] analysis confirmed that social media addiction and life satisfaction

were among the most influential features in predicting user happiness. Though the study introduced

interpretable modeling into addiction research, it still depended on user surveys and omitted direct

behavioral metrics obtainable from platform data.

Taken together, these studies reflect a common trend in social media addiction research: a re-

liance on voluntary, small-scale survey or questionnaire-based datasets. While informative, these

datasets often lack connection to the actual metadata and usage characteristics of short-form media

content such as videos and reels. This disconnection limits the applicability of such research in

real-world platforms, where identifying addictive usage patterns requires high-resolution behavioral

traces, including session duration, engagement frequency, content type, and algorithmic exposure.

Furthermore, although a focus on psychological symptoms and self-perceptions provides im-

portant clinical and social insights, these dimensions are not practically observable by social media

platforms themselves. Platform operators cannot directly access or infer psychological traits such

as self-esteem, distractibility, or emotional fatigue without explicit user disclosure, making such

features difficult to operationalize for real-time monitoring or intervention.

Given these limitations, there is a pressing need for a shift in research emphasis—from subjec-

tive, small-scale psychological analysis to large-scale, metadata-driven investigation of user behav-
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ior. Incorporating interaction logs, video metadata, and content recommendation traces offers a path

toward scalable, objective, and actionable models of social media addiction. By grounding analysis

in actual user engagement patterns and content characteristics, future research can enable more ac-

curate detection of addiction-like behavior and potentially support platform-level interventions that

promote healthier digital consumption habits.

2.2 Medical Approaches of Cognitive Analysis

Researchers have increasingly applied neuroscience methods to uncover how excessive social media

use affects the brain. Using resting-state EEG and network analysis, for example, Yin et al. [15]

examined the brain network topology associated with “fear of missing out” (FoMO) on social media.

They found that individuals with high FoMO exhibited a more scale-free brain network organiza-

tion (higher Kappa and leaf fraction in EEG-based minimum spanning tree metrics) compared to

low-FoMO peers. Moreover, the link between this altered network topology and FoMO was partly

mediated by psychosocial factors – specifically, increased loneliness and more problematic SNS

use among high-FoMO individuals. This suggests that feeling socially isolated and compulsively

checking social networks may reinforce each other alongside measurable brain-network differences

in heavy social media users. In a related EEG study, Sun et al. [16] compared Internet-addicted

individuals to healthy controls and observed a disrupted functional connectivity pattern: the ad-

dicted group’s brain networks had significantly lower clustering coefficients and shorter path lengths

(notably in beta and gamma bands), indicative of a shift toward a more random, less optimally small-

world organization. These EEG findings imply that problematic Internet/SNS use is accompanied

by global topological changes in brain connectivity, potentially reflecting less efficient information

integration in the brain’s resting-state networks.

Complementing the EEG-based evidence of functional network alterations, other work has iden-

tified structural brain differences associated with social media overuse. Using MRI-based voxel-

based morphometry, He et al. [17] showed that higher SNS addiction levels correlate with reduced

grey matter volume in the bilateral amygdala, a key region of the brain’s reward/impulsive system.

This amygdala shrinkage mirrors patterns seen in substance and gambling addictions and may indi-

cate a neuroplastic adaptation (pruning of neurons) that makes the reward system more “efficient” or

sensitized. Interestingly, He et al. also found that, unlike classic drug addictions where chronic use

is linked to reduced anterior cingulate cortex (ACC) volume (impaired self-control), SNS addicts

did not show ACC volume loss; in fact, ACC volume was positively correlated with SNS addic-

tion severity. In other words, the neural profile of social networking addiction exhibited a mix of

addiction-like changes (in the amygdala) and distinct features (no structural deficit in the ACC). This

points to both similarities and differences between technology-related addictions and traditional ad-
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dictions in terms of brain anatomy, and it highlights that social media overuse may hyper-engage

impulsive reward circuits while leaving regulatory control areas relatively intact or even heightened.

Despite these neuroscientific insights, there are clear limitations in translating them to real-time,

large-scale applications. Most evidence comes from controlled lab studies with small samples and

specialized equipment that are not feasible to deploy broadly. Even if the cost-effective EEG-based

machine learning models are to be proposed for classifying Internet addiction and suggested they

could be practical at scale, in reality an SNS platform cannot easily obtain users’ brain data in

the wild. Real-time monitoring of millions of users’ EEG signals or brain scans is logistically and

ethically prohibitive since users are not going to wear EEG devices during everyday social media use,

and brain imaging (MRI) is even less accessible. Thus, an operator of a social media service cannot

implement these neuro-assessment techniques on their own as a tool to detect or mitigate addiction

among their user base. Any intervention based on brain metrics would require medical cooperation

and individual user participation well outside the normal social media experience. In summary,

neuroscientific approaches deepen our understanding of social media addiction’s neural correlates,

but their practical utility for real-time detection or large-scale management of user addiction remains

very limited under current technology and infrastructure. The insights gained are valuable for the

research and clinical context, yet social media companies must rely on other strategies to address

problematic use in practice.

TABLE I. STRENGTHS AND WEAKNESSES OF EACH METHOD FOR EXAMINING
SOCIAL MEDIA ADDICTION

Method Accessibility Credibility Complexity Cost Efficiency Scalability

Survey or questionnaires ✓ △ ✓ ✓ ×
EEG △ ✓ × △ ×
MRI × ✓ × × ×



Chapter 3

Brain Rot Analysis on Behavioral Insights from

Large-Scale User Interactions

3.1 Recommendation Dataset: KuaiSAR

In recent years, large-scale datasets sourced from real-world social media platforms have become in-

creasingly vital for advancing personalized recommendation systems. Among these, there are three

datasets based on Kuaishou short video platform publicly available: KuaiRec [18], KuaiRand [19],

and KuaiSAR [20]. All three datasets contain user interaction logs centered around short-form video

consumption, capturing key behavioral signals from a large number of users. These resources have

significantly contributed to the development and evaluation of recommendation systems tailored for

short video content—an area that has gained prominence due to the explosive growth of platforms

like TikTok, Instagram Reels, and Kuaishou itself.

While the primary intention behind these datasets is to facilitate research in recommendation

systems, they also hold substantial value for behavioral and user modeling tasks. In particular, their

rich, time-resolved interaction records make them suitable for exploring patterns of excessive or

compulsive engagement—traits commonly associated with what is colloquially referred to as “brain

rot.” The granular nature of the data allows researchers not only to study user preferences and rank-

ing algorithms but also to quantify engagement intensity, identify anomalous usage patterns, and

potentially classify at-risk individuals. This dual utility—supporting both recommendation perfor-

mance and behavioral analysis—positions these datasets as ideal candidates for research on social

media overuse and digital addiction.

