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1. Introduction

Speaker recognition aims to identify or verify
individuals based on their unique voice features,
with application in various fields such as virtual
assistants and security systems. Traditional
models typically rely on Convolutional Neural
Network (CNN) backbone networks such as
VGG-Net [1] or ResNet [2]. However, research have
shown that these architectures are not optimally
suited for speaker recognition tasks, as they
struggle to effectively capture the temporal and
global dependencies in speech data [4]. Manually
searching for Dbetter architecture 1s also
time-consuming. Differentiable  Architecture
Search (DARTS) [3] automates the search for
optimal architectures and has shown success in
image classification tasks. AutoSpeech [4] was the
first to apply a pure DARTS-optimized network to
speaker recognition, demonstrating the feasibility
and effectiveness of this approach in speaker
recognition.

This thesis proposes a hybrid framework that
extends a  DARTS-optimized CNN  with
self-attention pooling and Long Short-Term
Memory (LSTM) networks. Self-attention pooling
dynamically captures global dependencies and
speaker-specific features, while LSTM modules
address the sequential nature of speech by
modeling long-term temporal patterns.
Experimental results on VoxCelebl [6] and
VoxCeleb2 [7] datasets demonstrate that the
proposed framework surpasses AutoSpeech in both
speaker identification and verification tasks. These
results validate the effectiveness of proposed
multi-component framework to address the
complex challenges of speaker recognition tasks.

2. Related Works
2.1 Differentiable Architecture Search (DARTS)

Neural Architecture Search (NAS) automates
the process of designing neural network
architectures by exploring a defined search space
to identify optimal structures. Early NAS methods
automate the design of neural networks and
achieve notable performance improvements,
however, since the method relies on reinforcement
learning or evolutionary algorithms, which are

approach. By relaxing the search space into a
continuous domain, DARTS significantly reduces
the computational cost while maintaining
high-quality architecture discovery. This efficient
optimization process allows for faster and more
effective architecture design, making it a
cornerstone for automated neural network
development.
2.2 A Pure DARTS-based CNN Framework for
Speaker Recognition: AutoSpeech
AutoSpeech is the first to apply DARTS to speaker
recognition tasks. VGG-Net and ResNet
architectures that were originally designed for
image classification, these architectures are not
adequately adapted to the characteristics of
speaker data. Instead, AutoSpeech leverages
DARTS to automate the search for network
architectures optimized for speaker recognition
tasks. By using a gradient-based optimization
approach, AutoSpeech avoids the need for a large
number of independently trained architectures in
the early NAS method, achieves better
performance compared to VGG-Net and ResNet.
2.3 Self-Attention Pooling

Self-attention pooling [5] is a feature
aggregation mechanism, which can dynamically
capture global dependencies, and is suitable for
processing sequence data such as speech. Unlike
traditional average or maximum pooling,
self-attention pooling emphasizes the most
important information by assigning different
weights to each frame, thus generating a more
semantically expressive fixed-length
representation. This  adaptive  mechanism
effectively enhances the model's ability to capture
key features while preserving global contextual

information.
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Fig. 1. Overview of the proposed method
3. Proposed Method

computationally expensive due to the independent
training of sampled architectures. DARTS address
this limitation by introducing a gradient-based

As shown in Fig. 1, our proposed approach consists
of the following three steps: (1) DARTS architecture
search, (2) replacing max pooling with self-attention



pooling, (3) integrating long short-term memory
network (LSTM).
3.1 DARTS Architecture Search

The first step in the proposed method is to
search for the optimal CNN architecture suitable for
the speaker recognition task using DARTS. DARTS
transforms the architecture search problem into a
differentiable optimization process. By relaxing the
search space into a continuous domain, the
candidate operations on each edge are represented
as weighted hybrid forms, and these weights are
continuously optimized by gradient descent
during the search process. As the search process
advances, the operations with the highest weights
are selected, resulting in optimal architecture.

3.2 Replacing Max Pooling with Self-Attention
Pooling

After determining the CNN architecture
through DARTS, the next step is to replace the
maximum pooling layer in the network with a
self-attention pooling module. Compared to the
direct introduction of self-attention pooling in the
DARTS search phase, this step is performed after
the architecture search 1is complete, which
significantly reduces the computational cost.
Introducing the attention mechanism in the search
phase would require additional resources to compute
the weights, thus increasing the training overhead.
By separating architecture search from module
replacement, the advantages of self-attentive
pooling in capturing long time dependencies can be
fully exploited while ensuring computational
efficiency.

3.3 Integrating Long Shot-Term Memory Network
(LSTM)

The final step is to integrate the LSTM module
after the DARTS-optimized CNN network in the
final training phase. To avoid overfitting, LSTM uses
a single-layer structure with hidden states of the
same dimension as the CNN output to ensure
compatibility. At this stage, the sequence of feature
maps generated by the CNN is used as input to the
LSTM, which processes the data sequentially to
capture temporal patterns in speech. In addition, to
address the instability that may be induced by
training with long sequences, a gradient cropping
technique is introduced in the training phase to

selected ResNet and AutoSpeech for comparative
evaluation. The experiments were performed with
the same setup; for AutoSpeech and our method, we
set the cell setting to 8 and the initial channel size to
128. As shown in Table 1, the proposed method
demonstrated superior performance across all
metrics, including Top-1 accuracy, Top-5 accuracy,
and equal error rate (EER) for both speaker
identification and verification tasks.

prevent gradient explosion and ensure stable
convergence.
Method VoxCeleb1 VoxCeleb2
Top-1(%) Top-5(%) | EER(%) EER(%)
ResNet-34 81.37 94.49 11.53 5.10
AutoSpeech 87.57 95.98 8.96 4.32
Proposed 88.13 96.71 8.91 4.24
Table 1. Comparative experimental results with ResNet and
AutoSpeech

