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1. Introduction 

3D human pose estimation from single 

images has made good progress in recent years. 

But temporal inconsistencies in sequential 

predictions are still a big challenge. Current 

methods usually process video frames one by one. 

This leads to jittery and unnatural motion in pose 

sequences. Single-frame approaches like ZeDO [1] 

show excellent performance. But they cannot 

ensure temporal consistency across sequences. 

Temporal modeling approaches like SmoothNet 

[2] focus on post-processing. However, they lack 

the powerful pose priors that diffusion models 

provide. 

This research proposes a new conditional 

diffusion framework to solve this problem. The 

framework uses Transformer [3] architecture for 

temporal 3D human pose refinement. The 

approach treats pose sequence correction as a 

denoising process. Noisy pose predictions are 

refined step by step to achieve temporal 

consistency. The framework uses a Transformer 

denoising model that processes sequential pose 

data. This allows effective modeling of temporal 

dependencies across joint positions. The method 

conditions the diffusion process on initial pose 

predictions. It learns to correct inconsistencies 

while preserving underlying motion patterns. 

2. Related Works 

In 3D human pose estimation, important 

works can be divided into single-frame and 

temporal modeling approaches. Optimization 

methods estimate poses by reducing reprojection 

errors. Recent breakthrough methods include 

ZeDO, which uses diffusion models as 

optimization tools. This achieves top performance 

without needing 2D-3D paired training data. 

For temporal consistency solutions, 

traditional filtering methods are widely used for 

smoothing pose sequences. These include 

Gaussian filtering and Savitzky-Golay filtering. 

SmoothNet represents a major breakthrough in 

data-driven temporal refinement methods. It 

proposes a plug-and-play temporal refinement 

network. This network is designed to reduce 

jitters in outputs from existing pose estimators. 

For diffusion models, Ho et al. introduced 

Denoising Diffusion Probabilistic Models (DDPM) 

[4]. These models learn to create data by reversing 

a diffusion process. Song et al. proposed DDIM [5] 

for faster sampling. This addresses the 

computational bottleneck of standard diffusion 

sampling. Recent applications to 3D pose 

estimation include DiffPose [6]. It treats pose 

estimation as a reverse diffusion process. 

Compared to these existing works, this 

research focuses on extending diffusion models to 

temporal pose sequences. The method conditions 

the denoising process on predicted poses. The 

Transformer-based architecture enables effective 

modeling of both spatial joint relationships and 

temporal motion patterns within a unified 

framework. 

  
Fig. 1 Overview of the proposed method. 

 

3. Proposed Method 

As shown in Fig. 1, the key innovations 

proposed in the methodology are summarized as 

follows: 

Temporal Pose Diffusion Framework: The 

approach treats temporal pose refinement as a 

conditional sequence-to-sequence denoising task. 

Unlike unconditional diffusion models that start 

from pure noise, this method conditions the entire 

denoising process on predicted poses. This serves 

two purposes. First, it limits the solution space to 

anatomically reasonable poses. Second, it 

preserves general motion patterns while 

correcting errors. 

Forward Process for Pose Sequences: 

Following the standard DDPM framework, the 

forward process systematically corrupts ground 

truth pose sequences. It does this by gradually 



adding Gaussian noise. For a ground truth pose 

sequence, noisy versions can be directly sampled 

at any timestep 𝑡  using: 𝑥𝑡 = √𝛼𝑡̅̅ ̅ 𝑥0 +

√1 − 𝛼𝑡̅̅ ̅ 𝜀,  𝜀 ∼ 𝒩(0, 𝐼). 

Conditional Reverse Process: The reverse 

process conditions every denoising step on the 

predicted pose sequence, modeled as: 

pθ( xt−1 ∣∣ xt, c ) = 𝒩(xt−1; μθ(xt, t, c), σt
2I) , where 𝑐 

represents the conditioning information. 

Temporal Denoising Architecture: The 

network integrates three information sources. 

These are current noisy sequence state, diffusion 

timestep, and condition poses. A Transformer 

encoder processes flattened joint-time tokens. The 

encoder has 6 layers, 8 attention heads, and 

dimension 256. This enables global modeling of 

spatial-temporal relationships. 

4. Data 

The experiments are conducted on the 

Human3.6M [7], [8] dataset, a standard dataset 

for 3D human pose estimation containing 3.6 

million video frames with accurate 3D pose 

annotations. 

Pose predictions generated by ZeDO serve as 

input to the temporal refinement approach. ZeDO 

is a state-of-the-art single-frame 3D pose 

estimation method. Temporal sequences are 

extracted using sliding windows of 16 frames. The 

stride is 8 during training and 1 during evaluation. 

All poses are normalized by subtracting the root 

joint position. This ensures translation 

invariance. 

5. Experiment 

Evaluation Metrics: Three standard metrics 

are used. MPJPE (Mean Per Joint Position Error) 

measures absolute pose accuracy. P-MPJPE 

(Procrustes-aligned MPJPE) evaluates pose 

structure. MPJAE (Mean Per Joint Acceleration 

Error) measures temporal smoothness. 
Table 1. Quantitative comparison on Human3.6M. Mm for 

MPJPE/P-MPJPE and mm/frames² for MPJAE. 

 MPJPE P-MPJPE MPJAE 

ZeDO  54.77 37.48 2.52 

SmoothNet 53.91 37.45 0.98 

Ours 38.91 27.18 2.58 

Results: The method achieves significant 

improvements over baseline methods. Compared 

to ZeDO, the method reduces MPJPE by 15.86mm. 

This goes from 54.77mm to 38.91mm. It also 

reduces P-MPJPE by 10.30mm, from 37.48mm to 

27.18mm. The approach also outperforms 

SmoothNet. It demonstrates superior pose 

accuracy while maintaining temporal consistency. 