Among the three datasets, KuaiSAR (Short video Active Recommendation dataset) was selected

for this thesis due to its comprehensive coverage of user interactions and the inclusion of detailed

user- and item-level features. Compared to KuaiRec and KuaiRand, KuaiSAR provides a broader

9
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interaction scope and more robust metadata, making it particularly suitable for large-scale behavioral

analysis. Specifically, KuaiSAR is composed of four core components: rec inter.csv, src inter.csv,

user features.csv, and item features.csv.

The rec inter.csv file contains 14,605,716 recommendation actions, representing passive content

exposure and active user engagement with recommended short videos. These interactions form the

central focus of our analysis, as they most closely mirror the habitual and sometimes compulsive

behavior seen in short-form video consumption. Each row in this file corresponds to a single rec-

ommendation event and includes the following fields: user id, item id, playing time, duration ms,

time, click, forward, like, follow, search, and search item related. These attributes collectively offer

a high-resolution view of user engagement, enabling detailed analysis of behavioral patterns such as

passive scrolling, binge-watching, and repetitive interactions—all of which are indicative of addic-

tive tendencies in the context of “brain rot.”

In contrast, the src inter.csv file records 5,059,169 search actions, where users actively searched

for content. While this information is valuable for understanding intent-based behavior, our re-

search prioritizes scroll-based passive consumption over active retrieval. Thus, we focus solely on

rec inter.csv, as it better aligns with the involuntary and habitual traits often discussed in the context

of digital overuse.

The user features.csv file includes demographic and behavioral metadata for 25,877 users. One

particularly important feature is the activity level, which is measured as the ratio of days a user was

active over the entire logging period. This measure provides a quantitative basis for distinguishing

between casual users and potentially addicted users, especially when analyzed alongside engagement

signals such as session frequency, duration, and interaction density. These user-level attributes are

essential for defining profiles of high-risk individuals within a large, heterogeneous user base.

Additionally, the item features.csv file describes content characteristics for 6,890,707 unique

items (i.e., short videos or images). These features include categorical labels such as genre or topic,

which may offer further insight into the types of content that correlate with high or repetitive engage-

ment. While our primary focus remains on user behavior, content-level analysis can complement

user modeling by identifying whether certain themes—e.g., humor, drama, or visually stimulating

clips—are more frequently consumed by users exhibiting overuse patterns.

By employing KuaiSAR’s rich dataset structure, we aim to uncover trends and indicators of

potential addiction-like behavior. The sheer scale of the data, combined with its detailed feature set,

enables a realistic and scalable framework for studying “brain rot” in real-world user populations.

Unlike prior studies that relied on survey-based assessments or small experimental samples, our

work utilizes millions of genuine user interactions to infer behavioral patterns, increasing both the

generalizability and applicability of our findings. This makes KuaiSAR a foundational component of
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our research, allowing us to investigate the intersection of recommendation systems, user behavior,

and digital well-being through a data-driven lens.

3.2 Proposed Method

3.2.1 Labelling Users with ”Brain Rot”

A fundamental challenge in this study lies in the absence of explicit diagnostic labels for social

media addiction—or “brain rot”—within existing large-scale behavioral datasets. The KuaiSAR

dataset, like other recommendation-based benchmarks, is designed to support research in recom-

mender systems and does not include ground truth labels that indicate whether a user is addicted

or cognitively affected by excessive platform use. Consequently, it becomes necessary to manually

define and assign labels that serve as proxies for the concept of brain rot.

However, this process is inherently constrained by the lack of medical or psychological assess-

ments in the dataset. There exists no authoritative signal that definitively determines which users

are experiencing behavioral addiction. Without expert diagnosis or clinical ground truth, we adopt

a hypothetical labeling scheme guided by behavioral patterns observed in prior literature on so-

cial media addiction. In particular, we use an existing attribute in the KuaiSAR dataset known as

rec active level, which categorizes users into four levels (0 to 3) based on the number of days they

were active on the platform. Higher levels correspond to a greater number of active days, reflecting

more frequent engagement with the platform’s content.

Given that excessive daily interaction is a hallmark of social media overuse, the rec active level

metric presents a logical candidate for approximating user addiction. Individuals with high daily

platform access are more likely to exhibit compulsive scrolling behavior, reduced self-regulation,

and the type of persistent consumption often described colloquially as “brain rot.” Based on this

rationale, we define our hypothetical ground truth as follows: users labeled with rec active level

3 are considered to exhibit brain rot-like behavior, while those in levels 0 through 2 are treated as

non-affected users for the purpose of binary classification.

The distribution of users across these activity levels provides a reasonably balanced label ratio.

Specifically, 6,362 users fall into level 3, while levels 2, 1, and 0 contain 8,030, 7,226, and 4,259

users, respectively. Although this definition is not medically validated, it enables a scalable and

behaviorally grounded approach to label generation, which is critical for training and observing

machine learning models aimed to classify and analyze traits relating to activities of problematic

social media use.
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3.2.2 Engineering New Activity Log Features

The KuaiSAR dataset offers a robust foundation for modeling user behavior on short-form video

platforms by capturing a wide range of user interactions. Among the most fundamental activity log

features included are: forward, like, follow, search, click, duration ms, and playing time. These

features reflect core user behaviors that collectively describe how content is consumed, interacted

with, and potentially engaged with at a deeper level.

Each of these actions is intuitively defined. The forward action indicates when a user shares or

forwards a video, typically signaling a high level of interest or a desire to distribute content further.

The like action reflects explicit positive feedback, which is commonly associated with content pref-

erence or user satisfaction. The follow action indicates a decision to subscribe to or continue tracking

the content from a particular creator, suggesting a deeper or more long-term form of engagement.

The search action captures the act of manually inputting a query to seek specific content, which can

be interpreted as goal-directed or curiosity-driven behavior. The click action measures when a user

initiates a video playback, serving as a base event for subsequent interactions.

The last two features—duration ms and playing time—warrant further clarification. The dura-

tion ms attribute represents the total length of the video in milliseconds, providing a fixed reference

for content length. Meanwhile, playing time records how long the user actually watched the video,

also in milliseconds. The ratio between playing time and duration ms thus becomes an informative

indicator of how attentively users are consuming content, which could relate to behavioral tendencies

like skipping or binge-watching.

TABLE II. BOOL ACTION LIKELIHOOD AND NUMERIC ACTION MEAN COMPARED
BETWEEN ADDICTED AND NON-ADDICTED USERS

Actions Brain Rot non-Brain Rot

forward (bool) 0.2123% 0.3466%
like (bool) 2.4071% 3.4128%

follow (bool) 0.3654% 0.4357%
search (bool) 0.2971% 0.4038%
click (bool) 46.8938% 50.9669%

duration ms (ms) 94711.0808 90627.8481
playing time (ms) 24147.1827 25399.6694

To better understand how users labeled with and without brain rot differ, we first conducted a

simple descriptive analysis by calculating the average values of these features for each group. Table

II shows the results of this comparison. At first glance, there appear to be observable differences in

interaction patterns between Brain Rot and non-Brain Rot users. Notably, non-addicted users have

slightly higher engagement in most boolean actions, such as forwarding (0.3466% vs. 0.2123%),

liking (3.4128% vs. 2.4071%), following (0.4357% vs. 0.3654%), and searching (0.4038% vs.