4. Experiment
4.1 Comparative experiment

We trained and evaluated our proposed model
on the VoxCeleb1 and VoxCeleb2 datasets. We have

Method Top-1(%) Top-5(%) | EER(%)
Proposed w/o LSTM 88.04 96.42 8.93
Proposed
w/o self'atte?ntion pooling 88.09 96.39 8.95
Proposed 88.13 96.71 8.91
Table 2. Experimental results of the ablation study
4.2 Ablation Study
In addition to comparing the overall

performance, we conducted an ablation study to
assess the contributions of individual components in
our model. The study involved evaluating two
variations: one without the LSTM module and the
other without the self-attention pooling. The result
is shown in Table 2, removing the LSTM resulted in
a slight decrease in Top-1 and Top-5 accuracies, as
well as a marginal increase in EER, highlighting its
importance in capturing temporal dependencies.
Similarly, replacing self-attention pooling with max
pooling led to a decline in both identification
accuracy and verification performance, emphasizing
its role in capturing global feature dependencies.
5. Conclusion

This study introduces a hybrid framework for
speaker recognition, combining a DARTS-optimized
CNN architecture with self-attention pooling and
LSTM modules. The proposed method effectively
enhances performance by addressing both temporal
and global dependencies in speech data, improving
flexibility and accuracy for speaker identification
and verification tasks. Ablation studies confirm the
effectiveness of LSTM in capturing temporal
dependencies and self-attention pooling in
representing global features, enabling a balanced
feature extraction process. Overall, this work
demonstrates the effectiveness of proposed
multi-component framework that integrates DARTS
with feature extraction mechanisms in enhancing
speaker recognition systems.
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Abstract

Speaker recognition is a critical field with applications in security, user authentica-
tion, and personalized services. Despite the success of traditional Convolutional Neu-
ral Networks (CNNs), their limited capacity to capture temporal and global dependen-
cies in speech data constrains their performance in speaker recognition tasks. To address
this limitation, we propose a hybrid framework combining a Differentiable Architecture
Search (DARTS)-optimized CNN with self-attention pooling and long short-term memory
(LSTM) modules.

The proposed framework comprises three stages: first, DARTS is utilized to search for
the optimal neural architecture by formulating the problem as a differentiable optimization
task. Second, self-attention pooling is incorporated to replace max pooling, enhancing the
model’s ability to capture global dependencies across the feature space. Finally, LSTM is
integrated into the training phase to effectively model long-term temporal dependencies.

Experimental evaluations on the VoxCelebl and VoxCeleb2 datasets demonstrate that
the proposed framework achieves superior performance compared to baseline models, in-
cluding traditional CNNs and purely DARTS-optimized architectures. Ablation studies
reveal the effectiveness of LSTM and self-attention pooling, demonstrating their contribu-
tions to feature representation. This study demonstrates the effectiveness of the DARTS-
based hybrid architecture in improving speaker recognition accuracy.

Keywords: Deep Learning, Speaker Recognition, Differentiable Architecture Search
(DARTS), Self-Attention Pooling, long short-term memory (LSTM)
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Chapter 1

Introduction

1.1 Research Background

Speaker recognition is a technology that recognizes or verifies identity based on an
individual’s unique acoustic characteristics, and is widely used in areas such as voice as-
sistants, telephone banking, identity verification systems, and network security. By ana-
lyzing features such as frequency, duration and pitch of voice signals, speaker recognition
systems are able to differentiate between different speakers, enabling personalized ser-
vices and secure access control [1].

With the development of deep learning, convolutional neural networks (CNNSs) have
gradually become one of the main methods for speaker recognition tasks. CNN archi-
tectures such as VGG-Net [2] and ResNet [3], known for their excellent performance in
image classification tasks, have been widely adopted in speaker recognition [4] [5] [6].
However, since these networks were originally designed for image classification related
tasks, directly applying them to speech related tasks may leads to performance bottlenecks
since the differences between audio and image signal [7]. The differences between these
signals may lead to low efficiency and high model complexity in speech feature extraction.
In addition to this, manually adjusting these architectures for speaker recognition tasks is
time-consuming and limited by human expertise, making it challenging to achieve opti-
mal performance. Consequently, designing network architectures that better align with
the needs of speaker recognition has become a key focus for researchers.

Neural Architecture Search (NAS) [8] [9] offers a novel solution for optimizing CNNs



in speaker recognition tasks. NAS can automatically explore and optimize neural network
structures, reducing the complexity of manual design and discovering efficient architec-
tures for specific tasks. Among NAS technologies, Differentiable Architecture Search
(DARTS) [10] is a notable innovation. DARTS transforms the discrete architecture search
space into a continuous and differentiable space, allowing the search process to be opti-
mized through gradient descent. This significantly enhances search efficiency and reduces
computational costs. DARTS has achieved remarkable success in image classification
tasks, inspiring researchers to explore its potential applications in other domains.
AutoSpeech [7] is the first method to apply DARTS to speaker recognition tasks,
demonstrating the effectiveness of automated architecture search in speech applications.
AutoSpeech automates the search for CNN architectures optimized for speaker recogni-
tion, reducing the need for manual intervention and improving accuracy and flexibility.
However, considering AutoSpeech is a pure CNN network, limitations in speech signal
processing still exist, and there is still room for further optimization, particularly in mod-

eling long-term sequences and extracting complex speaker features.

1.2 Research Objectives

In this work, we aim to develop a refined framework for speaker recognition by inte-
grating Differentiable architecture search (DARTS) with LSTM and self-attention pool-
ing. The specific objectives of this study are summarized as follows:

1. We incorporate self-attention pooling and LSTM layers into the purely DARTS op-
timized network. These modules are designed to improve the model’s ability to capture
both global dependencies and temporal features in speech data, enabling better represen-
tation of speaker-specific characteristics.

