
Hiroshi Watanabe

修 士 論 文 概 要 書
Master’s Thesis Summary

Date of submission: 01/27/2025 (MM/DD/YYYY)

専攻名（専門分野）

Department

Computer Science

and Communications

Engineering

氏 名

Name
Minghao Duan

指 導

教 員

Advisor
 印

Seal
研究指導名

Research guidance

Research on

Audiovisual

Information Processing

学籍番号

Student ID

number

CD

5123FG10-1

研究題目
Title

A Multi-Component Framework for Speaker Recognition: Leveraging Differentiable

Architecture Search and Temporal Dependencies

1. Introduction

Speaker recognition aims to identify or verify

individuals based on their unique voice features,

with application in various fields such as virtual

assistants and security systems. Traditional

models typically rely on Convolutional Neural

Network (CNN) backbone networks such as

VGG-Net [1] or ResNet [2]. However, research have

shown that these architectures are not optimally

suited for speaker recognition tasks, as they

struggle to effectively capture the temporal and

global dependencies in speech data [4]. Manually

searching for better architecture is also

time-consuming. Differentiable Architecture

Search (DARTS) [3] automates the search for

optimal architectures and has shown success in

image classification tasks. AutoSpeech [4] was the

first to apply a pure DARTS-optimized network to

speaker recognition, demonstrating the feasibility

and effectiveness of this approach in speaker

recognition.

This thesis proposes a hybrid framework that

extends a DARTS-optimized CNN with

self-attention pooling and Long Short-Term

Memory (LSTM) networks. Self-attention pooling

dynamically captures global dependencies and

speaker-specific features, while LSTM modules

address the sequential nature of speech by

modeling long-term temporal patterns.

Experimental results on VoxCeleb1 [6] and

VoxCeleb2 [7] datasets demonstrate that the

proposed framework surpasses AutoSpeech in both

speaker identification and verification tasks. These

results validate the effectiveness of proposed

multi-component framework to address the

complex challenges of speaker recognition tasks.

2. Related Works

2.1 Differentiable Architecture Search (DARTS)

Neural Architecture Search (NAS) automates

the process of designing neural network

architectures by exploring a defined search space

to identify optimal structures. Early NAS methods

automate the design of neural networks and

achieve notable performance improvements,

however, since the method relies on reinforcement

learning or evolutionary algorithms, which are

computationally expensive due to the independent

training of sampled architectures. DARTS address

this limitation by introducing a gradient-based

approach. By relaxing the search space into a

continuous domain, DARTS significantly reduces

the computational cost while maintaining

high-quality architecture discovery. This efficient

optimization process allows for faster and more

effective architecture design, making it a

cornerstone for automated neural network

development.

2.2 A Pure DARTS-based CNN Framework for

Speaker Recognition: AutoSpeech

AutoSpeech is the first to apply DARTS to speaker

recognition tasks. VGG-Net and ResNet

architectures that were originally designed for

image classification, these architectures are not

adequately adapted to the characteristics of

speaker data. Instead, AutoSpeech leverages

DARTS to automate the search for network

architectures optimized for speaker recognition

tasks. By using a gradient-based optimization

approach, AutoSpeech avoids the need for a large

number of independently trained architectures in

the early NAS method, achieves better

performance compared to VGG-Net and ResNet.

2.3 Self-Attention Pooling

Self-attention pooling [5] is a feature

aggregation mechanism, which can dynamically

capture global dependencies, and is suitable for

processing sequence data such as speech. Unlike

traditional average or maximum pooling,

self-attention pooling emphasizes the most

important information by assigning different

weights to each frame, thus generating a more

semantically expressive fixed-length

representation. This adaptive mechanism

effectively enhances the model's ability to capture

key features while preserving global contextual

information.

3. Proposed Method

As shown in Fig. 1, our proposed approach consists

of the following three steps: (1) DARTS architecture

search, (2) replacing max pooling with self-attention

Fig. 1. Overview of the proposed method

pooling, (3) integrating long short-term memory

network (LSTM).

3.1 DARTS Architecture Search

The first step in the proposed method is to

search for the optimal CNN architecture suitable for

the speaker recognition task using DARTS. DARTS

transforms the architecture search problem into a

differentiable optimization process. By relaxing the

search space into a continuous domain, the

candidate operations on each edge are represented

as weighted hybrid forms, and these weights are

continuously optimized by gradient descent

during the search process. As the search process

advances, the operations with the highest weights

are selected, resulting in optimal architecture.

3.2 Replacing Max Pooling with Self-Attention

Pooling

After determining the CNN architecture

through DARTS, the next step is to replace the

maximum pooling layer in the network with a

self-attention pooling module. Compared to the

direct introduction of self-attention pooling in the

DARTS search phase, this step is performed after

the architecture search is complete, which

significantly reduces the computational cost.

Introducing the attention mechanism in the search

phase would require additional resources to compute

the weights, thus increasing the training overhead.