0.2971%). Likewise, the mean click rate is higher for non-Brain Rot users (50.97%) compared to
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Brain Rot users (46.89%). Interestingly, in terms of video consumption, Brain Rot users exhibit

slightly lower average playing time (24,147 ms) and higher duration ms (94,711 ms) than their

counterparts, who show 25,399 ms and 90,627 ms respectively.

Although these statistics offer an initial lens into behavioral distinctions, the overall magnitude

of difference is relatively small. The boolean action differences lie mostly below a 1% margin, and

even numerical features such as playing time or duration ms show limited divergence in means.

These weak signals suggest that while default action features are useful for establishing a baseline

understanding of user behavior, they may not be sufficient to form a strong basis for detecting or

modeling brain rot-like tendencies.

To address this limitation, we engineered a set of composite behavioral features derived from

the fundamental ones. These new metrics are designed to better capture nuanced aspects of user

engagement, temporal activity, and consumption patterns. The engineered features include:

Interaction Rates: These include like rate, follow rate, and search rate, each defined as the pro-

portion of a specific action to total click count. For example, like rate = (like count) / (click count).

These rates provide normalized indicators of how often specific behaviors occur relative to general

activity, helping control for individual differences in overall usage volume.

InteractionRate(a)u =
∑

Nu
i=1 au,i

∑
Nu
i=1 clicku,i

, a ∈ {like, follow,search}. (3.1)

Watch Efficiency: Defined as the ratio of playing time to duration ms, this feature quantifies

how thoroughly users watch content. Users with low watch efficiency might be rapidly skipping

through content, while high-efficiency users may be more engrossed.

WatchEfficiencyu =
∑

Nu
i=1 playing timeu,i

∑
Nu
i=1 duration msu,i

. (3.2)

Engagement Ratio: This composite metric sums the like and follow counts and normalizes them

by the click count. It reflects how interactive a user is per content viewed, offering a richer signal of

affective or social engagement.

EngagementRatiou =
∑

Nu
i=1(likeu,i + followu,i)

∑
Nu
i=1 clicku,i

. (3.3)

Session Count: To model temporal clustering of activity, we define a session as a group of clicks

separated by less than 30 minutes. Session count thus reflects the number of distinct viewing bursts

and can distinguish between habitual short bursts versus prolonged single sessions.
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SessionCountu =
∣∣{s ∈ Su | gap(s j,s j−1)≥ 30 min

}∣∣ . (3.4)

Night Owl Ratio: This metric quantifies the proportion of user interactions that occur between

midnight and 5:00 AM. Elevated values may suggest irregular usage habits or possible signs of

dependency, especially if combined with high frequency.

NightOwlRatiou =
∑

Nu
i=1⊮{00:00≤ti<05:00}

Nu
. (3.5)

Top Category Ratio: By examining the most frequently watched content category and calculating

its viewing frequency over all interactions, this metric assesses content diversity. A high top category

ratio may suggest obsessive consumption of particular content genres.

TopCategoryRatiou =
max
c∈C

(
∑

Nu
i=1⊮{catu,i=c}

)
Nu

. (3.6)

User Category Ratio: This equation defines the ratio ru,c of interactions that user u has with con-

tent category c. The numerator nu,c represents the number of interactions in category c, normalized

by the total interactions across all categories C .

ru,c =
nu,c

∑c′∈C nu,c′
. (3.7)

Category Entropy: This equation defines the category entropy H(cat)
u for a user u, which measures

the diversity of content categories the user engages with. The term pu(c) represents the probability

(or proportion) of interactions from user u within category c, and C denotes the set of all categories.

A small constant 10−9 is added inside the logarithm to prevent numerical instability when pu(c) = 0.

Higher entropy values indicate a more diverse viewing pattern, while lower values suggest a strong

preference for specific categories.

H(cat)
u =− ∑

c∈C

pu(c) log2
(

pu(c)+10−9) . (3.8)

Hour Entropy: This equation defines the hour entropy H(hour)
u for a user u, which quantifies the

diversity of the user’s activity across the 24 hours of a day. The term pu(h) represents the probability

of user u being active during hour h. A small constant 10−9 is added inside the logarithm to avoid

numerical issues when pu(h) = 0. A higher value of H(hour)
u indicates that the user’s activity is spread
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across many hours, while a lower value suggests activity concentrated within specific hours.

H(hour)
u =−

23

∑
h=0

pu(h) log2
(

pu(h)+10−9) . (3.9)

Watched Half Count: This equation defines the watched half count for a user u, which represents

the total number of videos that the user watched at least halfway. For each video i in the set of Nu

videos, the indicator function ⊮(·) counts 1 if the ratio of playing time to video duration is at least

0.5.

watched half countu =
Nu

∑
i=1

⊮
(

playing timeu,i

duration msu,i +1
≥ 1

2

)
. (3.10)

Active Ratio: Calculated as the total number of boolean actions divided by total playing time,

this feature captures action density during consumption. A user with a high active ratio is constantly

interacting with the platform, which could signal compulsive behavior.

ActiveRatiou =
∑

Nu
i=1(likeu,i + followu,i + searchu,i + clicku,i + forwardu,i)

∑
Nu
i=1 playing timeu,i

. (3.11)

These engineered features provide a more expressive representation of user behavior and allow

for finer-grained classification and interpretation. They also facilitate the modeling of higher-level

behavioral traits—such as impulsiveness, habitual engagement, or goal-directed exploration—that

may not be captured by the basic features alone. By augmenting the dataset with these additional

metrics, we aim to enhance the sensitivity and interpretability of downstream machine learning mod-

els designed to detect addictive usage patterns and assess the severity of social media overexposure.

3.3 Experiment

To validate our approach to classifying users with brain rot tendencies, we conduct a comprehensive

machine learning experiment using features derived from both raw activity logs and engineered be-

havioral metrics. The objective of this experiment is to assess the feasibility of detecting potentially

addicted users using interpretable models grounded in interaction behavior, temporal activity, and

content consumption patterns.

We begin by loading two primary datasets: user features wBR.csv, which contains user IDs

alongside their assigned brain rot level (as defined in the labeling process), and feature merged.csv,

which contains granular user interaction data including timestamps and categorical labels. Before
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feature construction, we parse timestamps into datetime objects and extract the date and hour to

support temporal feature generation. From this parsing, we achieve features such as active days,

late night actions, and avg actions per day to represent user-level temporal engagement.

As mentioned in Subsection 3.2.2, we engineer a suite of custom behavioral metrics from the logs

and apply them for the analysis on the brain rot user prediction model. For instance, hour entropy

measures the randomness of viewing hours. Category-based features such as top category ratio and

category entropy capture content preferences and diversity of interest. We also encode user affinity

to the top five most frequent content categories using one-hot encoding (fav cat * and cat ratio *

features). Together, these features offer a multi-faceted representation of user behavior across tem-

poral, categorical, and engagement dimensions.