2. We evaluate the proposed framework on standard speaker recognition benchmarks,
such as VoxCelebl and VoxCeleb2 datasets. Experimental results demonstrate that the
proposed framework achieves superior performance compared to traditional CNN meth-
ods and purely DARTS-optimized architectures in both speaker identification and verifi-
cation tasks.

3. We conduct extensive ablation studies to analyze the contributions of individual



components in the proposed architecture. The results reveal the effectiveness of LSTM
and self-attention pooling in improving feature extraction, showing the advantages of com-

bining these modules with DARTS-based designs.

1.3 Outlines of Thesis

The structure of this thesis is as follows:

Chapter 1: In this chapter, we introduce the background, challenges and the applica-
tions of speaker recognition. We discuss the limitations of traditional CNN-based methods
and the motivation for utilizing DARTS to improve speaker recognition performance.

Chapter 2: This chapter reviews related works, including the principles of convolu-
tional neural networks (CNNs), neural architecture search (NAS), and DARTS. It also
discusses key components such as self-attention pooling and long short-term memory
(LSTM) networks, which are essential for our proposed method.

Chapter 3: In this chapter, we detail our proposed method. We describe the DARTS-
based architecture search, the incorporation of self-attention pooling, and the integration of
LSTM for enhanced feature representation. The theoretical foundations and mathematical
formulation of DARTS and self-attention pooling are also presented in this chapter.

Chapter 4: This chapter focuses on experiments conducted to evaluate the proposed
framework. We introduce the datasets, evaluation metrics, and baseline models used for
comparison. Results are presented for both speaker identification and verification tasks.
Additionally, we perform an ablation study to analyze the contributions of LSTM and
self-attention pooling to the overall performance.

Chapter 5: The conclusion summarizes the findings and advantages of the proposed
framework. We also discuss potential future directions, such as extending the framework

to speaker-conditioned generation tasks and optimizing it for real-time applications.



Chapter 2

Related Works

2.1 Convolutional Neural Network

2.1.1 Overview of Convolutional Neural Network

Convolutional neural networks (CNNs) have become a popular model in various deep
learning tasks.Compared with traditional convolution, the traditional fully connected layer
or standard convolution of CNN shows higher computational efficiency and generaliza-
tion ability when dealing with high-dimensional data due to mechanisms such as local
receptive fields, weight sharing and hierarchical feature extraction. Local receptive fields
enable the model to focus on specific regions of the input, effectively capturing fine de-
tails while avoiding redundant information processing. Weight sharing allows the same
convolutional kernels to be applied across different spatial locations, significantly reduc-
ing the number of parameters and computational complexity, thereby accelerating training
and mitigating overfitting. Hierarchical feature extraction leverages stacked convolutional
layers to progressively learn more abstract and complex features, from simple edges and
textures to intricate patterns and high-level representations.

In the following sections, we will introduce some key components of CNN, including
convolutional layers, pooling layers. Additionally, we will introduce two critical opti-

mization techniques for CNN: Separable Convolution and Dilated Convolution.



2.1.2 Convolutional Layer

The process of convolution involves applying a filter, or convolution kernel, to a block
of data rather than processing individual elements. This method enables neural networks
to capture local patterns and hierarchical structures, allowing for a deeper understanding
of the input. By recognizing features such as edges and textures in images, shifts and
trends in time-series data, or patterns like n-grams in text, convolution helps the network

extract meaningful representations from diverse data sources.

Input Convolution kernel Output

0 X1 X

3 2 2 0 1 0 1 0 7 6 9
1 X0 X1

1 0 1 2 2 1 0 1 8 5 9
1 X2 X

2 1 0 3 1 1 2 0 8 |14 | 8

Fig. 2.1. Convolution layer.

As shown in Fig. 2.1, the 3 x 3 block in the center represents the convolution kernel.
This kernel slides across the input data, extracting features and producing an output known
as the feature map. In addition to the kernel size, convolution involves two key parameters:
stride and padding. Stride defines the step size of the kernel’s movement, typically set to
1 or 2, depending on the task. Without padding, the feature map will be smaller than the
input data. Padding addresses this by adding zeros around the input, effectively enlarging

it and ensuring that the output feature map maintains the same dimensions as the input.

2.1.3 Separable Convolution

Separable convolution is a convolutional operation that decomposes standard convo-
lution into two smaller steps: depthwise convolution and pointwise convolution. This
technique significantly reduces the number of parameters and computations required in

CNNs while maintaining competitive performance.
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Fig. 2.2. Depthwise convolution.

There are two types of convolution involved in the process. It begins with depthwise
convolution, where the convolution operation is applied independently to each channel of
the input, using a separate convolution kernel for each channel. As the Fig. 2.2 shows,
This step extracts spatial features from each channel without mixing information across
channels. Following this, pointwise convolution is applied across all channels as shown in
Fig. 2.3, which is actually a 1 x 1 convolution, combining the spatial features and enabling

interaction between channels.

— i —

Fig. 2.3. Pointwise convolution.

By separating spatial filtering and channel-wise feature aggregation, separable convo-
lution drastically reduces the computational cost compared to standard convolution, which

applies multiple kernels simultaneously to all channels.

2.1.4 Dilated Convolution

Dilated convolution is another convolutional technique that expands the receptive field
of a CNN without increasing the number of parameters or computational cost. By inserting

spaces between the kernel elements, dilated convolution allows the model to capture multi-



scale contextual information more effectively.

(2 (b) (©)

Fig. 2.4. Overview of dilated convolution.