Ablation Studies: Experiments reveal that 

longer sequence lengths provide consistent 

accuracy improvements. Using 32 frames instead 

of 16 frames shows better results. DDIM sampling 

offers significant speed advantages with a 22× 

speedup. But it introduces temporal quality 

trade-offs. These trade-offs can be reduced 

through longer temporal context. 
Table 2. Ablation study results on Human3.6M. 

 MPJPE P-MPJPE MPJAE Inference 

FPS 

16 frames + 

DDPM 

38.91 27.18 2.58 13.9 

16 frames + 

DDIM 

39.09 27.23 10.45 306.2 

32 frames + 

DDPM 

38.21 27.02 2.38 7.0 

32 frames + 

DDIM 

37.77 26.86 7.81 151.5 

6. Conclusion 

This research presents a new temporal pose 

diffusion framework that successfully addresses 

temporal inconsistencies in 3D human pose 

estimation. The method conditions diffusion 

models on predicted poses and uses 

Transformer-based denoising architecture. The 

approach achieves significant improvements in 

pose accuracy and maintains temporal 

consistency. 

Experimental results on Human3.6M show 

substantial improvements over baseline methods. 

The method reduces MPJPE by 15.86mm 

compared to ZeDO. It also maintains 

plug-and-play compatibility for practical 

deployment. The framework opens new 

possibilities for applying diffusion models to 

temporal motion analysis. 
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Abstract 

3D human pose estimation from monocular images has achieved significant 

progress, yet temporal inconsistencies in sequential predictions remain a critical chal-

lenge. To address this problem, we propose a novel conditional diffusion framework 

that leverages Transformer architecture for temporal 3D human pose refinement. 

Our approach treats pose sequence correction as a denoising process. In this 

process, noisy pose predictions are step by step refined to achieve temporal consisten-

cy. The framework uses a Transformer-based denoising model that processes sequen-

tial pose data. This allows effective modeling of temporal dependencies across joint 

positions. Our method conditions the diffusion process on initial pose predictions. 

This way, our method learns to correct inconsistencies while keeping underlying mo-

tion patterns. 

Extensive experiments on the Human3.6M dataset show that our approach 

greatly improves temporal consistency in pose sequences while maintaining spatial 

accuracy. The proposed framework offers a solution for post-processing pose estima-

tion results and can be easily integrated into existing pipelines. This opens new possi-

bilities for applying diffusion models to temporal motion analysis. 

Keywords: 3D Human Pose Estimation, Conditional Diffusion Model, Pose 

Refinement, Temporal Consistency 
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1 Introduction 

1.1 Research Background 

3D human pose estimation is an important computer vision task with applica-

tions in motion capture, human-computer interaction, and virtual reality [1], [2], [3]. 

The goal is to predict 3D joint positions from input images or videos. While single-

frame methods have achieved good performance, video-based pose estimation faces 

additional temporal challenges. 

Most current methods process video frames independently, which leads to 

temporal inconsistencies in pose sequences [4], [5]. These inconsistencies lead to jit-

tery and unnatural motion, which affects the quality of reconstructed human poses. 

Recent optimization methods like ZeDO [6] and learning-based diffusion approaches 

like DiffPose [7], [8] have shown great results, but temporal consistency is still a chal-

lenge. The lack of temporal information limits the applications of these systems. 

To solve temporal inconsistencies, researchers have proposed lots of smooth-

ing and refinement approaches [9], [10]. Some methods focus on post-processing 

temporal smoothing [11]. Others use spatial-temporal information directly in the es-

timation process [12]. However, these approaches still face difficulties in handling 

complex motion patterns and long-range temporal sequences. 

Diffusion models have been proved as powerful generative tools that learn to 

reverse noise corruption processes [13], [14]. They have shown great success in image 

generation and are being used for various computer vision tasks. The iterative de-

noising nature of diffusion models makes them well-suited for refinement problems 
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that require gradual improvement. 

1.2 Research Objectives 

In this work, we aim to develop a conditional diffusion framework for improv-

ing temporal consistency in 3D HPE from video sequences. The objectives of this 

study are listed as follows: 

1. We develop a Transformer-enhanced [15] conditional diffusion model that 

uses temporal and spatial positional encodings to model sequential pose data. The 

framework treats pose sequence refinement as a denoising process, where noisy pose 

predictions are gradually refined using learned temporal dependencies and joint rela-

tionships to achieve smooth and consistent motion. 

2. We evaluate the proposed framework on standard 3D human pose estima-

tion benchmarks, using Human3.6M dataset[16], [17]. Experiment results shows that 

our approach significantly improves temporal consistency metrics while maintaining 

competitive pose accuracy compared to existing video-based pose estimation methods 

and single-frame approaches. 

3. We conduct ablation studies to analyze the key components and designs in 

the proposed architecture. This includes looking at different diffusion sampling strat-

egies, optimal temporal window sizes, and the impact of various architectural compo-

nents on pose refinement performance. The results provide insights into how effective 

diffusion-based approaches are for temporal pose sequence modeling. 

1.3 Thesis Outline 

The structure of this thesis is as follows: 

Chapter 1: This chapter provides an overview of 3D human pose estimation 
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and the temporal consistency problem. We introduce the motivation for using condi-

tional diffusion models with Transformer architectures and present the research objec-

tives and main contributions. 

Chapter 2: This chapter reviews existing literature in four main areas. These 

areas include 3D human pose estimation methods with single-frame and video-based 

approaches, diffusion models covering DDPM/DDIM sampling strategies and their 

computer vision applications, Transformer-based architectures for pose estimation 

with attention mechanisms, and temporal smoothing methods including SmoothNet 

and other pose refinement techniques. 

Chapter 3: This chapter presents our conditional diffusion framework for tem-

poral pose refinement. We describe the Transformer-based denoising model, condi-

tioning mechanism, diffusion processes, training objectives, and DDPM/DDIM sam-

pling methods for inference. 

