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1. Introduction 

 Endoscopy plays a vital role in clinical practice 

by enabling the examination of internal cavities 

within the human body. In medicine, endoscopy is 

classified based on the organ being investigated. 

It serves as the primary method for identifying 

abnormalities, including both precancerous and 

cancerous conditions in the gastrointestinal tract, 

with diagnoses confirmed through biopsy 

sampling. Various endoscopic techniques are 

available for gastrointestinal tract examinations, 

offering detailed insights into abnormal areas. 

Despite considerable progress, achieving 

accurate and real-time automatic polyp detection 

remains a significant challenge. This is primarily 

due to the wide variations in polyp characteristics, 

such as shape, texture, size, and color, as well as 

the presence of artifacts that are similar to polyps 

during endoscopy.  

In this study, we propose a novel Gaussian 

Enhanced Euclidean norm Ghost attention 

(GEEG) module to enable reliable real-time polyp 

detection in endoscopic images and videos. This 

innovative attention mechanism enhances the 

features generated by the Ghost convolution’s [1] 

cheap operations by improving the ability in the 

extraction of inter-channel and spatial 

information within the convolutional layers. The 

proposed module is incorporated into the YOLOv8 

[2] backbone, creating a new model named 

GEEG-YOLOv8, aimed at overcoming the 

obstacles in polyp detection. Experimental 

evaluations on three public datasets reveal that 

our method surpasses current state-of-the-art 

approaches in both accuracy and detection speed. 

2. Proposed Method 

The overall framework of GEEG-YOLOv8 is 

shown in Fig. 1. The architecture is composed of a 

backbone, a neck, and a detection head. The 

backbone integrates several regular GhostConv 

[1] and GEEG-C2f modules. While the GEEG 

module improves information extraction 

capability, it also adds complexity to the model. To 

address this, GEEG is only incorporated into C2f 

to minimize the addition of excessive parameters. 
 

Fig. 1. The overall architecture of the proposed 

GEEG-YOLOv8. (Reproduced from our previous 

work [3].) 

The GEEG-Bottleneck, illustrated in Fig. 1c, 

consists of two GEEG modules. The first GEEG 

module acts as a squeezing layer, reducing the 

input channels by half, while the second GEEG 

module expands the channels to match the 

shortcut path. Then the inputs and outputs of 

these two GEEG modules are connected by a 

residual connection. The first GEEG module is 

followed by Batch Normalization (BN) [4] and the 

SiLU [5] activation function, while only BN is 

applied after the second module. The GEEG-C2f, 

depicted in Fig. 1b, includes 𝑛 GEEG-Bottleneck 

with two parallel gradient flow branches, allowing 

it to capture richer gradient flow information 

while reducing parameters. The neck utilizes 

PANet, which combines feature maps from lower 

layers with deeper layers to enhance information 

flow.  

 

Fig. 2. Gaussian Enhanced Euclidean norm Ghost 

attention module block details. (Reproduced from 

our previous work [3].) 



GEEG-YOLOv8 adopts an anchor-free 

approach with a decoupled detection head. The 

first branch of the detection head outputs the loss 

for object bounding box, while the second branch 

outputs the loss for object classification. 

Self-attention [6] has been proven to be highly 

effective in capturing long-range global 

dependencies. However, its quadratic 

computational complexity makes it impractical for 

real-time deployment of hardware with limited 

resources. To address this challenge, we introduce 

the lightweight Gaussian Enhanced Euclidean 

norm (GEE) attention mechanism, which is 

designed to enhance GhostConv performance with 

a negligible number of additional parameters. 

This approach is based on the hypothesis that 

smaller attention activations are linked to global 

contexts with larger absolute values [7]. GEE 

consists of two modules: channel attention and 

spatial attention [8], each featuring two branches, 

as depicted in Fig. 2b. 

GEE attention mechanism is integrated after 

cheap operations in GhostConv to form GEEG 

module, as depicted in Fig. 2a. Although 

conventional GhostConv can reduce 

computational cost, its capacity for information 

extraction is limited, as the cheap operations only 

capture local information from inherent feature 

maps produced by 1 × 1 point-wise convolution. 

By incorporating GEE attention mechanism, 

GhostConv's ability to capture long-range global 

channel and spatial information is significantly 

elevated. 

3. Experiments 

All experiments were performed using an 

NVIDIA RTX 4070 GPU with 12GB of VRAM. We 

evaluate our model on various polyp detection 

datasets. Overall, our model outperforms other 

methods across all metrics on many datasets. The 

proposed GEEG-YOLOv8 also outperforms other 

models specifically designed for polyp detection. 

Thanks to GEEG's efficient and lightweight 

design, the number of parameters and GFLOPs in 

our model are reduced compared to the original 

YOLOv8. While it does not achieve the lowest 

number of parameters and GFLOPs, 

GEEG-YOLOv8 obtains the second-highest FPS 

at 303. Our proposed method achieves new 

state-of-the-art in polyp detection accuracy with 

low model complexity, showing its potential for 

real-world applications where real-time 

processing is essential. Qualitative results are 

shown in Fig. 3. 

4. Conclusion 

This thesis proposes a novel Gaussian 

Enhanced Euclidean norm Ghost attention 

module designed to enhance the accuracy and 

speed of polyp detection in endoscopic images and 

videos. 

 
Fig. 3. Qualitative comparisons of polyp detection 

on three datasets. Green and red denote the 

ground truth and model prediction, respectively. 

(Reproduced from our previous work [3].) 