Compared to standard convolution, dilated convolution introduces a hyper-parameter
called dilation rate, this hyper-parameter defines the spacing of the values when the con-

volution kernel processes the input data. The receptive field F' can be computed as:

F=k+(k—-1)(r—1), 2.1)

Where k represent the kernel size, r is the dilation rate. Fig. 2.4 emphasizes the effect
of different dilation rates on the receptive field:

(a) is the convolution process when the dilation rate is 1. At this dilation rate, the
dilation convolution can be treated as an ordinary convolution with a convolved receptive
field of 3.

(b) is the convolution process when the dilation rate is 2, the convolved receptive field
is 5.

(c) is the convolution process when the dilation rate is 3, the convolved receptive field

is 7.

2.1.5 Pooling Layer

Pooling layers are also key components of CNNs which reduce the spatial dimensions
of feature maps while remaining the most important information. This downsampling
operation helps to decreasing computational complexity and mitigating the risk of over-

fitting. There are two common pooling operation: max pooling and average pooling.
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Fig. 2.5. Overview of max pooling operation.

Max Pooling

The max pooling is one of the most common pooling operations, which aims to select
the maximum value within a localized region of the feature map to represent the activation
intensity of that localized region. As the Fig. 2.5 shows, max pooling slides a fixed
receptive field across the feature map according to a predefined window size and stride.
It then performs a “take maximum” operation on all elements within that local region,

using the resulting maximum value as the output for that region.

4 8 10 0
2 © e v 2 X 2 Average Pooling 3 J
7 9 8 7 9 7

Fig. 2.6. Overview of average pooling operation.

Averge Pooling

average pooling is a commonly used pooling operation that aims to compute the aver-

age value within a localized region of the feature map, representing the overall activation



intensity of that region. As shown in Fig. 2.6, average pooling slides a fixed receptive
field across the feature map based on a predefined window size and stride. For each local
region, it calculates the mean of all elements and uses this average value as the output for
that region. This process effectively reduces the spatial resolution of the feature map while

retaining the overall distribution of activations, resulting in smoother downsampling.

2.2 Neural Architecture Search (NAS)

Neural Architecture Search (NAS) [8] automates the process of designing neural net-

work architectures by formulating it as a search problem over a defined architecture space.

2.2.1 Early NAS Method

Early NAS method employs a controller network to generate candidate architectures

by predicting architecture decisions as a sequence of tokens.

Sample architecture A with probability p

Trains a child network
The controller (RNN) with architecture A to
get accuracy R

Compute gradient of p and scale it
by R to update the controller

Fig. 2.7. Overview of early NAS method.

As shown in Fig. 2.7, the controller samples an architecture A from the search space
with probability p. The sampled architecture is instantiated as a child network and trained
to obtain an accuracy R on the validation set. The accuracy R will serve as the reward
signal to update the controller, reinforcing the likelihood of generating architecture that

yield higher performance in subsequent iterations.



The NAS framework applies the REINFORCE algorithm [11] [12] to update the con-
troller. The policy gradient can be computed as:
T

Vo J(0c) =Y E [V, log Plag|ars—1;0c)R)], (2.2)

t=1

where 6. denotes the controller’s parameters, a; denotes the action at step ¢, and R is
the reward signal. In order to reduce the variance of the gradient estimate, a baseline b is
applied, which is the moving average of previous rewards. The baseline function can be

described as:

T
Vo J(0c) = Y E [V, log P(as|ars—1;60.)(R —b)]. (2.3)

t=1

Although the early NAS method is effective, it requires high computational cost, as
each sampled architecture required full training. Subsequent approaches, such as Differ-
entiable Architecture Search (DARTS), addressed this limitation by introducing weight

sharing and differentiable search spaces, significantly reducing the search overhead.

2.2.2 Differentiable Architecture Search (DARTS)

Compared to early NAS methods, which rely on reinforcement learing or evolution-
ary algorithms to explore the architecture space, DARTS [10] introduces a more efficient
gradient-based method.

In early NAS method, the searching process involves discrete selection of candidate
architectures, requiring the independent training of numerous child networks, which re-
sults in significant computational overhead. DARTS effectively reduces computational
cost by converting the discrete search space into a continuous differentiable space, using
standard gradient descent methods for architecture optimization.

In DARTS, the architecture search process revolves around the concept of continu-
ously relaxing the selection of candidate operations into a weighted sum, which allows
smooth transitions between different architectures during the search phase.

Specifically, DARTS models the neural network search space as a directed acyclic

graph (DAG), where each node represents a feature representation, and each edge repre-

10



sents a possible operation. Each edge in DAG will be assigned a weighted combination
of the candidate operations. During the training phase, the weights of these operations
are optimized through gradient descent, which allows the model to converge to the most
effective architecture. This approach avoids the inefficiencies of discrete search, allowing
multiple architectures to be evaluated and optimized simultaneously in a single training.

After the search, the operations with the highest weights are selected to obtain the final
architecture by discretizing the learned parameters.

The core mathematical formulations and optimization method will be introduced in

Chapter 3.

2.2.3 A Pure DARTS-based CNN Framework for Speaker Recogni-

tion: AutoSpeech

Network architectures such as VGG-Net and ResNet are widely used as base networks
in traditional speaker recognition systems. These architectures were originally designed
for image classification and were later applied for speaker recognition tasks. While they
perform reasonably well, they are not modified for the unique characteristics of speaker
data. This mismatch between image architectures and speech tasks often leads to poor
performance as well as excessive model complexity. In addition, the process of manually
tuning these architectures for speaker recognition tasks is time-consuming.

AutoSpeech [7] address these limitations to some extent by applying DARTS to the
speaker recognition tasks. AutoSpeech converts the architectural search space into a con-
tinuous domain and optimizes the architecture using gradient descent, thus avoiding the
need to train multiple independent networks as required by early NAS methods. This au-
tomated process generates models that are better suited for speaker recognition, thereby
improving performance.