Once all features are computed and merged, we remove users with missing data and assign

binary labels—1 for users with brain rot level 3, and 0 otherwise. To ensure class balance, we apply

down-sampling on the majority class, resulting in a balanced dataset for training. The final feature

set includes base activity metrics along with the addition of engineered features.

We choose a Random Forest Classifier as the primary model due to its robustness, interpretability,

and compatibility with SHAP explainability tools. The model is configured with 100 estimators and

a maximum depth of 8. While we apply 5-fold cross-validation with the F1 score as a consistency

check, our primary goal is not to optimize predictive accuracy. Instead, the experiment focuses on

uncovering which behavioral features are most indicative of brain rot-like tendencies.

For this purpose, we split the dataset into 70% training and 30% testing using stratified sampling.

Although a standard classification pipeline is followed, the emphasis is not on evaluation metrics

such as precision or recall. This is because the labels are based on a hypothetical ground truth

rather than clinically verified diagnoses. Rather than interpreting the model’s predictive accuracy,

we use the trained classifier to analyze feature importance and identify which user behaviors are

most strongly associated with the hypothesized condition.

To understand which features contribute most significantly to the model’s decisions, we ap-

ply SHAP. We compute SHAP values on the test set and visualize the results using a beeswarm

plot. This analysis confirms the influence of features such as watch efficiency, night owl ratio, and

category-specific interactions, and provides transparency into how different behaviors are weighted

in classifying potential brain rot users.

This experimental pipeline demonstrates that user behavioral logs—when properly engineered

and interpreted—can offer measurable signals indicative of problematic usage. While limitations re-

main regarding ground truth reliability, the methodology presents a scalable and interpretable frame-

work for behavioral health assessment in digital media environments.
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Figure 3.1. Application of SHAP on a random forest algorithm defining the features that contribute
to the classification.

3.4 Results and Discussion

To gain insight into which behavioral patterns most strongly influence the model’s predictions, we

visualize the SHAP value distribution across all features using a beeswarm plot, as shown in Fig. 3.1.

This plot illustrates both the importance and directional impact of each feature on the classification

outcome. Each point represents an individual user, colored according to the corresponding feature

value (red for high, blue for low), and positioned horizontally based on its SHAP value—i.e., its

effect on increasing or decreasing the likelihood of being labeled as brain rot.

The most influential feature is search rate, where low feature values strongly contribute to a brain

rot prediction. This suggests that users who are less likely to perform search actions rather click or

scroll through the videos, exhibiting behavior aligned with excessive platform exploration, possibly

reflecting compulsive seeking of stimulation. Similarly, search, the raw count of search actions,

reinforces this finding.

Several category-related features also appear prominently in the top ranks, including cat ratio 5,

cat ratio 13, cat ratio 20, cat ratio 36, respectively representing topics ”Style,” ”San Nong,” ”pixiv,”

and ”Real Estate Home Furnishings.” These indicate the proportion of videos consumed from par-

ticular top-level content categories. A high concentration in certain content categories may reflect

narrow consumption habits or obsessive interest in specific themes—common characteristics in be-

havioral addiction literature. The SHAP values suggest that strong preference for these dominant

categories contribute to defining the brain rot and non-brain rot users.

Other significant features include active days and session count, both of which reflect high-

frequency platform usage and habitual re-engagement. watch efficiency, defined as the ratio of

playing time to duration ms, also plays a key role, where lower efficiency (i.e., skipping behavior)

is associated with brain rot classification. This aligns with the observation that heavy users may
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engage in fragmented or inattentive content consumption.

Engagement-related features such as follow rate, engagement ratio, and like rate appear in the

middle of the importance spectrum. While they provide moderate contributions, their directionality

is mixed, suggesting that interaction volume alone is not a strong predictor unless contextualized

with behavioral patterns like time of use or content preference.

Toward the bottom of the ranking are features such as click, hour entropy, and some of the

one-hot encoded favorite category indicators (e.g., fav cat 3, fav cat 12, respectively categories for

”game” and ”food”). Their low SHAP magnitudes indicate minimal influence in the final decision-

making process of the classifier, despite their theoretical relevance.

Overall, the SHAP analysis confirms that high search activity, content fixation, and habitual

usage patterns are among the most informative behavioral signals for identifying brain rot tendencies.

It also demonstrates that while many features contribute marginally, only a select few drive the

majority of model predictions. These insights validate our engineered features and support their use

in modeling problematic platform use—even under hypothetical ground truth conditions.



Chapter 4

Investigation on Short Video Feature Trends Through

Text Generation

4.1 Short-video Dataset and Video Captioning

4.1.1 Option for Short Videos

The analysis of user behavior and content trends in short-video platforms requires not only activity

logs but also access to the video content itself. In our previous work, we rely on the KuaiSAR

dataset, which provides extensive user interaction data and metadata for items such as video IDs,

categories, and popularity metrics. However, KuaiSAR does not include the short-video files, which

limits our ability to analyze content-level characteristics. To investigate visual traits and patterns in

short-form videos, we require a dataset that combines both user behavior logs and the actual video

content.

Such datasets are scarce due to privacy concerns, copyright restrictions, and the large storage

requirements of short-video files. After surveying available resources, the dataset “A Large-scale

Dataset with Behavior, Attributes, and Content of Mobile Short-video Platform” by Shang et al.

emerges as the most viable option within the publicly available datasets [22]. This dataset contains

not only detailed user activity data and video attributes but also includes 153,561 short-video files,

making it a valuable resource for content-based analysis. The dataset offers a wide variety of features

such as user-item interaction logs, video metadata, and categorical labels, which together provide a

comprehensive view of user preferences and platform dynamics.

Our goal is to utilize this dataset to uncover content-related traits that might correlate with ad-

dictive or repetitive user engagement. However, to translate the visual information in these videos

into a form that can be analyzed alongside behavioral logs, we require a mechanism for generating

19
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textual descriptions of video content. We approach this task through video captioning techniques. At

this stage, we briefly note that our focus is on extracting representative descriptions of videos using

automated caption generation; the details of this process will be explored in depth in the subsequent

section.

4.1.2 Video Captioning Approaches

Video captioning is an active research area that has achieved remarkable progress in recent years,

with several state-of-the-art (SOTA) models dominating benchmark evaluations. The most promi-

nent ones are mPLUG-2, MaMMUT, and VideoCoCa.

• mPLUG-2 is a multimodal foundation model that integrates image, text, and video tasks us-

ing a modular transformer-based architecture with modality-specific encoders [23]. It is pre-

trained on large-scale image-text and video-text data and evaluated on datasets such as MSR-

VTT, MS COCO, Flickr30k, and Kinetics-400, achieving state-of-the-art results in video cap-

tioning and QA.