By separating architecture search from module

replacement, the advantages of self-attentive

pooling in capturing long time dependencies can be

fully exploited while ensuring computational

efficiency.

3.3 Integrating Long Shot-Term Memory Network

(LSTM)

The final step is to integrate the LSTM module

after the DARTS-optimized CNN network in the

final training phase. To avoid overfitting, LSTM uses

a single-layer structure with hidden states of the

same dimension as the CNN output to ensure

compatibility. At this stage, the sequence of feature

maps generated by the CNN is used as input to the

LSTM, which processes the data sequentially to

capture temporal patterns in speech. In addition, to

address the instability that may be induced by

training with long sequences, a gradient cropping

technique is introduced in the training phase to

prevent gradient explosion and ensure stable

convergence.

Method
VoxCeleb1 VoxCeleb2

Top-1(%) Top-5(%) EER(%) EER(%)

ResNet-34 81.37 94.49 11.53 5.10

AutoSpeech 87.57 95.98 8.96 4.32

Proposed 88.13 96.71 8.91 4.24

Table 1. Comparative experimental results with ResNet and

AutoSpeech

4. Experiment

4.1 Comparative experiment

We trained and evaluated our proposed model

on the VoxCeleb1 and VoxCeleb2 datasets. We have

selected ResNet and AutoSpeech for comparative

evaluation. The experiments were performed with

the same setup; for AutoSpeech and our method, we

set the cell setting to 8 and the initial channel size to

128. As shown in Table 1, the proposed method

demonstrated superior performance across all

metrics, including Top-1 accuracy, Top-5 accuracy,

and equal error rate (EER) for both speaker

identification and verification tasks.
Method Top-1(%) Top-5(%) EER(%)

Proposed w/o LSTM 88.04 96.42 8.93

Proposed

w/o self-attention pooling
88.09 96.39 8.95

Proposed 88.13 96.71 8.91

Table 2. Experimental results of the ablation study

4.2 Ablation Study

In addition to comparing the overall

performance, we conducted an ablation study to

assess the contributions of individual components in

our model. The study involved evaluating two

variations: one without the LSTM module and the

other without the self-attention pooling. The result

is shown in Table 2, removing the LSTM resulted in

a slight decrease in Top-1 and Top-5 accuracies, as

well as a marginal increase in EER, highlighting its

importance in capturing temporal dependencies.

Similarly, replacing self-attention pooling with max

pooling led to a decline in both identification

accuracy and verification performance, emphasizing

its role in capturing global feature dependencies.

5. Conclusion

This study introduces a hybrid framework for

speaker recognition, combining a DARTS-optimized

CNN architecture with self-attention pooling and

LSTM modules. The proposed method effectively

enhances performance by addressing both temporal

and global dependencies in speech data, improving

flexibility and accuracy for speaker identification

and verification tasks. Ablation studies confirm the

effectiveness of LSTM in capturing temporal

dependencies and self-attention pooling in

representing global features, enabling a balanced

feature extraction process. Overall, this work

demonstrates the effectiveness of proposed

multi-component framework that integrates DARTS

with feature extraction mechanisms in enhancing

speaker recognition systems.

Reference
[1] K. Simonyan et al., "Very Deep Convolutional Networks for

Large-Scale Image Recognition," arXiv:1409.1556, Sep. 2014.

[2] K. He et al., "Deep Residual Learning for Image Recognition," IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp.

770–778, Jun. 2016.

[3] H. Liu et al., "DARTS: Differentiable Architecture Search,"

arXiv:1806.09055, Jun. 2018.

[4] S. Ding et al., "AutoSpeech: Neural Architecture Search for Speaker

Recognition," in Proceedings of INTERSPEECH, Oct. 2020.

[5] P. Safari et al., "Self-Attention Encoding and Pooling for Speaker

Recognition," in Proceedings of INTERSPEECH, pp. 921–925, Oct. 2020.

[6] A. Nagrani et al., "VoxCeleb: A Large-Scale Speaker

Identification Dataset," in Proceedings of INTERSPEECH, pp. 161–

165, Aug. 2017.

[7] J. S. Chung et al., "VoxCeleb2: Deep Speaker Recognition," in

Proceedings of INTERSPEECH, pp. 1086–1090, Sep. 2018.

A Multi-Component Framework for Speaker Recognition:
Leveraging Differentiable Architecture Search and Temporal

Dependencies

A Thesis Submitted to the Department of Computer Science and Communications

Engineering, the Graduate School of Fundamental Science and Engineering of Waseda

University in Partial Fulfillment of the Requirements for the Degree of Master of

Engineering

Submission Date: Jan 27th, 2025

Minghao Duan

(5123FG10-1)

Advisor: Prof. Hiroshi Watanabe

Research guidance: Research on Audiovisual Information Processing

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my advisor, Pro-

fessor Hiroshi Watanabe, for his kind support and guidance throughout my graduate stud-

ies. His approach allowed me the freedom to independently explore my research interests

while always being available to provide valuable advice when needed. I am also deeply

thankful for his genuine care and encouragement in my daily life. His kindness and un-

derstanding have made my graduate studies more manageable and enjoyable, for which I

am truly grateful.