AutoSpeech’s approach is to search for the optimal combination of operations in the
neural cells that form the basic building blocks of the final CNN model. By stacking these
optimized cells, AutoSpeech builds a deep network suitable for speaker recognition. In
the search phase, AutoSpeech follows the DARTS framework and uses a weighted sum

of candidate operations on each edge of the neural units. These weights are dynamically

11



adjusted by gradient descent to gradually converge the model to the optimal architecture.
Once the search is complete, the architecture is discretized by selecting the operations with
the highest weights to finalize the network structure.

Compared to VGG and ResNet, AutoSpeech leverages DARTS for task-specific op-
timization, generating models that are not only more efficient but also achieve higher
recognition performance. By focusing on the unique properties of speaker recognition,
AutoSpeech is able to reduce unnecessary complexity while enhancing model effective-

ness, demonstrating its improved performance in speaker recognition.

2.3 Self-Attention Pooling

2.3.1 Self-Attention Functions

The self-attention mechanism [13] aims to fully capture the long-range dependencies
within a sequence and realize efficient parallel computation without relying on loops or
convolutional structures. The main idea of Self-attention is to dynamically retrieve contex-
tual information for each element in The input sequence X by measuring its relationship
with other elements, thereby producing more semantically expressive representations. The
sequence X € R™*4 is first projected into three vector spaces: the query vectors, the key

vectors and the value vectors. Each of them can be expressed as:

Q= XWp, (2.4)
K= XWy, (2.5)
V= XWy, (2.6)

where Wg, Wi € R Wy, € R¥% are learnable parameter matrices. The output

for each time instance o; can be expressed as:

o = Attn(q;, K)V, (2.7)

where ¢; represents the query at the time step t. Attn is the attention function which

12



is used to compute the attention score. There are two most commonly used attention

functions: dot-product attention [14] and additive attention [15].

Dot-Product Attention
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Fig. 2.8. Overview of dot-product attention.

As Fig. 2.8 shows, the dot products of the query with all keys are computed, each
result is divided by /d}, and a softmax function is applied to obtain the weights on the

values. The output can be expressed as:

T

O = softmax( QK

e V. (2.8)

where dj, 1s the dimensionality of the key vectors K.
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Fig. 2.9. Overview of additive attention.

Additive Attention

As Fig. 2.9 shows, additive attention computes the similarity score between each query

and all keys using the formula:
E = v"tanh(W,Q + W, KT), (2.9)

where v € R% is a learnable weight vector, W, and W}, are learnable matrices which
converts query ¢; and k; into the same space for comparison. A softmax function is applied
to these scores to obtain the attention weights. The output is computed as the weighted

sum of the value vectors. The output can be computed as:

O = softmax(E)V. (2.10)
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2.3.2 Self-Attention Pooling

Self-attention pooling [16] is used to convert frame-level features into fixed-length
representations, which is suitable for tasks involving sequential data such as audio pro-
cessing. Unlike traditional average pooling or maximum pooling, self-attention pooling
is able to dynamically adjust its impact based on the importance of each frame. This adap-
tive mechanism enables the model to retain critical information and thus perform better in
downstream tasks.

The main idea of self-attention pooling is to learn the importance of each frame rather
than relying on fixed aggregation rules. By assigning different weights to different frames,
the model is able to highlight the most informative parts of the input sequence, while less
important frames contribute less to the final representation. This process is inspired by
the additive attention mechanism, where the importance of each frame is computed from
a set of trainable parameters.

In self-attention pooling, the model learns to ”focus” on the most valuable frames
by comparing each frame to a trainable reference point. The final output is a weighted
combination of all the frames that reflects how well each frames is aligned to that reference
point. This approach is conceptually similar to dot product attention, but differs in that
self-attention pooling uses a simple trainable vector as the query, rather than extracting
the query from the input sequence.

By adopting this approach, self-attentive pooling enhances the model’s ability to han-
dle variations in the input sequence, ensuring that the generated representation captures
the most critical parts of the data. This property makes self-attentive pooling well-suited
for tasks with significant frame-wise variability, as it allows the model to prioritize and

integrate the most informative parts of the sequence effectively.

2.4 Long Short-Term Memory Network

Long short-term memory network (LSTM) [17] is a special recurrent neural networks
(RNN) which is designed to solve the vanishing or gradient exploding that occurs when
traditional RNNs process long sequence data. When dealing with long sequence data, tra-

ditional RNNs usually have difficulty in retaining early information in the model due to
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gradient vanishing or gradient explosion during backpropagation, resulting in poor per-
formance in drawing long-term information. LSTM introduces a “gating mechanis” that
effectively controls the storage and forgetting of information, allowing the model to cap-
ture dependencies over longer time spans while preventing gradient-related issues.

As usual for RNNs, the LSTM consists of repeating neural network modules. How-

¥

ever, the repeating modules of LSTM have a different structure from RNNs.

—>

®

Fig. 2.10. Structure of LSTM.

Fig. 2.10 shows the chain structure of LSTM and the composition of a repeating mod-
ule. The key to LSTM is the cell state, the horizontal line across the top of the graph. The
cell state is similar to a conveyor belt. It runs directly along the entire chain with only a
few small linear interactions. Information can easily flow on unchanged. In addition to
this, each module uses three gates to determine the information that needs to be retained:

1. Forget Gate. The forget gate performs the selection of the last cell state C;_1,
which determines how much of the previous cell state C;_; will be retained for the current

moment Cy. The output f; can be expressed as:

ft = O'(Wf . I:ht—:l?xt] + bf), (211)

where o is the sigmoid activation function, which compress the output to a range of
[0,1] to control the degree of forgetting. W, represents the weight matrix of the forget
gate, which learns the influence of the input and hidden state on forgetting. h;_; is the
hidden state from the previous time step. by is the bias term for the forget gate, which
adjusts the output of the forget gate.