Chapter 4: This chapter presents experimental evaluation on Human3.6M da-

taset. This includes comparisons with baseline methods, ablation studies and qualita-

tive results showing improved temporal consistency. 

Chapter 5: This chapter summarizes the main findings and contributions. We 

discuss current limitations and propose future directions including multi-person sce-

narios, real-time applications, and other temporal sequence modeling tasks.  
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2 Related Works 

2.1 3D Human Pose Estimation 

2.1.1 Overview of 3D Human Pose Estimation 

The goal of 3D Human Pose Estimation (3D-HPE) is predicting the 3D coor-

dinates of human skeleton joints from images or videos [2]. Methods can be catego-

rized based on camera setup (monocular vs. multi-view), number of subjects, and in-

put type (image vs. video). 

Monocular approaches face the challenge of depth ambiguity, where multiple 

3D poses can be paired to identical 2D appearances [18]. Two-stage approaches that 

first estimate 2D poses and then uplift them to 3D have become popular [19], [20]. 

Recent work has explored Graph Convolutional Networks (GCNs) to model skeletal 

relationships [21] and transformer-based methods that leverage attention mechanisms 

[22], [23]. 

A critical limitation of frame-based methods is their inability to leverage tem-

poral information, which is particularly problematic when dealing with sequences that 

have limited or missing temporal context. Recent diffusion-based methods have 

shown promise in addressing this uncertainty. DiffPose treats 3D pose estimation as a 

reverse diffusion process to deal with inherent indeterminacy [8]. ZeDO uses optimi-

zation and learning at the same time, achieving great performance without training on 

2D-3D pairs by using diffusion models for multi-hypothesis pose generation [6]. 

Video-based use temporal information by temporal convolutional networks 

[24] and transformer architectures like MixSTE, which processes spatial and temporal 
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information jointly [25]. However, when temporal information is sparse or absent, 

these methods will face challenges, as motion context that could help resolve ambigu-

ities and infer occluded joints becomes unavailable. 

The field faces persistent challenges including data scarcity, occlusion han-

dling, and cross-domain generalization. The absence of temporal information in sin-

gle-frame scenarios further exacerbates these challenges, requiring specialized tech-

niques for isolated frames or sparsely sampled sequences. 

2.1.2 Single-Frame Approach 

In the broader landscape of 3D human pose estimation, single-frame ap-

proaches focus on extracting pose information from individual images without tem-

poral context. These methods are essential when dealing with isolated frames or 

sparsely sampled sequences. 

Traditional Single-Frame Methods include learning-based and optimization-

based approaches. Learning-based methods such as the 2D-to-3D lifting baseline by 

Martinez et al. [26] and end-to-end methods that directly estimate 3D poses from im-

ages have shown promising results. Optimization-based methods like SMPLify [27] 

estimate poses by minimizing reprojection errors while satisfying anatomical con-

straints. However, these methods often suffer from performance degradation in cross-

domain scenarios—learning methods are limited by training data distributions, while 

optimization methods typically underperform compared to learning approaches. 

The ZeDO method [6] represents a breakthrough in single-frame 3D pose es-

timation. This method innovatively employs diffusion models as optimization tools 

instead of direct generators, combining geometric constraints with learned priors 

within an iterative optimization framework. 
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ZeDO's core idea involves starting with an initial pose hypothesis, applying 

geometric optimization to minimize 2D reprojection errors, using a pre-trained diffu-

sion model for denoising to ensure pose plausibility, and iterating this process until 

convergence. This design cleverly avoids the limitations of traditional methods—

maintaining the cross-domain adaptability of optimization approaches while taking 

advantage of the powerful pose priors of diffusion models. 

Experimental results show that ZeDO achieves state-of-the-art performance 

without requiring any 2D-3D paired training data: 51.4mm MPJPE on Human3.6M 

and 40.3mm PA-MPJPE on 3DPW datasets. However, ZeDO still processes frames 

independently without considering temporal consistency, which provides opportuni-

ties for subsequent temporal optimization research. 

2.1.3 Temporal Modeling Method 

While traditional methods rely heavily on temporal information for accurate 

3D pose estimation, recent work has explored new approaches to handle uncertainty 

when temporal context is limited or unavailable. 

DiffPose [8] represents a major advancement in handling pose uncertainty 

through diffusion models. Unlike conventional methods that directly regress 3D poses, 

DiffPose treats the estimation process as a reverse diffusion procedure. It starts with a 

highly uncertain 3D pose distribution and step by step reduces uncertainty through 

multiple denoising steps. 

DiffPose supports two working modes: video-based estimation and frame-

based estimation. In video mode, the method leverages temporal information for pose 

estimation, while in frame mode, it extracts context information only from single im-

ages. 
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2.1.4 Temporal Consistency Solutions 

Apart from methods that directly handle pose uncertainty, there is another im-

portant research direction that focuses on improving temporal consistency and 

smoothness of existing pose estimation results. These methods typically serve as post-

processing steps to perform temporal modeling and optimization on existing pose es-

timation results. 

Traditional filtering methods such as Gaussian filtering [28], Savitzky-Golay 

filtering [29], and One-Euro filtering [30] are widely used for smoothing pose se-

quences. These methods perform low-pass filtering on pose sequences through fixed 

temporal windows. This effectively reduces high-frequency jitters. However, these 

methods face trade-offs between smoothness and lag and perform poorly in handling 

long-term jitters. 

SmoothNet [10] represents a major breakthrough in data-driven temporal re-

finement methods. This approach proposes a plug-and-play temporal refinement net-

work specifically designed to reduce jitters in outputs from existing pose estimators. 

The core innovation of SmoothNet lies in adopting a purely temporal modeling strate-

gy, avoiding the bottleneck of joint spatial-temporal optimization. 