• MaMMUT uses a simple vision-language design with a single vision encoder and a text de-

coder, trained jointly for contrastive image-text alignment and generative captioning [24]. It

extends seamlessly to video tasks with spatio-temporal tokens and performs strongly on MSR-

VTT, MSVD, and VQAv2 benchmarks.

• VideoCoCa adapts Google’s CoCa model to video by processing sampled frames through the

original image-text transformer architecture with minimal changes [25]. It achieves strong

results on MSR-VTT, ActivityNet Captions, VATEX, and YouCook2, excelling in video cap-

tioning, QA, and retrieval tasks.

While these models are powerful, they come with substantial computational costs. Running these

video captioning pipelines on large datasets requires both high-end GPUs and significant inference

time. The short-video dataset we use, which contains 153,561 videos with a combined size of

approximately 3 TB, poses a major challenge in this regard. Even if the dataset were split into

smaller subsets—such as 1/3 of the total—it would still amount to nearly 1 TB of data, making the

direct use of heavy video captioning models computationally impractical in our environment.

To mitigate these computational demands, we opt for a lighter yet effective approach: utilizing

an image captioning model instead of full-scale video captioning. Specifically, we adopt BLIP-2

(Bootstrapping Language-Image Pre-training) [26], which is a cutting-edge vision-language model

capable of generating accurate textual descriptions from single video frames. By sampling key

frames from each video and applying BLIP-2, we can approximate video captions while avoiding
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Figure 4.1. Graph of cluster classification output of social media users from short-Video dataset
[22].

the time-intensive process of frame-by-frame temporal modeling required by SOTA video caption

models. This trade-off allows us to handle the scale of our dataset efficiently while still extracting

meaningful textual representations of video content for subsequent analysis.

This strategy offers a practical balance between computational feasibility and content inter-

pretability. In the following sections, we detail how we implement this image-based captioning

pipeline and how the generated captions are integrated into our broader investigation of short-video

trends.

4.2 Proposed Method

To investigate content-related indicators of addictive tendencies, we first establish labels indicating

whether each video is associated with “brain rot” behavior. Similar to our previous work with user-

level activity data, this short-video dataset—being primarily designed for recommendation system

research—does not include any labels indicating addictive or compulsive consumption. Therefore,

we construct a hypothetical ground truth by analyzing user activity patterns and clustering users

based on their engagement metrics.
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Since the dataset by Shang et al. does not provide an active level attribute per user, we derive

behavioral clusters using the number of interactions, specifically the average views per day. In

addition, we also consider the active days of each user. As shown in Fig. 4.1, applying a clustering

algorithm, we form four distinct user groups that represent different levels of platform activity. We

focus on two representative clusters for comparison:

• Cluster 3: The most active cluster, which includes 57 users who exhibit the highest number of

interactions and activity days,

• Cluster 1: The least active cluster, which consists of 4,761 users with minimal platform en-

gagement.

We label the users in the most active cluster as “brain rot” users and those in the least active

cluster as “non brain rot” users. The “brain rot” group has collectively watched 34,316 videos, while

the “non brain rot” group has watched 65,832 videos. For the purpose of binary classification, we

assign the videos viewed by the “brain rot” cluster to the addictive class, while the videos from the

“non brain rot” cluster are assigned to the non-addictive class.

However, certain videos are consumed by both user groups, which introduces potential noise

in our labeling. To address this, we identify overlapping videos—those watched by both addicted

and non-addicted users—and exclude them from the dataset. As a result, the set of videos labeled

as addictive is reduced from 34,316 items to approximately 15,000 unique videos. This filtering

step ensures that the content associated with the “brain rot” group is distinct, allowing for a cleaner

comparison against the non-addictive content.

Once the video subsets are finalized, we utilize BLIP-2, a lightweight yet state-of-the-art image

captioning model, to generate textual descriptions of video content. Since BLIP-2 operates on single

frames rather than entire video sequences, we adopt a key-frame sampling strategy, extracting the

first, middle, and last frame from each video. For each selected frame, we prompt BLIP-2 with

an instruction to “describe the current scene,” resulting in three captions per video. These captions

collectively provide a concise textual summary of the video’s content.

To prepare the caption data for analysis, we apply text filtering and processing to reduce exces-

sive repetition and remove artifacts such as redundant phrases. This refinement step ensures that the

generated textual descriptions are both clean and semantically rich, which is essential for subsequent

feature extraction and trend analysis.
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4.3 Experiments

As mentioned earlier in the Proposed Method section, we prepare a balanced dataset consisting of

15,000 videos labeled as addictive and 15,000 videos labeled as non-addictive. These videos are

a subset of the short-video dataset by Shang et al., which we download directly from their hosted

server. The downloading process is computationally intensive; retrieving all 30,000 videos required

for the experiment takes approximately one full day, consuming around 700–800 GB of storage. If

we are to download the complete set of 153,561 videos, it requires roughly 5–7 days and multiple

terabytes of disk space.

For video captioning, we utilize the BLIP-2 model (as described in the Proposed Method), run-

ning inference on the first, middle, and last frame of each video to generate three descriptive captions

per video. This process is performed on a NVIDIA RTX 2080Ti GPU with 8 GB of VRAM, which

provides sufficient computational resources to handle batch processing of frames at scale. BLIP-

2’s relatively lightweight architecture enables the captioning of 30,000 videos within a reasonable

timeframe, avoiding the excessive overhead associated with heavy state-of-the-art video captioning

models.

Once the captions are generated, we analyze them using a TF-IDF (Term Frequency–Inverse

Document Frequency) approach to quantify the importance of words across the addictive and non-

addictive video groups. As part of this analysis, we train a logistic regression model to classify videos

based on their captions. However, as stated previously, accuracy, precision, and other classification

metrics are not central to our study, since we are working with hypothetical ground truth labels rather

than clinically validated or objectively confirmed data. The purpose of this model is not performance

benchmarking but rather identifying linguistic features that are more prominent in addictive versus

non-addictive content.

For training, we split the data into 70% training and 30% testing sets, ensuring that captions

from the same video are not leaked across both splits. The text features are extracted using TF-

IDF vectorization, where we configure TfidfVectorizer with lowercasing enabled, English stop-word

removal, and a maximum of 1,000 features to capture the most significant terms across the cap-

tion dataset. After vectorization, we train a logistic regression classifier with a maximum of 1,000

iterations (max iter=1000) and set class weight=”balanced” to compensate for any potential class

imbalance between addictive and non-addictive videos. The trained model is then evaluated using

the test set, and while metrics such as accuracy, precision, and recall are computed, they are not

central to our analysis since we work with a hypothetical ground truth rather than validated labels.