2. Input Gate. The input gate determines how much information of the input x; will

be saved to the cell state C;. The output i; can be expressed as:
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it = o(Wi - [hio1, o] + bi), (2.12)

where W, represents the weight matrix of the input gate, which controls how the input
influences the cell state update. b; is the bias term for the input gate. The candidate cell

state can be expressed as:

C, = tanh(W, - [hy_1,x] + be), (2.13)

where W, represents the weight matrix for the candidate cell state. bo is the bias term

for the candidate cell state. The cell state can be updated as:

Co=f-Coy+ip-Cp (2.14)

3. Output Gate. The fianl output and the hidden state can be computed as:

O = U(Wo : [htfla xt] + bo)7 (215)
ht = O - tanh(C't), (216)

where W, represents the weight matrix of the output gate and b, is the bias term for
the output gate.

LSTM is widely used in sequential data tasks, such as speech recognition, machine
translation, and stock price prediction. CNNs are effective for extracting spatial features
from spectrograms or mel-frequency cepstral coefficients (MFCCs), while LSTMs are
adept at capturing temporal dependencies across frames. This combination leverages the
strengths of both architectures, enabling accurate modeling of speaker characteristics and

temporal patterns, which is crucial for speaker-related applications [18].
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Chapter 3

Proposed Method

3.1 Overview of Proposed method

In this chapter, we mainly discuss the proposed method along with its architecture, the
principles behind DARTS, and the working mechanism of self-attention pooling.

As Fig. 3.1 shows, the workflow of the proposed method can be divided into three key
steps: DARTS Architecture Search, Replacing Max Pooling with self-attention Pooling,
and Integrating LSTM in the Training Phase.

p
(+ o
[ ] s &
- H —— q —>
n o
~ =
[<P]
a
Input DARTS-Optimized CNN Network Output

Fig. 3.1. Structure of proposed method.

First, we employ DARTS to identify the optimal neural network architecture. DARTS
transforms the architecture search problem into a differentiable optimization task by re-
laxing the search space, represented as a weighted mixture whose weights are optimized
by gradient descent. During the search process, these weights are gradually adjusted to

determine the most efficient operations and connections. After a certain number of itera-
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tions, the operation with the highest weight on each edge is selected, resulting in a discrete
optimal architecture.

layers in the network with self-attention pooling. Directly incorporating self-attention
pooling into the candidate operations during the DARTS search phase significantly in-
creases computational overhead due to the resource-intensive nature of the attention mech-
anism for weight computation. By contrast, our approach defers the integration of self-
attention pooling until after the architecture is finalized, which substantially improves
training efficiency. This design saves search time while leveraging the ability of self-
attention pooling to capture long-term dependencies, effectively balancing computational
cost and model performance.

Finally, in the training phase, we integrate an LSTM network after the DARTS opti-
mized CNN network.The CNN is first trained to extract local and spatial features from the
input, and the resulting feature maps are subsequently fed into an LSTM. The LSTM is
implemented with a single-layer structure to avoid overfitting, and its hidden state size is
set to be dimensionally identical to the CNN output. At this stage, the sequence of feature
maps generated by the CNN is used as input to the LSTM, which processes the data in
sequence to capture long time dependencies. In order to address the instability that may
result from training on long sequences, a gradient cropping technique is introduced at this

stage.

3.2 Derivation of the DARTS Procedure

In our method, we employ DARTS [10] to automatically search an optimal CNN ar-
chitecture for speaker recognition tasks. The network backbone is constructed by stacking
neural cells, where each cell is designed as a DAG. Nodes in the graph represent feature
representations, while edges denote candidate operations such as convolutions, pooling,
or skip connections.

Fig. 3.2 shows the DARTS search steps as follows:

3.2.1 Search Space Definition

The search space O contains 8 candidate operations:
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(@) () © (d)

Fig. 3.2. Overview of DARTS search process: (a) Operations on the edges are unknown,
(b) Continuous relaxation of the search space, (c) Bi-level optimization, (d) Final archi-
tecture.

* 3 x 3 separable convolution 3 x 3 average pooling

* 5 x 5 separable convolution * 3 X 3 max pooling
* 3 x 3 dilated convolution * skip connection
* 5 x 5 dilated convolution * no connection (zero)

To balance the feature resolution and computational efficiency, two types of cells are

defined as:

* Normal cells: Maintain spatial resolution and compute intermediate feature repre-

sentations.

* Reduction cells: Reduce spatial resolution by a factor of two and double the number

of channels.

Each cell is defined as having 7 nodes, with 2 input nodes and 4 intermediate nodes,
and 1 output cell.

The placement of reduction cells follows a consistent strategy, located at 1/3 and 2/3
of the total depth of the stacked cells [10] [19]. Each type of cell shares its architecture

across the entire network to simplify design complexity.
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3.2.2 Relaxation of the search space

In early NAS method, the architecture is defined by discrete choices, such as se-
lecting specific operations or connection paths. This makes the optimization process
non-differentiable, requiring techniques like reinforcement learning or evolutionary al-
gorithms.

Instead of selecting discrete operations for each edge, DARTS assigns a weighted com-
bination of all candidate operations:

)
60 (a) = 3" ) o) (3.1)

ocO ZO’EO eXp(agZ’J))

where a7 is a learnable parameter associated with operation o on edge (¢, 7). This

relaxation enables the architecture search to be formulated as a differentiable optimization

task.

The feature at node j is then calculated as the summation over all its predecessors:
20 = 37 ol (3(0). (32)
i<j
3.2.3 Bi-level Optimization

The search process involves two sets of parameters:

* Network weights w: Parameters of the candidate operations.

* Architecture parameters o: Weights determining the importance of each opera-

tion.