The module utilizes a Gaussian function 

applied to the Euclidean norm of channel and 

spatial dimension, refining the output features of 

channel and spatial attention mechanism. This 

approach improves Ghost convolution’s ability to 

capture long-range global contextual information. 

The module is incorporated into the backbone of 

YOLOv8, forming a new model called 

GEEG-YOLOv8. Extensive experimental 

evaluations show that the proposed method 

achieves robust generalization without requiring 

information from additional dimensions. With a 

minimal increase in model parameters and 

GFLOPs, GEEG-YOLOv8 achieves 

state-of-the-art performance in polyp detection 

across three datasets.  
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ABSTRACT 

Endoscopy plays a vital role in clinical practice by enabling the examination 

of internal cavities within the human body. In medicine, endoscopy is classified 

based on the organ being investigated. It serves as the primary method for 

identifying abnormalities, including both precancerous and cancerous conditions 

in the gastrointestinal tract, with diagnoses confirmed through biopsy sampling. 

Various endoscopic techniques are available for gastrointestinal tract 

examinations, offering detailed insights into abnormal areas. 

Endoscopy produces internal images or videos of the gastrointestinal tract's 

walls or tissues, aiding in early detection and treatment, which significantly 

improves survival rates. An expert doctor is required to evaluate the findings, as 

abnormal regions may appear similar to normal ones and can occur at any location 

along the tract. Additionally, the doctor should be capable of making immediate 

diagnoses, especially with the advancements in modern endoscopic technology. 

As a result, computer-assisted techniques have become increasingly important and 

advantageous. Automated algorithms powered by computers are now used in 

clinical tasks to analyze images and videos for diagnosis, treatment planning, and 

prognosis. Deep learning, in particular, has emerged as a highly effective method 

for detection tasks. With the continuous advancement of hardware computing 

capabilities, its application is growing in popularity. 

Despite considerable progress, achieving accurate and real-time automatic 

polyp detection remains a significant challenge. This is primarily due to the wide 

variations in polyp characteristics, such as shape, texture, size, and color, as well 

as the presence of artifacts that are similar to polyps during endoscopy. In this 

study, we propose a novel Gaussian Enhanced Euclidean norm Ghost attention 

(GEEG) module to enable reliable real-time polyp detection in endoscopic images 

and videos. This innovative attention mechanism enhances the features generated 

by the Ghost convolution’s cheap operations by improving the ability in the 

extraction of inter-channel and spatial information within the convolutional layers. 

The proposed module is incorporated into the YOLOv8 backbone, creating a new 

model named GEEG-YOLOv8, aimed at overcoming the obstacles in polyp 
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detection. Experimental evaluations on three public datasets reveal that our method 

surpasses current state-of-the-art approaches in both accuracy and detection speed. 
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CHAPTER 1 INTRODUCTION 

Colorectal cancer (CRC) ranks as the third most common cause of cancer-related 

deaths. While the five-year survival rate for colon cancer is around 68%, the 

corresponding rate for stomach cancer is just 44% [1]. Reducing CRC-related mortality 

can be greatly enhanced by early detection and removal of precancerous lesions, such 

as colon polyps, which may later progress to CRC. This chapter focuses on colorectal 

abnormalities, including both precancerous and cancerous conditions, and emphasizes 

the importance of early diagnosis. Additionally, problem statements, motivation, 

objectives, and contributions of the thesis will be presented. 

1.1 Overview and Problem Statement 

Around the world, nearly 5 million people are currently living with CRC at various 

stages and undergoing different treatments. In 2018, CRC accounted for 1.8 million new 

diagnoses and 881,000 deaths, representing 1 in 10 cancer-related fatalities [2]. The 

highest rates of CRC incidence are found in Europe, Australia, North America, and East 

Asia, while developing countries have lower rates, although these are on the rise [2]. 

Tracking incidence and mortality trends is complex, but Arnold et al. [3] identified three 

global patterns tied to countries development levels: increasing incidence and mortality 

in China, Russia, and Brazil; rising incidence but declining mortality in Canada, United 

Kingdom, Denmark, and Singapore; and reductions in both incidence and mortality in 

countries like the United States, Japan, and France [2], [4]. 

The increase in CRC cases is thought to be driven by factors such as diet, obesity, 

and lifestyle risks, while improved cancer treatment and management practices in 

developed nations are linked to lower mortality rates [2], [4]. Additionally, screening 

and early detection programs launched in the 1990s in United States and Japan are 

believed to have significantly improved survival rates and reduced mortality from CRC 

in these regions [2]. 

Globally, mortality rates from colorectal cancer (CRC) are rising rapidly and are 

predicted to continue increasing, particularly as life expectancy grows and the disease 

is more prevalent in older populations. Since 2012, the number of deaths caused by CRC 

has risen from 668,000 to 881,000 [2], [4]. The progression of CRC is a lengthy, multi-

step process that evolves from precancerous lesions into malignant tumors, with 
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mortality rates strongly linked to the stage at which the disease is diagnosed [24]. 

Illustrative examples of several types of polyps are presented in Fig. 1.1. 

The five-year survival rate is 90% for cases detected at a localized stage, 70% for 

regional cases, and only 10% for metastatic disease [4], [5]. These figures emphasize 

the urgent need for effective screening programs that can identify CRC in its early stages 

and detect precancerous lesions that can be removed to reduce cancer risk. Early 

detection and removal of precancerous polyps can dramatically improve survival rates, 

thus the importance of screening and detection as life-saving measures [4]. 