The method uses motion-aware fully connected networks to learn long-term 

temporal relationships for each joint without considering noisy correlations among 

joints. SmoothNet supports multiple motion modalities (2D/3D positions, 6D rotation 

matrices) and shows good generalization across different backbone networks, modali-

ties, and datasets. Experimental results show significant performance improvements 

on standard datasets such as Human3.6M [16] and MPI-INF-3DHP [31]. 
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2.2 Diffusion Models 

2.2.1 Overview of Diffusion Models 

Diffusion model is a generative model that learns to create data by reversing a 

diffusion process [13]. These models have emerged as a powerful alternative to GANs 

[32] and VAEs [32], achieving SOTA results in a lot of tasks. The key insight is that 

complex data distributions can be learned by modeling a simple denoising process. 

The training process involves two main components: a forward diffusion pro-

cess that gradually corrupts data with noise, and a reverse process that learns to undo 

this corruption. This approach has several advantages including training stability, 

mode coverage, and high-quality sample generation. Recently, diffusion models have 

been successfully applied to 3D pose estimation tasks [8], showing promise for han-

dling the temporal smoothing challenges in human pose sequences. 

 

Fig. 1 The denoising diffusion probabilistic model. 

2.2.2 Forward Process 

The forward process, or the diffusion process, gradually adds Gaussian noise 

to the data with 𝑇 timesteps. This process is simple and tractable, following a Markov 

chain where each step depends only on the previous one. At each step 𝑡, noise is add-

ed as: 

𝑞( 𝑥𝑡 ∣∣ 𝑥𝑡−1 ) = 𝒩(𝑥𝑡; √1 − 𝛽𝑡 ⋅ 𝑥𝑡−1, 𝛽𝑡 ⋅ 𝐼),                           (2.1) 
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where 𝛽𝑡 is the variance schedule that controls the noise level at step 𝑡. It is 

typically chosen to increase from small values (e.g., 10^-4) to larger values (e.g., 0.02) 

over the 𝑇 steps. This ensures that the data gradually becomes pure noise. 

A key property of this process is that it can be computed in closed form for 

any timestep 𝑡, without requiring all intermediate steps: 

𝑞( 𝑥𝑡 ∣∣ 𝑥0 ) = 𝒩(𝑥𝑡; √�̅�𝑡 ⋅ 𝑥0, (1 − �̅�𝑡) ⋅ 𝐼),                            (2.2) 

where 𝛼𝑡  =  1 −  𝛽𝑡  and �̅�𝑡  =  ∏ 𝛼𝑠
𝑡
𝑠=1 . This allows efficient sampling of 

noises of the data at any timestep during training. 

2.2.3 Reverse Process 

The reverse process learns to remove noise and reconstruct the original data 

distribution. Since the true reverse process is intractable, it is approximated using a 

neural network. The reverse process is modeled as: 

𝑝𝜃( 𝑥𝑡−1 ∣∣ 𝑥𝑡 ) = 𝒩(𝑥𝑡−1; 𝜇𝜃(𝑥𝑡, 𝑡), 𝛴𝜃(𝑥𝑡, 𝑡)).                         (2.3) 

 In practice, the covariance 𝛴𝜃(𝑥𝑡, 𝑡) is often fixed to σt
2I , where σt

2 = βt or βt̃ =

1−αt−1̃

1−αt̃
⋅ βt. The neural network aims to predict the noise ϵθ(xt, t) that was added at 

each step. 

The mean of the reverse process can be computed using the predicted noise: 

μθ(xt, t) =
1

√αt
(xt −

βt

√1−αt̅̅ ̅
⋅ εθ(xt, t)).                               (2.4) 

This formulation allows the model to learn the reverse process by simply pre-

dicting the noise that was added during the forward process, which has been shown to 

be more stable than directly predicting the mean. 
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2.2.4 Loss Function 

The training objective comes from maximizing the variational lower bound of 

the log-likelihood. The full objective involves multiple terms, but in practice, it be-

comes much simpler. The simplified loss function focuses on the noise prediction task: 

Lsimple = Et,x0,ε[|ε − εθ(xt, t)|2],                                    (2.5) 

where ϵθ(xt, t) is the noise added at step 𝑡, and 𝜖𝜃 is the predicted noise from 

the neural network. This loss function is computationally efficient and has been 

shown through experiments to work better than the full variational objective. 

The timestep 𝑡 is typically sampled uniformly from {1, 2, . . . , 𝑇}, and the loss 

is computed using mean squared error. This compares the true noise with the predict-

ed noise values. This approach transforms the complex generative modeling problem 

into a relatively simple denoising task, making training stable and efficient. 

2.2.5 Sampling Methods 

Standard sampling from diffusion models follows the reverse process by itera-

tively denoising from pure Gaussian noise. The process starts with xT ∼ 𝒩(0, I) and 

gradually denoises over 𝑇 steps. At each step, we sample: 

xt−1 = μθ(xt, t) + σt ⋅ z,  z ∼ 𝒩(0, I),                              (2.6) 

where z ∼ 𝒩(0, I) is random noise and 𝜎𝑡 is the noise variance at step 𝑡. The 

random nature of this sampling process means that multiple diverse samples can be 

generated from the same starting noise. 

However, this ancestral sampling approach has a major drawback: it requires 

𝑇 forward passes through the neural network, where 𝑇 is typically 1000 or more. This 

makes sampling computationally expensive and slow. This limits the practical appli-
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cations of diffusion models, especially in real-time scenarios. 

2.2.6 DDIM: Accelerated Sampling 

DDIM (Denoising Diffusion Implicit Models) addresses the computational 

bottleneck of standard diffusion sampling by proposing a deterministic sampling pro-

cess [14]. Unlike the stochastic DDPM sampling, DDIM provides a family of non-

Markovian processes that can generate high-quality samples with fewer steps. 