The bi-level optimization problems [20] can be formulated as:

min  Loa(w*(a), o) (3.3)

st. w*(a) = argmin Lygin(w, ),
w

where L., and L, represent the training and validation losses, respectively. Both

Liain and L., are defined as cross-entropy losses:
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K

L:==) I(y = k)logps, (3.4)
k=1

where K is the number of speakers, y represents the ground-truth speaker label and py, is
the softmax probability of speaker k.

To reduce computational costs, we employ a one-step gradient approximation:

voz£v21 w* ),
1( ( ) ) (3_5)
~ Vaﬁval(’w - ngﬁtrain(fw7 Oé), Oé).

In this approximation format, w is updated for a single step with learning rate & to

approximate the solution.

3.2.4 Architecture Derivation

After the search phase, DARTS converts the continuous architecture into a discrete

one by selecting the operation with the highest weight for each edge:

(id) _ exp(as”) 3.6
Py - (59N ( . )
Yoo eXplay™)

The derived architecture is then stacked to form the CNN backbone, with reduction
and normal cells arranged according to the predefined placement.
To determine the convergence of the architecture search process, we evaluate the en-

tropy of the architecture parameters «. The entropy is computed as:

E=>") af"logal, (3.7)

(i,j) 0€O
where «f; represents the weight of operation o on edge (i, j) in the search space O. A
smaller entropy value indicates a higher confidence in selecting a specific operation among
all possible candidates for each edge. The architecture search is considered converged

when the entropy stabilizes and no longer decreases.
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3.3 Derivation Self-Attention Pooling

Self-attention pooling [16] is an effective mechanism for aggregating frame-level fea-
tures into a fixed-length utterance-level representation. Traditional pooling methods, such
as average and max pooling, often fail to dynamically adjust to the varying importance of
different frames in the input sequence. Self-attention pooling addresses this limitation by
learning the importance of each frame, thereby retaining more informative representations
for downstream tasks.

The main idea of self-attention pooling is based on additive attention, which com-
putes the importance of each frame by training a set of trainable weights. Given an input

sequence of frame-level features, which can be expressed as:

H = [hy, hy, ..., hp]T € RT>dm (3.8)

where 7" denotes the number of time steps and d,,, is the feature dimension, the segment-

level representation is computed as:

C = Softmax(W.H")H, (3.9)

where W, € R%" is a learnable parameter representing the weight vector applied to
each frame, H; denotes the transposed feature matrix, which enables the attention mech-
anism to compute the importance score for each time step.

In particular, in self-attention pooling, the keys and values are from the same feature
sequence H, the query is represented by a learnable vector ..

Conceptually, this process can be treat as dot-product attention, where the query, key,
and value interact to compute attention scores. However, in self-attention pooling, the
query is simplified to a learnable vector rather than being derived from the input sequence.
Thus, the output representation C' is a weighted average of the output sequence, with the

weights reflecting the alignment learned by the self-attention mechanism.
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Chapter 4

Experiment

4.1 Datasets

We evaluated our method on the VoxCelebl [5] and VoxCeleb2 [6] datasets, which
consisted of large-scale collections of real-world speech data, providing a challenging
and diverse environment for training and evaluating speaker-related models.

VoxCelebl contained voice recordings of 1,251 speakers, totaling more than 140,000
utterances from YouTube. The data was derived from online interviews involving speakers
of different nationalities, occupations, and genders.

VoxCeleb2 provided a larger dataset containing 6,112 speakers and more than 1 million
utterances, which differed from VoxCelebl.

We evaluated both speaker identification and verification on VoxCelebl and speaker

verification on VoxCeleb?2..

4.2 Evaluation Metrics

For speaker recognition, we used top-1 accuracy and top-5 accuracy as evaluation
metrics. Top-1 accuracy measured the proportion of test samples for which the model’s
highest confidence prediction agreed with the true label. This metric reflected the model’s
ability to correctly recognize a speaker in a single attempt and served as a straightforward
and rigorous way of evaluating performance. The top-5 accuracy rate, on the other hand,

treated a prediction as correct if the true label appeared in the top 5 predictions of the
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model with the highest confidence.

For speaker verification, we used the equal error rate (EER) as the primary evaluation
metric. EER was the point at which the false acceptance rate (FAR) equaled the false re-
jection rate (FRR). The FAR measured the proportion of impostors incorrectly accepted as
the claimed speaker, while the FRR measured the proportion of genuine speakers incor-
rectly rejected. A lower EER indicated a better trade-off between these two error types,

signifying a more balanced and robust verification system.

4.3 Experimental Result

To evaluate the effectiveness of our proposed model, we conducted a series of experi-
ments to compare its performance against ResNet-34 [21] and AutoSpeech. Specifically,
we evaluated our method and AutoSpeech under the same settings, with the number of
cells set to 8 and the initial channel size set to 128. For speaker identification, the models
were trained on the identification split of VoxCelebl, and the testing set was used to eval-
uate identification accuracy. We reported both top-1 and top-5 accuracies as the primary
evaluation metrics. For speaker verification, the models were trained on the verification
splits of VoxCelebl and VoxCeleb2. The EER was employed as the key metric for verifi-

cation tasks, which quantified the trade-off between false acceptance and false rejection.