Additionally, the script includes SHAP value analysis to interpret feature importance. After

fitting the logistic regression model, SHAP values are computed on the test set to rank TF-IDF
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features by their influence on the model’s predictions. The top features (i.e., words with the highest

mean absolute SHAP values) are then visualized in a summary plot for further analysis

To complement the TF-IDF analysis, we apply Latent Dirichlet Allocation (LDA) to extract

high-level thematic structures from the video captions, providing an unsupervised perspective on

recurring narrative and visual elements in both addictive and non-addictive content. The captions

are preprocessed by converting text to lowercase, tokenizing, and removing English stopwords and

non-alphabetic tokens. We construct a dictionary and bag-of-words corpus, filtering out terms that

appear in fewer than five captions or in more than 50% of captions, thereby eliminating extremely

rare and overly generic words that add little semantic value. The LDA model is trained with 10 latent

topics, using a fixed random seed for reproducibility and 10 passes to ensure stable convergence. For

each caption, we assign a dominant topic and analyze the distribution of these topics across the two

classes, supported by visualizations of topic frequencies and normalized proportions.

The choice of 10 topics reflects a balance between thematic granularity and interpretability, as

preliminary experiments with fewer topics such as 6 topics had difficulties in capturing the diversity

of themes present in the data, while a larger number of topics led to overly fragmented or redundant

themes. Similarly, the no below=5 and no above=0.5 thresholds were selected to mitigate noise from

rare words and remove high-frequency terms that lack discriminative power. We also compute the

difference in topic prevalence between the two classes, ranking topics by absolute skew to highlight

those that are overrepresented in addictive content. This analysis offers a complementary lens to TF-

IDF, enabling a deeper understanding of the thematic patterns that may correlate with compulsive

user engagement.

Since the dataset also has the texts of Auto Speech Recognition (ASR) for each videos, we also

test these files as input for TF-IDF analysis and LDA topic analysis.

4.4 Results and Discussion

4.4.1 TF-IDF

As shown in Fig. 4.2, the SHAP results for the TF-IDF analysis of captions reveal both notable

strengths and clear limitations. On the positive side, several high-ranking words provide meaningful

distinctions between addictive and non-addictive videos. These terms often reflect visually descrip-

tive elements or recurring thematic content that may characterize short videos with high engagement.

The top words identified by SHAP exhibit strong influence scores, indicating that the TF-IDF-based

logistic regression model captures some degree of discriminative signal from the textual data. How-

ever, a key weakness is that many of the top features are generic or overly broad terms, which might
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not strongly correlate with addictive content patterns. This suggests that while caption-based TF-

IDF features offer interpretability, their predictive power is constrained by the lack of temporal or

semantic context beyond individual keywords.

In contrast, the SHAP results for the ASR-generated transcripts present a slightly different be-

havior, though similar strengths and weaknesses persist. Looking at Fig. 4.3, the top-ranked words

extracted from speech recognition output tend to reflect spoken cues, dialogue snippets, or narrative

elements present in the videos. While some of these words seem relevant for distinguishing addic-

tive content, particularly when tied to conversational or repetitive speech patterns, others appear to

be noise or filler terms with limited semantic value. This introduces additional challenges, as ASR

transcripts are often prone to errors, especially when dealing with noisy audio or background music

commonly found in short videos. Nevertheless, the ASR-based features still provide complementary

insights that are not always captured by the visual captions, adding a layer of linguistic nuance to

the analysis.

The nature of these SHAP results stems largely from the characteristics of TF-IDF and the nature

of the data. Since TF-IDF emphasizes word frequency without capturing context or word order, both

caption and ASR analyses tend to highlight words that frequently appear in one class (addictive vs.

non-addictive) while neglecting higher-level semantics. Moreover, BLIP-2 captions are generated by

an image captioning model that focuses on object and scene descriptions, while ASR captures spoken

language, which may include storytelling or commands. The combination of limited linguistic depth

and variability in video content leads to a sparse, keyword-driven feature space where certain words

stand out, but the overall discriminative signal remains weak.

When comparing the SHAP graphs for captions and ASR, we observe minimal structural differ-

ences. Both exhibit the characteristic “T-shape” distribution of SHAP values, where most features

cluster near zero, with a few influential words creating extended horizontal spreads. The primary

difference lies in the specific set of words that dominate each graph, reflecting the modality of ori-

gin—visual descriptions for captions versus spoken language for ASR. Beyond these variations in

word content, the overall patterns and distribution of SHAP values remain similar, underscoring the

shared limitations of keyword-based feature extraction in both approaches.

Overall, these findings highlight both the utility and the constraints of relying on TF-IDF-based

textual features for modeling addictive short-form video content. While SHAP analysis provides in-

terpretable evidence of which words influence the classification, the results underscore the necessity

of incorporating richer contextual and multimodal features to improve predictive performance. The

limitations observed, particularly the overemphasis on generic or context-independent words suggest

that future work could benefit from advanced language representations such as word embeddings or

transformer-based encoders, which capture semantic relationships and sequential dependencies be-
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yond isolated terms. Moreover, expanding the analysis with alternative prompts, such as generating

descriptions of video dynamics, whether the content is visually flashy, fast-paced, or intensive in

movement may reveal behavioral or stylistic patterns that correlate more strongly with addictive

content. Integrating these enhanced textual features with temporal activity patterns and visual cues

could lead to a more robust and holistic understanding of the signals underlying addictive content.

Figure 4.2. SHAP result of TF-IDF analysis on BLIP-2-driven video caption generation.
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Figure 4.3. SHAP result of TF-IDF analysis on provided ASR text.

4.4.2 Latent Dirichlet Allocation (LDA)

We apply LDA to uncover dominant topics present in both the BLIP-2 captions and the ASR-

generated transcripts. Table III summarizes the top keywords associated with each topic, while Fig.

4.4 and Fig. 4.5 illustrate the topic distributions for non-addicted and addicted classes. These results

highlight recurring themes in both visual descriptions and spoken content, providing a higher-level

perspective on content trends.

TABLE III. LDA TOPICS WITH TOP KEYWORDS OF ASR AND CAPTIONS

Topic Top Keywords (ASR) Top Keywords (Captions)

0 one, look, like, good, big holding, putting, person, hand, phone
1 first, game, also, new, two girl, hat, boy, asian, pink
2 china, chinese, us, people, yang car, street, city, walking, driving
3 yuan, money, buy, boss, video game, screenshot, screen, character, showing
4 man, woman, mother, old, father shirt, white, black, blue, red
5 eat, water, food, small, fish sitting, bed, table, chair, baby
6 love, heart, like, life, song standing, front, sexy, suit, tie
7 people, good, many, like, person chinese, poster, chi, character, characters
8 go, come, let, going, want group, standing, front, screen, people
9 hello, said, could, would, human bowl, eating, cup, plate, preparing

For the ASR topics, Topic 0 is associated with descriptions of size or appearance, including

words such as “one,” “look,” and “good.” Topic 1 focuses on games and comparisons, with terms
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like “first,” “game,” and “new.” Topic 2 is related to countries and people, featuring references to

“china,” “chinese,” and “us.” Topic 3 emphasizes money and commerce, while Topic 4 highlights

family and gender roles with terms like “mother” and “father.” Topics 5 and 6 correspond to food and

eating and love or emotions, respectively. Topic 7 represents general characteristics of people, while

Topic 8 focuses on actions and movements (e.g., “go,” “come,” “want”). Finally, Topic 9 captures

conversations or greetings, including words like “hello,” “said,” and “would.”