The key insight of DDIM is that the forward process can be extended to a 

broader class of processes while keeping the same training objective. The DDIM up-

date rule is: 

xt−1 = √αt−1̅̅ ̅̅ ̅̅ ⋅
xt−√1−αt̅̅ ̅⋅εθ(xt,t)

√αt̅̅ ̅
+ √1 − αt−1̅̅ ̅̅ ̅̅ ⋅ εθ(xt, t).                 (2.7) 

This deterministic formulation allows skipping timesteps during sampling. In-

stead of using all 𝑇 timesteps, DDIM can use a subset of timesteps (e.g., 50 or 100 

steps) while keeping comparable sample quality. This acceleration makes diffusion 

models more practical for applications requiring fast inference, such as real-time 3D 

pose estimation and smoothing tasks. 

2.3 Transformer 

2.3.1 Transformer Architecture and Self-Attention 

The Transformer architecture, introduced by Vaswani et al. [15], has become a 

cornerstone of modern deep learning. Transformers represent a basic shift in neural 

network design. While traditional RNNs process information through recurrent opera-

tions and CNNs rely on convolution, Transformers remove both approaches entirely. 

They use only self-attention mechanisms to handle information processing. 
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Fig. 2 The Transformer architecture. 

The core of the self-attention mechanism lies in computing relationships be-

tween different positions in a sequence through Query (Q), Key (K), and Value (V) 

vectors. The attention is computed as: 

Attention(Q, K, V) = softmax (
QKT

√dk
) V,                                (2.8) 

where 𝑑𝑘 is the dimension of the key vectors. Multi-head attention builds on 

the basic attention mechanism. It allows the model to focus on information from mul-

tiple representation subspaces at the same time. 
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Fig. 3 Transformer’s attention computation. 

The self-attention mechanism offers several advantages over sequential mod-

els. It enables parallel processing of all sequence elements, greatly improves training 

efficiency. Also, it can directly model long-range dependencies without the vanishing 

gradient problems that affect RNNs. These properties make Transformers particularly 

suitable for capturing complex spatial and temporal relationships in human pose se-

quences. 

2.3.2 Positional Encoding Strategies 

Since Transformers process sequences in parallel without built-in positional 

awareness, positional encoding becomes crucial for adding sequence order infor-

mation. The original Transformer paper proposed sinusoidal positional encoding, 

which uses different functions of different frequencies: 

PE(pos,2i) = sin (
pos

100002i/dmodel
),                                      (2.9) 

PE(pos,2i+1) = cos (
pos

100002i/dmodel
),                                  (2.10) 

 where 𝑝𝑜𝑠 is the position, 𝑖 is the index of dimension, and 𝑑model is the model 

dimension. 

The sinusoidal design has several good properties. It allows the model to learn 



14 

relative positional relationships, as 𝑃𝐸𝑝𝑜𝑠+𝑘 can be represented as a linear function of 

𝑃𝐸𝑝𝑜𝑠  for any fixed offset 𝑘. This property allows the model to handle longer se-

quences than those used in training. The model can work beyond its original training 

data. 

Other positional encoding strategies have appeared in recent work. Learned 

positional encoding treats position embeddings as trainable parameters [33]. Relative 

positional encoding methods, such as those proposed by Shaw et al. [34], directly en-

code relative distances between positions rather than absolute positions. More recent 

approaches like RoPE (Rotary Position Embedding) [35] and ALiBi (Attention with 

Linear Biases) [36] have shown improved extrapolation capabilities for longer se-

quences. 

2.3.3 Transformers in Human Pose Estimation 

The application of Transformers to human pose estimation has gained signifi-

cant momentum in recent years. These models have shown superior performance in 

capturing spatiotemporal correlations compared to traditional LSTM-based and con-

volution-based approaches. 

PoseFormer [22] represents a pioneering work that applies pure Transformer 

architecture to 3D human pose estimation. The model uses spatial-temporal trans-

formers for comprehensive modeling. These transformers capture human joint rela-

tions within individual frames. They also model temporal correlations that occur 

across different frames. This approach removes the need for convolutional architec-

tures entirely, and shows the effectiveness of attention mechanisms for pose estima-

tion tasks. 

For temporal smoothing and post-processing applications, Transformers offer 
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particular advantages in modeling sequential dependencies without the computational 

bottlenecks of recurrent architectures. The parallel processing capability enables effi-

cient handling of long pose sequences, making them well-suited for post-processing 

tasks that require global temporal context. 
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3 Proposed Method 

3.1 Temporal Pose Diffusion Framework 

3.1.1 Framework Overview 

Our method extends diffusion models to temporal pose sequences, addressing 

the limitation of existing approaches that process poses independently. While methods 

like ZeDO [6] achieve excellent single-frame refinement, they cannot ensure temporal 

consistency across sequences. Similarly, temporal modeling approaches like Smooth-

Net [10] focus on post-processing but lack the powerful pose priors that diffusion 

models provide. 

We formulate temporal pose refinement as a conditional sequence-to-sequence 

denoising task. The key insight is that predicted pose sequences, despite containing 

errors, provide valuable structural information that can guide the diffusion process 

toward anatomically plausible and temporally consistent solutions. 

 

Fig. 4 The structure of proposed method. 



17 

Input: A predicted pose sequence 𝑋𝑝𝑟𝑒𝑑 = {𝑥1, 𝑥2, … , 𝑥𝑇} ∈ 𝑅𝑇×𝐽×3 from any 

pose estimator, where 𝑇 is sequence length and 𝐽 = 17 is the number of joints follow-

ing the Human3.6M skeleton structure. 

Output: A refined pose sequence 𝑋𝑟𝑒𝑓𝑖𝑛𝑒𝑑 ∈ 𝑅𝑇×𝐽×3 with improved temporal 

consistency and accuracy. 