 

Fig. 1.1. Examples of neoplastic lesions in the colon tract [6]. 

A polyp is an abnormal growth that occurs on the inner lining of the colon. Polyps 

can differ in size, shape, attachment type to the colon wall, location, and histopathology. 

Most polyps do not cause clinical issues, only about 5% may develop into cancer over 

time. However, predicting the future behavior of a polyp based solely on its appearance 

is not possible. As a result, the majority of polyps are typically removed as a precaution 

[7]. Adenomatous and hyperplastic polyps are the most commonly detected types during 

screening colonoscopy. Although all adenomas have the potential to become cancerous, 

the majority are benign when detected. On the other hand, hyperplastic, mucosal, 

inflammatory, and hamartomatous polyps are considered non-cancerous and do not have 

malignant potential [8]. 
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Globally, the prevalence of adenomas varies by region and correlates with the 

regional incidence rates of colorectal cancer. Autopsy studies from various regions have 

reported prevalence rates ranging from 22% to 61% [8]. Colonoscopy studies have 

indicated rates between 25% and 41% [8]. The risk of adenomas increases with age. 

Most of adenomas are less than 1.0 cm in diameter. A national study found that 38% of 

adenomas were 0.5 cm or smaller, 36% were between 0.6 and 1.0 cm, and 26% were 

larger than 1.0 cm. Of these, around 60% of patients had a single adenoma, while 40% 

had multiple adenomas [8]. Hyperplastic polyps, the most common type of non-

neoplastic colon polyps, have a reported prevalence of 20% to 34% [8]. These polyps 

are typically small, that are 0.5 cm or less, and appear flat or slightly convex, often pale 

or similar in color to the surrounding mucosa [8]. 

The majority of colon polyps are less than 5 mm in diameter and sessile. Small to 

medium-sized polyps (6 to 9 mm in diameter) make up about 80% of all colon polyps. 

The prevalence of adenomas varies based on factors such as genetic risk, age, gender, 

obesity, and smoking habits. During a western screening/surveillance population, 

adenoma prevalence reaches approximately 50% [7]. Therefore, the demand for skilled 

physicians who can effectively distinguish between normal and abnormal mucosa is 

urgent. However, the limited number of such experts often results in doctors managing 

multiple patients simultaneously, especially in lower-level healthcare facilities. To 

address this, younger endoscopists are increasingly involved in the diagnostic process. 

These young physicians need thorough training from practical examples to enhance their 

abilities. 

For the above reasons, computer-aided detection methods assist physicians in 

making more accurate diagnoses by serving as a second opinion. These systems can 

reduce the subjectivity involved in the diagnostic process and ease the burden on patients 

during regular follow-ups. Furthermore, they function as a training resource for junior 

doctors to learn how to recognize abnormal regions and gain experience with endoscopic 

tools operation. 

1.2 Motivation 

In recent years, computer-based technology for medical diagnosis and treatment 

has become a rapidly advancing field. Automated computer systems can assist 
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physicians by extracting clinically significant information from endoscopic images, 

serving as a valuable second opinion [9], [10], [11]. These systems are designed to detect 

and classify various disorders at different stages, enhancing survival rates. Automated 

systems typically involve multiple steps. Endoscopic videos or images are first 

preprocessed to improve quality by reducing noise or enhancing specific features. 

Abnormal regions are then automatically detected and, in some cases, segmented. In 

literature, computer-based models can either execute a single task (such as 

preprocessing, detection, segmentation, or classification) or perform multiple tasks 

simultaneously. 

Deep learning methods have significantly improved the accuracy of automatic 

polyp detection in endoscopic videos and images. However, several challenges limit the 

performance of these methods. Polyp characteristics, such as shape, texture, and size, 

vary greatly, making it difficult for deep learning models to accurately identify them. 

Additionally, polyps can be obscured by factors like water flow, artifacts such as 

bubbles, light scatters during endoscopy procedure, or bodily tissues. Under specific 

camera view, polyps may appear very similar to the intestine wall. Unlike common 

moving object detection with stationary cameras, endoscopy involves a moving camera. 

The complex camera motion introduces unavoidable noises, such as motion blur, 

occlusion, and variations in brightness, which can affect detection accuracy. As a result, 

deep learning models may fail to detect polyps in certain images or videos. 

In recent years, several studies have been proposed to enhance the performance of 

automatic polyp detection [12], [13], [14], [15], [16], [17], [18]. Many of these 

approaches are video-based object detection, utilizing features from extra dimensions to 

improve detection accuracy. However, this leads to slower detection speeds, making 

them unsuitable for practical applications. To address these issues, this thesis proposes 

a new deep learning framework for reliable real-time polyp detection on endoscopic 

images and videos. Unlike previous methods, it does not rely on extracting features from 

extra dimensions but still has high detection accuracy, ensuring a more efficient and 

practical solution. 

1.3 Objectives and Contributions 
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The goal of this study is to develop an automatic processing approach that can 

detect polyps of various sizes for better CRC screening. The proposed method is 

required to locate polyps under different obstacles and artifacts while keeping real-time 

performance, reducing miss-detection rate during examination.  

Our main contributions are as follows: 

 A novel Gaussian Enhanced Euclidean norm attention mechanism is proposed to 

enhance the Ghost convolution’s ability to extract inter-channel and spatial 

information. 

 Gaussian Enhanced Euclidean norm Ghost attention module is incorporated into 

the backbone of YOLOv8 model, reducing the number of parameters and FLOPs 

while maintaining high detection accuracy, called GEEG-YOLOv8.  