For the caption topics, we observe a slightly different thematic structure. Topic 0 centers around

handling objects such as “holding,” “hand,” and “phone.” Topic 1 is focused on people and ap-

pearance, including references like “girl,” “boy,” and “asian.” Topic 2 highlights vehicles and urban

scenes, with terms such as “car,” “street,” and “walking.” Topic 3 is strongly linked to games and

screenshots, while Topic 4 focuses on clothing and color themes. Topics 5 and 6 refer to indoor

scenes or family settings (e.g., “sitting,” “bed,” “baby”) and standing or posing scenes (e.g., “front,”

“suit,” “tie”). Topic 7 stands out with words indicating Chinese text or visual media, while Topic

8 focuses on group activities or TV/stage performances. Topic 9 captures food and kitchen scenes,

with words like “bowl,” “eating,” and “preparing.”

Analyzing the distributions shown in Fig. 4.4 and Fig. 4.5, we see that the dominant topics

are fairly evenly spread between addictive and non-addictive content. For captions, topics such as

3 (games) and 7 (Chinese text) show slightly higher frequency in addictive content, while ASR re-

sults highlight topics 3 (money) and 9 (conversation) as more frequent in addictive videos. This

suggests that addictive content may lean toward videos depicting social interaction, active instruc-

tions, or games, while non-addictive content includes similar themes but with marginally different

proportions.

The general shape of the topic distributions remains consistent between captions and ASR, show-

ing no significant structural difference beyond the specific keywords associated with each topic. This

consistency reinforces the observation that both modalities, visual captions and audio transcripts,

capture similar underlying content themes. However, ASR adds a conversational dimension (e.g.,

greetings, commands) that is largely absent in captions, while captions tend to emphasize objects,

attire, and visual attributes.

In summary, the LDA-based topic modeling of captions and ASR transcripts provides valuable

insights into the recurring themes and narrative elements present across both addictive and non-

addictive videos. While the overall topic distributions remain relatively balanced between the two

classes, subtle and slight differences such as the prominence of social interactions, action-oriented

content, games and money in addictive videos indicate potential behavioral and contextual cues that

could inform content characterization. The complementary nature of captions and ASR transcripts

further suggests that combining visual and conversational topics may yield a richer understanding
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of video dynamics. Future work could explore more descriptive prompts or scene-level annotations,

such as identifying whether a video is fast-paced, flashy, or emotionally charged, to capture stylistic

patterns beyond static keywords. Such refinements could enhance the interpretability and discrimi-

native power of topic-based features when analyzing addictive video content.

Figure 4.4. A graph showing the dominant LDA topic observed for each BLIP-2-generated caption.
Please refer to Table III for the information about each Topic ID.

Figure 4.5. A graph showing the dominant LDA topic observed for each ASR provided from the
dataset. Please refer to Table III for the information about each Topic ID.



Chapter 5

Revisiting Activity Log Analysis for Brain Rot

Classification

5.1 Configuring a Different Hypothetical Label for Addiction

In Chapter 3, the classification of users in the KuaiSAR dataset into “brain rot” and “non-brain rot”

categories was primarily based on the recommendation-mode activity level, which relied on the total

number of active days recorded for each user. While this labeling strategy provided an initial baseline

for identifying highly engaged users, it assumes that the number of days a user accesses Kuaishou

directly reflects their level of addictive behavior. However, this assumption may not always hold

true. For example, a user might log into the platform on a large number of days but consume only

a small number of videos per session—potentially fewer than three digits per day—indicating a less

intense engagement level despite the high number of active days.

To address this limitation, we propose a revised labeling approach that takes into account both

average views per day and active days, in a manner consistent with the feature adjustments discussed

in Chapter 4. By combining these two metrics, we aim to capture not just the frequency of platform

access but also the intensity of content consumption during each active session. This approach

provides a more nuanced characterization of user behavior, as it distinguishes between users who

frequently check the platform for short periods and those who engage in extended binge-watching

sessions, which are more indicative of brain rot tendencies.

To implement this revised labeling strategy, we partition the users into four clusters based on

their joint distribution of average views per day and total active days. This clustering allows us to

identify distinct user engagement patterns, ranging from sporadic viewers with low daily consump-

tion to highly active users with consistently large volumes of viewed content. Similar to the original

framework, we continue to define the most active cluster—those users exhibiting both high daily

30
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views and frequent activity—as representing the “brain rot” group. The remaining three clusters,

which reflect lower levels of engagement and consumption intensity, are classified as non-brain rot.

This redefinition of labels provides a more realistic approximation of addictive behavior, as it

accounts for both platform access frequency and content consumption volume. It also aligns better

with the behavioral dynamics observed in real-world social media usage, where addiction is typi-

cally characterized by not just how often a user checks the platform but also by how much content is

consumed during each session. This refined labeling method serves as the foundation for the subse-

quent activity log analyses, allowing for a more accurate exploration of user behaviors and patterns

that may signal problematic or compulsive usage.

5.2 Experiments

To validate the revised labeling approach introduced in this chapter, we conduct a machine learn-

ing experiment that mirrors the methodology outlined in Chapter 3, with only minor adjustments

to accommodate the new label configuration. The objective remains to evaluate the potential of

behavioral and temporal features in distinguishing users classified under the updated brain rot label.

We utilize the same two primary datasets: user features wBR2.csv, which contains user IDs

alongside the new binary brain rot labels based on average daily views and active days, and fea-

ture merged.csv, which provides detailed user interaction logs. As before, timestamps are parsed

into date and hour components to generate temporal features such as active days, late night actions,

and avg actions per day. We also retain the engineered behavioral metrics from Chapter 3, including

hour entropy, category entropy, and category affinity ratios.

The labeling adjustment alters the class distribution slightly, but we maintain a balanced dataset

by down-sampling the majority class. The most active cluster of users, as defined by the joint

distribution of average daily views and active days, is assigned a label of 1 (brain rot), while all

other clusters are labeled as 0 (non-brain rot).

We again employ a Random Forest Classifier with 100 estimators and a maximum depth of

8, as this configuration offers both robust performance and compatibility with SHAP-based fea-

ture explainability. A 70/30 train-test split with stratified sampling is used, ensuring proportional

representation of both classes. As in Chapter 3, we prioritize interpretability over raw predictive

performance, using SHAP to identify the features that most strongly influence the classification.
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5.3 Results and Discussion

Figure 5.1. SHAP result of the user activity features with new brain rot labels (including
watched half count and duration ms).

Figure 5.2. SHAP result of the user activity features with new brain rot labels (excluding
watched half count and duration ms).