Unlike unconditional diffusion models that start from pure noise, our approach 

conditions the entire denoising process on predicted poses. This conditioning mecha-

nism serves two purposes. It limits the solution space to anatomically reasonable pos-

es, and keeps the general motion pattern while correcting errors. 

The framework operates in two phases. During training, we learn to predict 

noise in ground truth pose sequences while conditioning on corresponding predicted 

poses. During inference, we start from random noise and gradually denoise while be-

ing guided by the predicted sequence, ultimately producing a refined version that 

maintains the original motion semantics while improving accuracy and temporal 

smoothness. The overall framework is illustrated in Fig. 4, which shows how predict-

ed poses serve as conditioning information throughout the iterative denoising process. 

3.1.2 Forward Process for Pose Sequences 

Following the standard DDPM framework [13], our forward process systemat-

ically corrupts ground truth pose sequences by gradually adding Gaussian noise. 

However, we extend this process to handle temporal pose sequences while preserving 

their structural properties. 

For a ground truth pose sequence 𝑥0 ∈ 𝑅𝑇×𝐽×3 , we can directly sample noisy 

versions at any timestep 𝑡 using the closed-form expression: 

𝑥𝑡 = √𝛼𝑡̅̅ ̅𝑥0 + √1 − 𝛼𝑡̅̅ ̅𝜖,                                           (3.1) 
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where 𝜖 ∼ 𝒩(0, 𝐼) is random noise with the same shape as the pose sequence, 

and 𝛼𝑡̅̅ ̅ follows the standard noise schedule. 

An important consideration in our design is that the noise addition process 

preserves the temporal structure of the sequence. Each pose frame is corrupted inde-

pendently, but the overall sequence dimensionality remains consistent, allowing our 

model to learn both spatial (joint relationships) and temporal (motion) patterns during 

the reverse process. 

3.1.3 Conditional Reverse Process 

The reverse process is where our key innovation lies. Instead of learning an 

unconditional denoising process, we condition every denoising step on the predicted 

pose sequence. This conditioning provides important guidance that helps the model 

generate refined poses that are both accurate and consistent with the original motion. 

We model the conditional reverse process as: 

𝑝𝜃(𝑥𝑡−1|𝑥𝑡, 𝑐) = 𝒩(𝑥𝑡−1; 𝜇𝜃(𝑥𝑡, 𝑡, 𝑐), 𝜎𝑡
2𝐼),                            (3.2) 

 where 𝑐 = 𝑋𝑝𝑟𝑒𝑑 represents the conditioning information (predicted poses). The 

key difference from standard diffusion models is the explicit conditioning term 𝑐 that 

appears in every reverse step. 

The conditioning mechanism works by combining predicted pose information 

at multiple levels within our denoising network. Rather than simply concatenating the 

predicted poses, we use dedicated encoding pathways that allow the model to selec-

tively attend to relevant conditioning information while maintaining the flexibility to 

correct errors. 

During training, we learn to predict the noise that was added to ground truth 

sequences while conditioning on corresponding predicted poses: 
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𝐿 = 𝐸𝑡,𝑥0,𝜖[|𝜖 − 𝜖𝜃(𝑥𝑡, 𝑡, 𝑐)|2],                                       (3.3) 

where 𝜖𝜃(𝑥𝑡, 𝑡, 𝑐) is our temporal denoising network that predicts noise condi-

tioned on both the current noisy sequence and the predicted poses. 

During inference, we start from random noise 𝑥𝑇 ∼ 𝒩(0, 𝐼) and iteratively 

apply the conditional reverse process for 𝑇 steps to generate the final refined pose se-

quence. For faster inference, we support DDIM sampling [14] which maintains quali-

ty while reducing the number of required denoising steps from 1000 to typically 50-

100 steps. A complete overview of our temporal pose diffusion pipeline is shown in 

Fig. 4, highlighting the conditional reverse process and the Transformer-based de-

noising architecture. 

The conditioning ensures that the refined sequence maintains the overall mo-

tion characteristics of the input while correcting pose errors and improving temporal 

consistency. This approach is particularly effective because it leverages the structural 

information already present in the predicted poses rather than generating poses from 

scratch. 

3.2 Temporal Denoising Architecture 

3.2.1 Multi-Modal Feature Integration 

Building upon the conditional diffusion framework described in Section 3.1, 

we now detail the architecture of our temporal denoising network 𝜖𝜃(𝑥𝑡, 𝑡, 𝑐). The 

network must effectively integrate three distinct sources of information: the current 

noisy sequence state, the diffusion timestep, and the condition poses. Each requires 

specialized encoding to maximize their contribution to the denoising process. 

The diffusion timestep 𝑡 indicates the current noise level and guides the de-
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noising intensity. We employ sinusoidal positional embedding to encode the timestep, 

followed by a multilayer perceptron projection to the model dimension 𝑑𝑚𝑜𝑑𝑒𝑙  =

 256. This time embedding is broadcast across all sequence positions and joints, en-

suring uniform temporal awareness throughout the network. 

Both the noisy sequence 𝑥𝑡 and conditioning poses 𝑐 are projected from their 

original 3D coordinates to the model dimension through separate linear layers. This 

parallel encoding strategy allows the network to process current state and guidance 

information in the same feature space while maintaining their distinct semantic mean-

ings. 

To capture structural relationships, we incorporate two types of learnable posi-

tional embeddings. Temporal embeddings encode the sequential position of each 

frame, while joint embeddings encode the anatomical hierarchy of the human skeleton. 

These embeddings provide essential inductive biases for modeling human motion pat-

terns.  

All encoded features are integrated through element-wise addition. This addi-

tive fusion preserves the contribution of each modality while enabling the Transform-

er to learn optimal feature combinations through attention mechanisms. 