 Extensive experiments on three public datasets demonstrate superior 

performance compared to previous state-of-the-art methods. 
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CHAPTER 2   COMPUTER-AIDED DIAGNOSIS FOR ENDOSCOPY 

The use of computer-aided design (CAD) in diagnosing gastrointestinal 

abnormalities has significantly developed over the past decades. The purpose of this 

examination through imaging is to identify abnormal areas and classify their stages. 

Such advancements are beneficial in various clinical processes, including diagnosis, 

treatment planning, surgical preparation, and radiation therapy. 

Endoscopic devices are employed to visualize the interior of a patient's body and 

obtain biopsy samples for organ examination. These devices come in a variety of designs 

to serve different purposes. Endoscopy offers numerous benefits, such as enabling 

doctors to investigate symptoms, locating abnormal regions, and facilitating surgical 

interventions. 

This chapter provides an overview of different types of endoscopic tools and their 

applications in gastrointestinal examinations. Additionally, it includes a review of 

technical literature addressing various detection challenges and a detailed analysis of 

research studies that have implemented these techniques to enhance model performance. 

2.1 Endoscopy Tools 

Endoscopy is a non-surgical procedure used to examine various internal cavities 

within the human body [19]. There are different types of endoscopic techniques in 

medical field categorized based on the area being inspected, such as colonoscopy 

(colon), thoracoscopy (lungs), neuroendoscopy (brain and spine), etc. For examining the 

upper gastrointestinal tract where the esophagus is located, the procedure is known as 

esophagoscopy or gastroscopy [20]. During the procedure, a doctor inserts an endoscope 

(a flexible tube equipped with a camera and light attached to it) through the mouth into 

the esophagus, allowing visualization of the organs on a TV screen. 

For examining the lower gastrointestinal tract, colonoscopy is an endoscopic 

procedure performed to investigate the large intestine and the distal part of the small 

intestine. This involves inserting a camera, light source, and additional instruments to 

examine the inner lining. Colonoscopy provides a real-time view of the colon's interior 

surface of the colon, enabling the collection of biopsies and the execution of therapeutic 

interventions for early stage neoplastic lesions [21]. 
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The primary objective of colonoscopy and both the insertion and withdrawal 

phases of the endoscope are to traverse the zigzagged colon safely and efficiently while 

thoroughly examining the mucosal lining. During insertion, most colonoscopists 

concentrate on the technical aspects required to maneuver through the intestines, 

whereas during withdrawal, the focus shifts to inspecting the colon's surface [7]. 

Insertion can be difficult when the colon is highly serpentine and challenging to guide 

the scope through, whereas the withdrawal process depends on the doctor's ability to 

observe, the quality of bowel preparation, the nature of existing polyps, and their 

visibility [7]. 

To enhance the visualization of abnormal tissues during colonoscopy, various 

optical imaging technologies are available. Two of the most commonly utilized 

techniques are near-focus imaging and narrow-band imaging (NBI) [24]. Near-focus 

imaging allows the operator to closely approach the mucosa, providing high-resolution, 

magnified views of tissues and capillary networks. This is achieved by optimizing the 

lens structure integrated into the distal end of the colonoscope, enabling endoscopists to 

capture detailed mucosal surface information that cannot be achieved with electronic 

magnification alone [24]. NBI is often compared to traditional chromoendoscopy as it 

delivers enhanced contrast without the need for dyes. This technology operates by 

activating two electronic filters in the white light pathway, restricting the light to central 

wavelengths of 415 nm (blue) and 540 nm (green). These wavelengths coincide with the 

absorption peaks of hemoglobin, causing structures such as capillaries and veins to 

appear darker, thereby enhancing contrast against the surrounding mucosa [24]. By 

emphasizing surface microvasculature and the boundaries between different tissue 

types, NBI aids in the detailed assessment of gastrointestinal lesions, particularly 

neoplasia. It has also been applied to detect esophagitis, Barrett's esophagus, pit patterns 

in colon polyps and tumors, as well as identify dysplastic tissue in patients with 

ulcerative colitis [24]. 

2.2 Computer-aided Detection 

Automatic detection of polyps in colonoscopy images and videos has been a highly 

researched topic over the last two decades. Initially, most of detection systems relied on 

simple and computationally efficient visual features like edges and color. However, as 

computational capabilities improved and data availability expanded, the focus moved 
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toward deep learning-based models [25]. This improvement in algorithms reflects the 

overall advancements in computer vision observed over the past decade. 

2.2.1 Handcrafted Features 

Early methods for polyp detection often relied on low-level shape descriptors, such 

as edge detectors [26], [27], [28], to approximate polyp boundaries. More sophisticated 

shape descriptors, such as Hessian filters and histograms of oriented gradients [29], were 

also employed to identify blob-like structures. Bernal et al. [30] introduced an 

innovative boundary model by detecting intensity valleys that typically surround a 

polyp. Their approach improved robustness against blood vessels and reflective 

highlights by incorporating metrics like completeness, continuity, and concavity. 

However, despite performing well on large datasets, these methods faced challenges in 

detecting small and flat polyps. 

Other techniques utilized color and texture as key features for polyp detection [31], 

[32]. Wavelet transformations [33], [34] were applied to extract statistical texture 

features for distinguishing between image regions. Additionally, MPEG-7 shape and 

texture descriptors were used to detect polyps in capsule endoscopic images [35]. More 

simple descriptors such as local binary patterns [36] and co-occurrence matrices [37] 

were also investigated. Recently, Tajbakhsh et al. [38] proposed a hybrid approach 

combining shape and context by extracting image patches around edges and using a two-

step classification process to filter out non-polyp patches. 