Table 4.1 Comparative experimental results with ResNet and AutoSpeech

VoxCelebl VoxCeleb2
Method Top-1(%) Top-5(%) | EER(%) | EER(%)
ResNet-34 81.37 94.49 11.53 5.10
AutoSpeech 87.57 95.98 8.96 4.32
Proposed 88.13 96.71 8.91 4.24

As Table 4.1 shows, for speaker identification, our model achieved a top-1 accuracy of
88.13% and a top-5 accuracy of 96.71%, significantly outperforming ResNet-34 and Au-
toSpeech. Specifically, compared to ResNet-34, the top-1 and top-5 accuracies increased

by 6.76% and 2.22%, respectively, while compared to AutoSpeech, the improvements
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were 0.56% and 0.73%. For speaker verification, our model achieved an EER of 8.91%
on VoxCelebl and 4.24% on VoxCeleb2. These values represented reductions in error
rates compared to ResNet-34 and AutoSpeech. On VoxCeleb2, the EER was reduced by
0.86% compared to AutoSpeech. These results validated the effectiveness of our pro-
posed method, demonstrating its superior ability to capture and represent speaker-specific

features.

4.4 Ablation Study

To better validate and analyze the effectiveness of each individual component in our
model, we conducted an ablation study focusing on the LSTM module and the self-attention
pooling mechanism. We designed two model variations:

1. Proposed w/o LSTM: In this configuration, the LSTM module was removed from
the proposed architecture. After the convolutional backbone, a simple fully connected
layer was used to aggregate the extracted features. This modification isolated the influence
of the LSTM in modeling temporal dependencies.

2. Proposed w/o self-attention pooling: In this configuration, the self-attention
pooling mechanism was replaced with max pooling. The rest of the architecture, including
the LSTM module, remained intact. This setup isolated the effectiveness of self-attention
pooling in capturing global feature dependencies.

All other hyperparameters and training settings were kept the same for a fair compar-

ison.

Table 4.2 Experimental result for ablation study

Method Top-1(%) Top-5(%) | EER(%)
Proposed w/o LSTM 88.04 96.42 8.93
Proposed w/o self-attention pooling 88.09 96.39 8.95
Proposed 88.13 96.71 8.91

We evaluated the performance of both variants on VoxCelebl1 in the speaker identifi-

cation and verification tasks. The results of the ablation study are presented in Table 4.2.
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The ablation study results are summarized as follows:

1. Removing the LSTM module caused a slight decline in both Top-1 and Top-5 ac-
curacies for speaker identification, dropping from 88.13% to 88.04% and from 96.71%
to 96.42%, respectively. This showed the importance of LSTM in modeling temporal
dependencies inherent in sequential speech data.

2. Replacing self-attention pooling with max pooling also resulted in a slight de-
crease in speaker identification performance. The Top-1 accuracy dropped from 88.13%
to 88.09%, and the Top-5 accuracy decreased from 96.71% to 96.39%. This demonstrated
the role of self-attention pooling in capturing global speaker-specific dependencies, which
were critical for distinguishing speakers in identification tasks.

3. Replacing self-attention pooling with max pooling further caused a marginally
higher EER on VoxCelebl, increasing from 8.91% to 8.95%. This indicated that self-
attention pooling improved the representation of speaker-specific features by capturing
global dependencies, which helped reduce errors in speaker verification tasks.

4. The impact of removing the LSTM module was most noticeable in the Top-5 ac-
curacy, which decreased by 0.29%. This suggested that the LSTM excelled at captur-
ing fine-grained information within the sequence, which was critical for improving the
model’s performance in complex identification tasks. On the other hand, replacing the
self-attention Pooling with Max Pooling had a more significant effect on both the EER,
which increased by 0.04%, and the Top-5 accuracy, which dropped by 0.32%. This indi-
cated that Self-Attention Pooling played a crucial role in modeling global features, signif-

icantly enhancing the overall discriminative power of the model.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

Our work presents a refined approach to speaker recognition by integrating a DARTS-
optimized CNN architecture with self-attention pooling and LSTM modules. Compared
to traditional CNN methods and purely DARTS-optimized architectures, the proposed
framework effectively enhances speaker recognition performance by leveraging both tem-
poral and global dependencies in speech data. By combining neural architecture search
with task-specific modules, the proposed framework addresses limitations in feature rep-
resentation, resulting in improved flexibility and accuracy in both speaker identification
and verification tasks.

The results of the ablation study demonstrate the unique contributions of LSTM and
self-attention pooling to the proposed architecture. LSTM enhances the model’s ability
to capture temporal dependencies, which is essential for effectively processing sequen-
tial speech signals. Self-attention pooling, on the other hand, refines the representation
of global dependencies across the feature space, enabling the model to focus on critical
speaker-specific features. Collectively, these components enable the model to focus on
sequential and global aspects of feature extraction, achieving superior performance over
baseline architectures.

Overall, our method shows the effectiveness of combining neural architecture search
with advanced feature extraction modules in addressing the challenges of speaker recog-

nition. The proposed framework benefits from the flexibility and adaptability of DARTS-
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optimized architectures while leveraging the Combined advantages of LSTM and self-
attention pooling to enhance feature representation. This integration improves model per-
formance, demonstrating the effectiveness of hybrid architectures in advancing speaker

recognition systems.

5.2 Future Work

While the proposed framework achieves promising results, several directions remain
open for future exploration. The computational complexity introduced by the self-attention
pooling mechanism, although beneficial for capturing global dependencies, increases the
overall model size and may pose challenges in real-time or resource-constrained applica-
tions. Developing lightweight alternatives or approximation methods to reduce this over-
head will be critical for broadening the framework’s applicability.

Furthermore, extending the framework to speaker-conditioned generation tasks (e.g.,
speech cloning and speech synthesis) is a direction worth exploring. Such tasks require
high accuracy in speaker-specific representations to ensure that the generated speech achieves
a good level of sound quality and naturalness. Future research could consider combining
multi-task learning or contrastive learning frameworks to enhance the model’s adaptabil-
ity in multi-task scenarios by simultaneously optimizing the recognition and generation
objectives. This direction is expected to further enhance the unified modeling of speaker
features and promote the synergistic development of speaker recognition and generation
tasks, thus offering the possibility of developing more comprehensive speaker-related sys-

tems.
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