3.2.2 Transformer-Based Sequence Modeling 

The fused features undergo spatial-temporal modeling through a Transformer 

encoder. We reshape the feature tensor from 𝑅𝑇×𝐽×256 to a flattened token sequence 

ℎ𝑡𝑜𝑘𝑒𝑛𝑠 ∈ 𝑅(𝑇⋅𝐽)×256. Each token represents a specific joint at a specific time frame, 

creating 𝑇 ×  17 tokens per sequence. This flattening enables the self-attention mech-

anism to capture both intra-frame joint dependencies and inter-frame temporal rela-

tionships within a unified framework. 
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Our Transformer encoder consists of 6 layers, each containing multi-head self-

attention (8 heads) and feed-forward networks (dimension 1024). The self-attention 

mechanism computes relationships between all joint-time pairs, allowing the model to 

learn complex motion patterns such as kinematic chains and temporal smoothness 

constraints. Unlike convolutional or recurrent approaches that process information 

locally, the Transformer's global receptive field enables each joint to directly attend to 

any other joint at any time frame. This is particularly beneficial for capturing long-

range dependencies in human motion, such as coordination between upper and lower 

body movements. 

3.2.3 Noise Prediction and Output 

The Transformer output undergoes final processing to generate noise predic-

tions in the original sequence format. The processed tokens are projected back to 3D 

coordinates through a linear layer, then reshaped to reconstruct the sequence structure: 

𝜖𝜃(𝑥𝑡, 𝑡, 𝑐) ∈ 𝑅𝑇×𝐽×3.                                              (3.4) 

The predicted noise directly integrates with the loss function defined in Equa-

tion 3.3, enabling end-to-end training of the entire architecture. The network learns to 

predict the specific noise pattern that transforms the current noisy state toward the 

ground truth, guided by the conditioning information. 

Inference Efficiency: During sampling, the network processes entire sequenc-

es in parallel rather than frame-by-frame, significantly improving computational effi-

ciency compared to autoregressive approaches. The Transformer's parallel processing 

capability makes real-time pose refinement feasible for practical applications. 
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4 Experiments 

4.1 Implementation Details 

We test our model in PyTorch with mixed precision training using Adam op-

timizer (lr=4e-4) for 1000 epochs with batch size 512. The model uses early stopping 

based on validation loss with automatic best checkpoint saving. 

Temporal sequences are extracted using sliding windows of 16 frames with 

stride 8 during training and stride 1 during evaluation. All poses are normalized by 

subtracting the root joint position for translation invariance. 

The temporal denoising network employs a 6-layer Transformer encoder with 

8 attention heads and dimension 256. We use 1000 diffusion timesteps with linear 

noise schedule (β₁=1e-4, βₜ=0.02). For faster inference, DDIM sampling with 50 steps 

is supported. 

During evaluation, we apply sliding window processing with weighted averag-

ing for long sequences. The model processes sequences in parallel for computational 

efficiency. 

4.2 Dataset and Metrics 

We conduct experiments on the Human3.6M dataset [16], a 3D human dataset 

for 3D human pose estimation containing 3.6 million video frames with accurate 3D 

pose annotations. Following standard protocols in prior work, we use subjects S1, S5, 

S6, S7, S8 for training and subjects S9, S11 for testing. 

We use pose predictions generated by ZeDO [6], a state-of-the-art single-

frame 3D pose estimation method, as input to our temporal refinement approach. 
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ZeDO represents current best practices in cross-domain pose estimation without re-

quiring 2D-3D paired training data, making it an ideal baseline for evaluating tem-

poral consistency improvements. 

We evaluate our method using three standard metrics for 3D pose estimation. 

MPJPE (Mean Per Joint Position Error) is the Euclidean distance between estimated 

and ground truth positions after root joint alignment, capturing absolute pose accuracy. 

P-MPJPE (Procrustes-aligned MPJPE) evaluates pose accuracy after optimal rigid 

alignment between estimated and ground truth positions, focusing on pose structure 

by removing global transformations. 

MPJAE (Mean Per Joint Acceleration Error) measures temporal smoothness 

by computing acceleration differences between predicted and ground truth sequences 

using second-order finite differences. This metric is particularly important for evaluat-

ing the temporal consistency improvements achieved by our method. 

All metrics are reported in millimeters for position errors and mm/frames² for 

acceleration errors, following standard conventions in the pose estimation literature. 

4.3 Experimental Result 

We compare our temporal pose diffusion method against the baseline ZeDO 

predictions and SmoothNet [10], a temporal refinement method, on the Human3.6M 

test set. Table 1 summarizes the quantitative results across all evaluation metrics. The 

best results are highlighted in bold font.  
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Table 1 Quantitative comparison on Human3.6M test set. All values in mm for 

MPJPE/P-MPJPE and mm/frames² for MPJAE. 

 MPJPE P-MPJPE MPJAE 

ZeDO (Baseline) 54.77 37.48 2.52 

ZeDO + SmoothNet 53.91 37.45 0.98 

Ours 38.91 27.18 2.58 

Our method achieves significant improvements over both the baseline ZeDO 

predictions and the SmoothNet refinement approach. Compared to ZeDO, our method 

reduces MPJPE by 15.86 mm, and P-MPJPE by 10.30 mm. The comparison with 

SmoothNet demonstrates that our diffusion-based approach provides superior pose 

accuracy. 

Table 2 provides detailed results for individual actions to analyze where our 

method provides the most benefit. 

 

Table 2 Per-action results on Human3.6M test set. MPJPE values in mm. 

 ZeDO Ours Improvement(%) 

Directions 47.75 40.70 14.76 

Discussion 47.47 41.25 13.10 

Eating 55.33 34.57 37.52 

Greeting 58.88 38.31 34.95 

Phoning 53.72 39.46 26.55 

Photo 67.01 43.59 34.95 

Posing 50.91 43.53 14.49 

Purchases 45.95 35.99 21.68 

Sitting 68.02 39.79 41.5 
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SittingDown 77.13 40.78 47.13 

Smoking 51.83 38.97 24.82 

Waiting 57.01 38.90 31.76 

WalkDog 57.06 37.72 33.90 

WalkTogether 37.55 37.51 0.12 

Walking 46.01 32.62 29.09 

Average 54.77 38.91 28.96 

The results show consistent improvements across all actions, with particularly 

notable gains in dynamic actions where temporal modeling is most beneficial. 