Several handcrafted feature-based methods also utilized supervised learning 

techniques, such as linear discriminant analysis [33], support vector machines [29], [34], 

[37], [39], and random forests [38], to create their final classifiers. More recently, 

research has increasingly shifted toward end-to-end approaches. 

2.2.2 Deep Learning 

Driven by large-scale challenges like ImageNet [40], deep learning has 

transformed numerous domains in computer vision, outperforming traditional 

techniques in tasks such as classification, segmentation, detection, and tracking. In the 

context of polyp detection, deep learning developments were significantly enabled by 

the MICCAI endoscopic vision challenge [25], which provided the first substantial 

dataset suitable for training advanced deep learning models. This challenge also 
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introduced a validation framework that facilitated more effective comparisons between 

different approaches. Since then, additional datasets, such as Kvasir [41] and Nerthus 

[42], featuring diverse anatomical landmarks and pathological findings have been 

developed and released. 

In recent years, many studies have been proposed to enhance the effectiveness of 

automatic polyp detection [12], [13], [14], [15], [16], [17], [18]. Most of these 

approaches focus on video-based object detection, leveraging features from the temporal 

dimension. Methods like RYCO [12] and AIPDT [13] integrated temporal information 

through discriminate correlation filter-based trackers. However, these techniques rely 

on accurate detection of the polyp in the initial frame, which is challenging due to image 

noise. Zheng et al. [14] refined detection results using optical flow, but significant 

variations between consecutive frames caused by complex camera movements reduce 

performance efficiency. STFT [15] introduced the Spatial-Temporal Feature 

Transformation to align features and minimize inconsistencies across multiple frames. 

While this method improves detection accuracy, its high computational cost limits its 

feasibility for real-time applications. YONA [16] enhanced detection accuracy and 

speed by extracting information from two consecutive frames employing the presented 

foreground temporal alignment, background dynamic alignment, and cross-frame box-

assisted contrastive learning module. 

For image-based object detection approaches, Shin et al. [17] utilized a region-

based deep convolutional neural network combined with post-learning techniques to 

lower the false positive rate in polyp detection. Despite its effectiveness, this approach 

requires substantial computational resources, making real-time execution impractical. 

On the other hand, Wan et al. [18] incorporated an attention mechanism into the 

YOLOv5 [43] model to enable accurate and real-time polyp detection. However, the 

evaluation was conducted on a private dataset and a small public dataset, limiting the 

generalizability of the results. 

In this thesis, we propose an image-based polyp detection framework that does not 

require feature extraction from extra dimensions like video-based object detection 

approaches but still has high detection accuracy and ensures real-time performance for 

practical applications. 
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CHAPTER 3   PROPOSED METHOD 

In this chapter, the proposed lightweight GEEG-YOLOv8 framework for polyp 

detection will be described. Then we will introduce the new Gaussian Enhanced 

Euclidean norm Ghost attention (GEEG) module which mitigates the weakness of Ghost 

Convolution (GhostConv) [44] in capturing global channel and spatial information. 

3.1 GEEG-YOLOv8 

The overall framework of GEEG-YOLOv8 is shown in Fig. 3.1. 

 

Fig. 3.1. The overall architecture of the proposed GEEG-YOLOv8. (Reproduced from our 

previous work Ref [1].) 

The architecture is composed of a backbone, a neck, and a detection head. The 

backbone integrates several regular GhostConv [44] and GEEG-C2f modules. While the 

GEEG module improves information extraction capability, it also adds complexity to 

the model. To address this, GEEG is only incorporated into C2f to minimize the addition 

of excessive parameters. The GEEG-Bottleneck, illustrated in Fig. 3.1c, consists of two 

GEEG modules. The first GEEG module acts as a squeezing layer, reducing the input 

channels by half, while the second GEEG module expands the channels to match the 

shortcut path. Then the inputs and outputs of these two GEEG modules are connected 

by a residual connection. The first GEEG module is followed by Batch Normalization 

(BN) [45] and the SiLU [46] activation function, while only BN is applied after the 
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second module. The GEEG-C2f, depicted in Fig 3.1b, includes 𝑛 GEEG-Bottleneck 

with two parallel gradient flow branches, allowing it to capture richer gradient flow 

information while reducing parameters. The neck utilizes PANet [47], which combines 

feature maps from lower layers with deeper layers to enhance information flow. GEEG-

YOLOv8 adopts an anchor-free approach with a decoupled detection head. The first 

branch of the detection head outputs the loss for object bounding box, while the second 

branch outputs the loss for object classification. 

3.2 Gaussian Enhanced Euclidean norm Ghost attention module 

By incorporating GhostConv into the backbone of YOLOv8 [48], the model's 

number of parameters and floating-point operations (FLOPs) can be significantly 

reduced. However, relying solely on GhostConv does not lead to a sufficient 

improvement in polyp detection performance. The cheap operations in GhostConv, 

which are usually 3 × 3 depth-wise convolution, only capture spatial information from 

the inherent feature maps created by 1 × 1 point-wise convolution, overlooking global 

dependency. Additionally, depth-wise convolution fails to consider the correlation 

between channel information. As a result, these cheap operations repeatedly extract local 

information generated from the inherent feature maps, limiting performance 

enhancement. 