Fig. 5.2 illustrates the SHAP value distribution of features derived from user activity logs under

the newly configured brain rot labels. Compared to Fig. 3.1, which represents the earlier label-

ing method based solely on active days, we observe notable shifts in the relative importance of
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behavioral and category-based features. In particular, click, watched half count, duration ms, and

interaction sum emerge as dominant predictors in Fig. 5.2, suggesting that the revised labels place

stronger emphasis on engagement intensity and content consumption depth rather than merely the

frequency of access.

The cat ratio XX features, which reflect the proportion of videos from specific content cate-

gories viewed by a user, also play a significant role. For example, cat ratio 28 corresponds to real-

time information content, while cat ratio 3 represents game-related videos. Similarly, cat ratio 37,

cat ratio 29, and cat ratio 26 correspond to strange people and strange phenomena, science, and

photography, respectively. The relatively high and low feature values of these features in Fig. 5.2

suggest that users labeled as brain rot tend have the tendency to primarily watch some contents while

avoiding others. Such findings can be an indicator for repetitive or binge-like viewing patterns.

When comparing Fig. 3.1 and Fig. 5.2, one clear difference is the elevated role of engagement-

based features (e.g., watched half count and interaction sum) in 5.2, whereas Fig. 3.1 showed a

stronger focus on search-related and session-based metrics. For instance, in Fig. 3.1, search rate and

various cat ratio features dominated the top positions, implying that the earlier model captured more

exploratory behavior rather than sustained engagement for classifying the users. The current analysis

suggests that once labels account for average daily views alongside active days, the model prioritizes

depth of interaction (e.g., total watch duration, partial video completion) as stronger indicators of

brain rot behavior.

Additionally, watch efficiency remain consistently important across both figures, indicating that

temporal viewing patterns and the ability to sustain attention on videos are robust behavioral mark-

ers regardless of labeling strategy. However, Fig. 5.2 demonstrates a more balanced contribution

between temporal features and content category features, which may imply that the revised label-

ing better captures a holistic picture of user behavior. Furthermore, hour entropy appears to be a

stronger indicator for the new labels, noting that users with brain rot relentlessly watches contents

on any hours.

In conclusion, the comparison between Fig. 3.1 and Fig. 5.2 highlights a shift in emphasis from

exploratory metrics (e.g., search behaviors) to features representing viewing depth, interaction con-

sistency, and focused content preferences. While features such as search rate and session count lost

some influence under the new labeling, indicators like watched half count, click, and hour entropy

gained prominence, reflecting the importance of intensive and constant viewing sessions as a core

element of brain rot classification. This adjustment in feature importance validates the decision to

incorporate average daily views into the labeling process, as it leads to a feature landscape more

aligned with binge-like user behavior patterns.
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Conclusion

6.1 Summary

This thesis explored the potential of identifying social media addiction, referred to as brain rot,

through the analysis of large-scale activity logs and video content features. The findings demonstrate

that extracting activity log features relevant to brain rot tendencies was highly effective. By adopting

engineered behavioral metrics and explainable machine learning models, such as the Random For-

est classifier with SHAP-based interpretation, we successfully uncovered patterns that distinguish

between addicted and non-addicted users. The SHAP plots and values revealed clear behavioral

contrasts between the two groups, highlighting key indicators such as watch duration, interaction

depth, and content category preferences.

A key refinement of the study was the relabeling of hypothetical ground truth based on both

average daily views and active days, rather than solely on active days. This adjustment emphasized

the behavioral differences between user groups, validating the relevance of more intensity-driven

metrics. The relabeling and subsequent reanalysis proved meaningful, as the revised SHAP feature

rankings better captured signals of binge-like consumption, making the retest of user activity logs

both worthwhile and insightful.

In contrast, the video caption analysis utilizing TF-IDF and SHAP for feature interpretation

proved less effective than the activity log approach. While the predictive power of caption-based

features was relatively weak, some patterns emerged through discriminative TF-IDF terms, which

pointed to recurring themes or descriptive words associated with addictive videos. The SHAP val-

ues, although subtle, suggested that certain keywords had consistent, albeit limited, influence on

classification.

To complement this, the LDA topic evaluation provided a broader view of thematic trends across
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captions and ASR-generated transcripts. While the differences between addicted and non-addicted

content were not drastic, a handful of topics—such as food preparation, group activities, and fast-

paced or visually dynamic content—appeared more frequent among addictive videos. At the same

time, the analysis underscored that both groups shared a considerable overlap in the types of topics

viewed, suggesting that addiction may arise not only from specific content themes but also from

viewing patterns and intensity.

Lastly, the comparative analysis of ASR transcripts and BLIP-2 captions highlighted the comple-

mentary strengths and weaknesses of both modalities. Captions provided clear visual descriptions

but lacked conversational context, while ASR transcripts captured dialogue and narrative cues at

the cost of noise and transcription errors. Both approaches exhibited similar limitations in terms of

keyword-driven feature extraction, reinforcing the notion that textual features alone may not suffi-

ciently capture the complexity of addictive video content.

6.2 Future Work

While this thesis demonstrates promising results in identifying brain rot tendencies through user

activity logs and textual analysis, several avenues remain for further exploration and refinement.

One immediate improvement lies in the labeling strategy. The current approach, though effective,

relies on hypothetical ground truth based on engagement metrics such as average views and active

days. Future research could integrate additional behavioral signals—such as session duration, con-

tent revisit rates, or user feedback—to construct more robust and realistic labels. Collaborating with

psychological studies or incorporating survey-based assessments could also provide a partial ground

truth to validate machine learning outputs.

Another key direction is the enhancement of textual feature modeling. While TF-IDF provided

a baseline for caption and ASR analysis, its bag-of-words nature fails to capture deeper semantics or

context. Transformer-based models such as BERT or CLIP-text encoders could be explored to rep-

resent captions and transcripts with richer contextual embeddings. Additionally, prompt engineering

for image or video captioning models could focus on generating descriptive cues about visual style,

pacing, or emotional tone (e.g., whether a video is “fast-paced,” “flashy,” or “intense”), potentially

offering more direct signals of addictive content.

Expanding into multimodal analysis also presents a valuable opportunity. By combining user

activity logs with video-based features—such as motion intensity, editing patterns, or visual dy-

namics—future studies could better understand how both user behavior and content characteristics

jointly influence addiction tendencies. The inclusion of audio cues, sentiment analysis of speech, or

engagement signals like comment activity could further strengthen the holistic view of user interac-
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tion.

Lastly, future work could investigate temporal evolution of brain rot behavior by modeling how

user patterns change over time. Sequential models, such as recurrent neural networks or transform-

ers tailored for time-series data, could capture the progression of viewing habits and identify early

warning indicators of excessive engagement. By pursuing these enhancements, future research can

build on this thesis to achieve a deeper, more accurate understanding of social media addiction and

its underlying mechanisms.
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