4.4 Ablation Studies 

We conduct ablation studies to test the effectiveness of components in our 

method. 

Table 3 Ablation study results on Human3.6M. 

 MPJPE P-MPJPE MPJAE Inference FPS 

16 frames + DDPM 38.91 27.18 2.58 13.9 

16 frames + DDIM 39.09 27.23 10.45 306.2 

32 frames + DDPM 38.21 27.02 2.38 7.0 

32 frames + DDIM 37.77 26.86 7.81 151.5 

Increasing sequence length from 16 to 32 frames provides consistent im-

provements in pose accuracy across both sampling methods. For DDPM sampling, 

MPJPE improves from 38.91mm to 38.21mm, while for DDIM sampling, the im-

provement is more significant, reducing from 39.09mm to 37.77mm. This indicates 

that longer temporal context enables better pose refinement, with the effect being 

more pronounced for deterministic DDIM sampling. 
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DDIM sampling demonstrates a clear speed-accuracy trade-off. The 16-frame 

DDIM configuration achieves a dramatic 22× speedup (306.2 vs 13.9 FPS) compared 

to DDPM, but suffers from significant temporal smoothness degradation, with 

MPJAE increasing from 2.58 to 10.45 mm/frames². This temporal quality loss mani-

fests as visible jittering in the output sequences. 

The 32-frame configurations reveal an interesting pattern. While 32-frame 

DDPM achieves the best temporal smoothness (2.38 mm/frames²) with reduced infer-

ence speed (7.0 FPS), the 32-frame DDIM provides the best pose accuracy (37.77mm 

MPJPE) while maintaining moderate temporal quality (7.81 mm/frames²) and reason-

able speed (151.5 FPS). 

For practical deployment, the choice depends on application requirements. 

The 16-frame DDPM configuration offers the best balance for scenarios prioritizing 

temporal consistency, while 32-frame DDIM provides superior pose accuracy for ap-

plications where slight temporal artifacts are acceptable in exchange for better overall 

quality and faster inference. 
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4.5 Qualitative Results 

 

Fig. 5 Cases of refinement results’ visualization. 

Visualization examples of pose sequence refinement is presented in Fig. 5. In 

the figure, the green skeleton represents the ground truth poses, the yellow skeleton 

shows ZeDO's estimated poses, and the red and blue skeletons correspond to the re-

fined results from our model using DDPM and DDIM sampling, respectively. As can 

be observed, although ZeDO's estimated poses exhibit significant errors compared to 

the ground truth like right hand or left foot, our proposed method is able to effectively 

correct these errors and substantially improve pose estimation accuracy. Both DDPM 

and DDIM variants demonstrate superior performance in maintaining anatomical 

plausibility while preserving the overall motion characteristics of the sequence. 
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5 Conclusion and Future Work 

5.1 Conclusion 

We present a novel temporal pose diffusion framework that addresses the crit-

ical limitation of existing single-frame pose refinement methods. By extending diffu-

sion models to temporal sequences and conditioning the denoising process on predict-

ed poses, our approach achieves significant improvements in both pose accuracy and 

temporal consistency. 

Our method formulates temporal pose refinement as a conditional sequence-

to-sequence denoising task, where predicted pose sequences guide the diffusion pro-

cess toward anatomically plausible and temporally consistent solutions. The key in-

novation lies in the multi-modal feature integration strategy that effectively combines 

time embeddings, pose representations, condition information, and positional encod-

ings within a Transformer-based architecture. 

Experimental results on Human3.6M demonstrate substantial improvements 

over baseline methods. Compared to ZeDO predictions, our approach reduces both 

MPJPE and P-MPJPE. The method also outperforms SmoothNet, a state-of-the-art 

temporal refinement approach, across all evaluation metrics. 

Our ablation studies reveal important design insights. Longer sequence lengths 

provide consistent accuracy improvements, particularly when combined with DDIM 

sampling. While DDIM sampling offers significant speed advantages, it introduces 

temporal quality trade-offs that can be mitigated through longer temporal context. 

The proposed framework maintains the plug-and-play nature essential for 

practical deployment, requiring no retraining when applied to different pose estima-
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tors. This cross-domain adaptability, combined with the substantial performance im-

provements, makes our method valuable for both research and real-world applications 

requiring high-quality temporal pose sequences. 

5.2 Future Work 

Several promising directions could further advance temporal pose refinement 

research. 

Adaptive sequence lengths that automatically adjust based on motion com-

plexity could optimize the trade-off between accuracy and computational efficiency. 

Different actions may benefit from varying temporal contexts, and a dynamic ap-

proach could better utilize computational resources while maintaining quality. 

More sophisticated attention-based conditioning strategies could enhance the 

guidance provided by predicted poses. Cross-attention mechanisms between noisy 

sequences and conditioning information might enable more selective error correction 

compared to the current feature fusion approach. 

The framework could be extended to handle variable-length inputs, eliminat-

ing the need for fixed-window processing and enabling end-to-end refinement of 

complete video sequences. Additionally, incorporating multi-view information when 

available could enhance robustness in challenging scenarios. 

The temporal diffusion approach shows potential for other sequential pose-

related tasks such as motion prediction, pose completion for missing frames, or joint 

optimization of pose estimation and tracking. The general framework of conditioning 

diffusion processes on imperfect predictions may prove valuable across various com-

puter vision domains. 

Finally, integrating physics-based constraints within the diffusion process 
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could further improve the plausibility of refined poses, particularly for complex mo-

tions involving contact or interaction with the environment. 
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