To address this, the Gaussian Enhanced Euclidean norm (GEE) attention 

mechanism is introduced after the cheap operations to enhance GhostConv's ability to 

extract inter-channel and spatial information. This attention mechanism is inspired by 

Convolutional Block Attention Module (CBAM) [49] and Gaussian Context 

Transformer (GCT) [50]. It is based on the hypothesis that smaller attention activations 

are linked to global contextual features with larger absolute values [50]. Euclidean norm 

measures the magnitude of a vector or a matrix, larger Euclidean norm means more 

deviation from the vector or matrix to its origin. Hence, the Euclidean norm of channel 

or spatial dimension is used as input for a Gaussian function to refine the output features 

of the channel and spatial mechanism. 

As illustrated in Fig. 3.2, the feature maps generated by GEEG's cheap operations 

highlight more essential information, i.e., polyp features (marked by red arrows), 

compared to the naive GhostConv. GEEG's feature maps capture more fine-grained 
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features, whereas one feature map generated by GhostConv contains noise information, 

i.e., light scatter, distracting the model learning procedure. 

 

Fig. 3.2. Example of feature maps of an (a) original image generated by cheap operations in 

(b) Gaussian Enhanced Euclidean norm Ghost attention module and (c) Ghost convolution. 

(Reproduced from our previous work Ref [1].) 
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3.2.1 Gaussian Enhanced Euclidean norm attention 

Self-attention [51] has been proven to be highly effective in capturing long-range 

global dependencies. However, its quadratic computational complexity makes it 

impractical for real-time deployment of hardware with limited resources. To address this 

challenge, we introduce the lightweight GEE attention mechanism, which is designed to 

enhance GhostConv performance with a negligible number of additional parameters. 

This approach is based on the hypothesis that smaller attention activations are linked to 

global contexts with larger absolute values. GEE consists of two modules: channel 

attention and spatial attention, each featuring two branches, as depicted in Fig. 3.3b. 

The left branch of GEE differs from GCT in two main ways. First, instead of 

relying on global average pooling (GAP), we directly use the Euclidean norm of feature 

maps as the input for a Gaussian function. This is based on the intuition that the 

Euclidean norm represents the magnitude of a vector or matrix, with larger Euclidean 

norm indicating greater deviation from the origin. Constraining the Euclidean norm by 

Gaussian function enhances the model's generalization capabilities. Second, we extend 

this hypothesis to the spatial dimension as we argue that the above hypothesis is also 

true in spatial dimension, enabling the extraction of global spatial information. 

The right branch is similar to CBAM but with a modification: in the channel 

attention module, only GAP is utilized, followed by a 1 × 1  convolution layer to 

decrease the number of model parameters.  

 

Fig. 3.3. Gaussian Enhanced Euclidean norm Ghost attention module block details. ⊗ 

represents broadcast element-wise multiplication and ⊕ denotes element-wise addition. E_c 

and E_s represent Channel Euclidean norm and Spatial Euclidean norm, respectively. 

(Reproduced from our previous work Ref [1].) 
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Concretely, given a feature map 𝐅 ∈ RC×H×W as input, C denotes the number of 

channel and H and W  are spatial dimensions, GEE computes attention as follows.  

𝑭′ = 𝑴𝒄(𝑭) ⊗ 𝑭 ⊕ 𝑮(𝑬𝒄) ⊗ 𝑭                                                              (1) 
𝑭′′ = 𝑴𝒔(𝑭′) ⊗ 𝑭′ ⊕ 𝑮(𝑬𝒔) ⊗ 𝑭′,                                                                (2) 

where ⊗  represents broadcast element-wise multiplication and ⊕  denotes element-

wise addition. 𝐅′′ is the final output. 𝐄𝐜 ∈ RC×1×1 and 𝐄𝐬 ∈ R1×H×W represents Channel 

Euclidean norm and Spatial Euclidean norm, respectively, and is formulated as follows. 

𝑬𝒄 = {𝑒𝑐𝑘 = √∑ ∑ 𝑭𝒌(𝑖, 𝑗)2𝐻
𝑗=1

𝑊
𝑖=1 : 𝑘 ∈ {1, … , 𝐶}}                                    (3) 

𝑬𝒔 = {𝑒𝑠𝑖𝑗 = √∑ 𝑭𝒊𝒋
′ (𝑘)2𝐶

𝑘=1 : 𝑖 ∈ {1, … , 𝑊}, 𝑗 ∈ {1, … , 𝐻}}.                       (4) 

A Gaussian function, expressed as 𝐆(x) = exp (−
x2

2σ2
), uses 𝑥 as its input, with 

maximum value of 1, mean of 0, and standard deviation σ, to align with the hypothesis 

regarding the relationship between global contexts and attention activations. Increasing 

the standard deviation reduces the difference between each attention activation. The 

effect of standard deviation on model performance will be analyzed in the experimental 

section. 

 𝐌𝐜 ∈ RC×1×1 and 𝐌𝐬 ∈ R1×H×W  is channel attention map and spatial attention 

map, respectively, and computed as 

𝑴𝒄(𝑭) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑓1×1(𝐺𝐴𝑃(𝑭))),                                                    (5) 

𝑴𝒔(𝑭) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓7×7([𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑭);  𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑭)])),               (6) 

where 𝑓𝑘×𝑘 represents a convolution operation with kernel size of k × k. 

The left branch refines the right branch's output by putting more attention to 

potential concealed polyp features that possess low activation values while suppressing 

the importance of polyp-like noise features to the model. 

3.2.2 Combine with Ghost Convolution 

GEE attention mechanism is integrated after cheap operations in GhostConv to 

form GEEG module, as depicted in Fig. 3.3a. Although conventional GhostConv can 

reduce computational cost, its capacity for information extraction is limited, as the cheap 
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operations only capture local information from inherent feature maps produced by 1 ×

1 point-wise convolution. By incorporating GEE attention mechanism, GhostConv's 

ability to capture long-range global channel and spatial information is significantly 

elevated. For an input feature map 𝐅 ∈ RC×H×W, GEEG performs two steps. First, it 

generates the inherent feature map 𝐘′ ∈ RC′×H×W by 

𝒀′ = 𝑓1×1(𝑭).                                                                           (7) 

Then the output feature map 𝐘 ∈ RCout×H×W is computed as follows. 

𝒀 = 𝐶𝑜𝑛𝑐𝑎𝑡 ([𝒀′, 𝐺𝐸𝐸 (𝛷𝑑𝑝(𝒀′))]),                                           (8) 

where Φdp denotes depth-wise convolution operation, and C′ < Cout. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 

 

CHAPTER 4   EXPERIMENTS 

In this section, the evaluation measures for the proposed framework are presented. 

Afterward, the dataset used, implementation details and evaluation protocols are 

described. Finally, comprehensive experimental results are presented and discussed in 

terms of quantitative and qualitative evaluations. 

4.1 Datasets 

The following datasets were utilized for our experiments: Kvasir-SEG [41], 

NeoPolyp-Small [52], PolypsSet [53], LDPolypVideo [54], CVC-ClinicDB [30], ETIS-

LaribPolypDB [30], and SUN [55]. To assess the generalizability of the proposed 

method, we combined the first four datasets as the training set and evaluated the model 

on the remaining three datasets. Images with identical viewpoint and distance of the 

same polyp, as well as those that were excessively blurry or exhibited significant 

artifacts, were manually excluded from the training set since they did not provide 

valuable information for learning. This resulted in a total of 24,734 training images. For 

the test datasets, CVC-ClinicDB and ETIS-LaribPolypDB include 612 and 196 polyp 

images, respectively, while the SUN database contains 49,136 polyp frames derived 

from 100 distinct polyp video sequences. 

4.2 Experimental Setup 

All experiments were performed using an NVIDIA RTX 4070 GPU with 12GB of 

VRAM. The models were developed using the PyTorch framework. The optimization 

process employed the SGD optimizer with an initial learning rate of 0.01, a momentum 

of 0.937, and a weight decay rate of 0.0005. All images were resized to 640 × 640, with 

a batch size of 32. The models were trained for 400 epochs. Detection performance 

metrics included precision (P), recall (R), mean average precision at an IoU threshold 

of 0.5 (mAP@50), and mean average precision across IoU thresholds from 0.5 to 0.95 

(mAP@50-95). Models’ complexity and speed were measured in terms of the number 

of parameters, GFLOPs, and frames per second (FPS). 

4.3 Experimental Results 
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4.3.1 Impact of Standard Deviation on Model Performance 

This section examines the effect of the standard deviation σ  in the Gaussian 

function 𝐆(x) = exp (−
x2

2σ2
) on the detection performance of GEEG-YOLOv8. The 

results are illustrated in Table 4.1. It can be observed that as σ increases, the model 

performance initially improves but then gradually declines. The optimal performance is 

achieved when σ is set to 4. This behavior is logical, as when variance that is too large 

diminishes the differences in attention activations across channel and spatial dimension, 

making it harder to effectively suppress global noises. On the other hand, a variance that 

is too small can overly restrict the significance of other important features and 

inadvertently emphasize noise contexts. 

Table 4.1 Detection results of GEEG-YOLOv8 on SUN dataset with different standard 

deviation σ 

𝜎 1 2 4 6 

P 84.86 86.09 87.23 87.12 

R 69.26 69.83 71.56 67.27 

mAP@50 80.51 81.21 82.49 80.26 

mAP@50-95 44.06 45.04 45.41 44.28 

 

4.3.2 Comparisons with State-of-the-arts Methods 

The quantitative comparison of the proposed GEEG-YOLOv8 model with other 

detection models is shown in Table 4.2. Overall, our model outperforms other methods 

across all metrics on the SUN and CVC-ClinicDB datasets. For the ETIS-LaribPolypDB 

dataset, GEEG-YOLOv8 achieves the highest scores in mAP@50 and mAP@50-95, 

while securing the second-best results for precision (P) and recall (R). Compared to the 

runner-up models, GEEG-YOLOv8 delivers notable improvements, including a 3% 

increase in P and mAP@50-95 on SUN, a 0.5% improvement in R and mAP@50 on 

CVC-ClinicDB, and a 2% gain in mAP@50 and mAP@50-95 on ETIS-LaribPolypDB. 

The proposed GEEG-YOLOv8 also outperforms other models specifically designed for 

polyp detection. Model complexity and FPS rate are illustrated in Table 4.3. Thanks to 

GEEG's efficient and lightweight design, the number of parameters and GFLOPs in our 

model are reduced compared to the original YOLOv8. While it does not achieve the 

lowest number of parameters and GFLOPs, GEEG-YOLOv8 obtains the second-highest 

FPS at 303. Our proposed method achieves new state-of-the-art in polyp detection 
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accuracy with low model complexity, showing its potential for real-world applications 

where real-time processing is essential. 

Table 4.2 Detection performance comparisons with other models (The best score is denoted as 

red, while the runner-up score is denoted as blue) 

Method 

SUN CVC-ClinicDB ETIS-LaribPolypDB 

P R 
mAP@

50 

mAP@50

-95 
P R 

mAP@

50 

mAP@5

0-95 
P R 

mAP@5

0 

mAP@

50-95 

STFT [15] 81.50 71.45 80.69 40.12 - - - - - - - - 

AIPDT 

[13] 
80.37 69.78 79.21 38.55 - - - - - - - - 

YONA 

[16] 
83.30 71.52 81.43 41.89 - - - - - - - - 

Wan et al 

[18] 
82.81 70.39 80.11 40.07 82.83 73.22 76.93 49.80 73.95 76.70 80.34 60.88 

EfficientD

et-D0 [56] 
74.86 58.23 63.02 27.57 77.19 73.15 75.70 47.33 70.10 73.78 75.51 50.26 

YOLOv3-

tiny [57] 
74.70 57.01 62.69 26.96 76.04 72.62 74.68 46.80 71.29 75.00 74.72 48.68 

YOLOv6s 

[58] 
84.58 68.25 74.94 37.50 85.42 74.12 79.12 51.48 89.94 77.55 82.66 61.69 

YOLOv7-

tiny [59] 
84.21 71.52 81.78 41.95 79.59 74.10 78.84 48.82 86.66 75.53 81.17 59.40 

YOLOv8s 

[48] 
83.76 63.95 76.14 40.71 82.48 71.24 81.03 55.24 85.13 73.01 81.77 60.92 

GEEG-

YOLOv8 

(ours) 

87.23 71.56 82.49 45.41 85.48 74.67 81.54 55.29 87.59 76.02 84.19 63.56 

 

Table 4.3 Model complexity and frames per second rate comparisons 

Method Params GFLOPs FPS 

STFT [15] - - 12.5 

AIPDT [13] - - 72 

YONA [16] - - 46.3 

Wan et al [18] - - 45 

EfficientDet-D0 [56] 3.9M 2.4 209 

YOLOv3-tiny [57] 8.6M   12.9 370 

YOLOv6s [58] 18.5M  45.2 275 

YOLOv7-tiny [59] 6.0M  13.0 208 

YOLOv8s [48] 11.1M 28.4  300 

GEEG-YOLOv8 (ours) 8.5M  21.2 303 

 

The qualitative comparisons of GEEG-YOLOv8 with other models across three 

datasets in Fig. 4.1. The proposed approach can effectively detect polyps in different 

scenarios, such as blurring effects in the SUN dataset. It is also capable of identifying 

small and flat polyps in the CVC-ClinicDB and ETIS-LaribPolypDB dataset. 
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Furthermore, GEEG-YOLOv8 shows a robust performance in distinguishing polyps that 

look similar to the intestinal wall. 

 

Fig. 4.1. Qualitative comparisons of polyp detection on three datasets. Green and red denote 

the ground truth and model prediction, respectively. (Reproduced from our previous work Ref 

[1].) 

4.3.3 Ablation Studies 

To evaluate the impact of individual components in the proposed method, ablation 

experiments were performed on the SUN dataset, with results presented in Table 4.4. In 

method (a), only GhostConv was used in the backbone of the original YOLOv8. While 

this approach achieved the highest FPS, its detection performance was sub-optimal due 

to the limitation of GhostConv ability in capturing global information. Method (b) added 

the channel and spatial attention mechanism (the right branch in Fig. 3.3b) after 

GhostConv’s cheap operations, leading to a 3% improvement in R, mAP@50, and 

mAP@50-95, with only an additional 0.1M parameters. Method (c) utilized only GEE 

(the left branch in Fig. 3.3b) to GhostConv and achieved approximately a 1% gain in all 

four detection metrics compared to method (b), without adding extra parameters. By 

combining all three improvements in method (d), the highest polyp detection 

performance was achieved without increasing parameters and GFLOPs compared to 

method (b), with only a slight reduction in FPS. Method (d) achieved P, R, mAP@50, 

and mAP@50-95 scores of 87.23%, 71.56%, 82.49%, and 45.41%, respectively. 

Table 4.4 Ablation results on SUN dataset of the proposed method 

Method GhostConv 𝑴(𝑥) 𝑮(𝑥) P R mAP@50 
mAP@50-

95 
Params GFLOPs FPS 

(a) ✓   85.05 64.51 77.25 41.95 8.4M 21.2 322 

(b) ✓ ✓  85.29 67.22 80.10 44.21 8.5M 21.2 310 

(c) ✓  ✓ 86.09 69.32 81.11 44.85 8.4M 21.2 312 

(d) ✓ ✓ ✓ 87.23 71.56 82.49 45.41 8.5M 21.2 303 
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CHAPTER 5   CONCLUSION AND FUTURE WORKS 

This thesis proposes a novel Gaussian Enhanced Euclidean norm Ghost attention 

module designed to enhance the accuracy and speed of polyp detection in endoscopic 

images and videos. The module utilizes a Gaussian function applied to the Euclidean 

norm of channel and spatial dimension, refining the output features of channel and 

spatial attention mechanism. This approach improves Ghost convolution’s ability to 

capture long-range global contextual information. The module is incorporated into the 

backbone of YOLOv8, forming a new model called GEEG-YOLOv8. Extensive 

experimental evaluations show that the proposed method achieves robust generalization 

without requiring information from additional dimensions. With a minimal increase in 

model parameters and GFLOPs, GEEG-YOLOv8 achieves state-of-the-art performance 

in polyp detection across three datasets. Future work will focus on refining the neck and 

detection head to further boost the model’s detection capabilities. 
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