I am also sincerely thankful to all the professors who have taught me over the past

two years. Their dedication and insightful lectures have broadened my knowledge and

provided me with a strong foundation in the field of computer science and engineering.

I would like to extendmy heartfelt thanks to the members of the AdvancedMultimedia

Systems Laboratory. Their collaboration, feedback, and camaraderie have made my time

in the lab both productive and enjoyable. The stimulating discussions and mutual support

have been truly inspiring.

Lastly, I would like to express my deepest appreciation to my family and friends. Their

unwavering support, understanding, and encouragement have been my greatest source of

strength throughout this journey. Without them, this achievement would not have been

possible.

i

Abstract

Speaker recognition is a critical field with applications in security, user authentica-

tion, and personalized services. Despite the success of traditional Convolutional Neu-

ral Networks (CNNs), their limited capacity to capture temporal and global dependen-

cies in speech data constrains their performance in speaker recognition tasks. To address

this limitation, we propose a hybrid framework combining a Differentiable Architecture

Search (DARTS)-optimized CNNwith self-attention pooling and long short-termmemory

(LSTM) modules.

The proposed framework comprises three stages: first, DARTS is utilized to search for

the optimal neural architecture by formulating the problem as a differentiable optimization

task. Second, self-attention pooling is incorporated to replace max pooling, enhancing the

model’s ability to capture global dependencies across the feature space. Finally, LSTM is

integrated into the training phase to effectively model long-term temporal dependencies.

Experimental evaluations on the VoxCeleb1 and VoxCeleb2 datasets demonstrate that

the proposed framework achieves superior performance compared to baseline models, in-

cluding traditional CNNs and purely DARTS-optimized architectures. Ablation studies

reveal the effectiveness of LSTM and self-attention pooling, demonstrating their contribu-

tions to feature representation. This study demonstrates the effectiveness of the DARTS-

based hybrid architecture in improving speaker recognition accuracy.

Keywords: Deep Learning, Speaker Recognition, Differentiable Architecture Search

(DARTS), Self-Attention Pooling, long short-term memory (LSTM)

ii

Contents

Acknowledgement i

Abstract ii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Research Background . 1

1.2 Research Objectives . 2

1.3 Outlines of Thesis . 3

2 Related Works 4

2.1 Convolutional Neural Network . 4

2.1.1 Overview of Convolutional Neural Network 4

2.1.2 Convolutional Layer . 5

2.1.3 Separable Convolution . 5

2.1.4 Dilated Convolution . 6

2.1.5 Pooling Layer . 7

2.2 Neural Architecture Search (NAS) . 9

2.2.1 Early NAS Method . 9

2.2.2 Differentiable Architecture Search (DARTS) 10

2.2.3 A Pure DARTS-based CNN Framework for Speaker Recognition:

AutoSpeech . 11

2.3 Self-Attention Pooling . 12

2.3.1 Self-Attention Functions . 12

2.3.2 Self-Attention Pooling . 15

2.4 Long Short-Term Memory Network . 15

iii

3 Proposed Method 18

3.1 Overview of Proposed method . 18

3.2 Derivation of the DARTS Procedure . 19

3.2.1 Search Space Definition . 19

3.2.2 Relaxation of the search space 21

3.2.3 Bi-level Optimization . 21

3.2.4 Architecture Derivation . 22

3.3 Derivation Self-Attention Pooling . 23

4 Experiment 24

4.1 Datasets . 24

4.2 Evaluation Metrics . 24

4.3 Experimental Result . 25

4.4 Ablation Study . 26

5 Conclusion and Future Works 28

5.1 Conclusion . 28

5.2 Future Work . 29

List of Publication 30

Bibliography 32

iv

List of Figures

2.1 Convolution layer. 5

2.2 Depthwise convolution. 6

2.3 Pointwise convolution. 6

2.4 Overview of dilated convolution. 7

2.5 Overview of max pooling operation. 8

2.6 Overview of average pooling operation. 8

2.7 Overview of early NAS method. 9

2.8 Overview of dot-product attention. 13

2.9 Overview of additive attention. 14

2.10 Structure of LSTM. 16

3.1 Structure of proposed method. 18

3.2 Overview of DARTS search process: (a) Operations on the edges are un-

known, (b) Continuous relaxation of the search space, (c) Bi-level opti-

mization, (d) Final architecture. 20

v

List of Tables

4.1 Comparative experimental results with ResNet and AutoSpeech 25

4.2 Experimental result for ablation study 26

vi

Chapter 1

Introduction

1.1 Research Background

Speaker recognition is a technology that recognizes or verifies identity based on an

individual’s unique acoustic characteristics, and is widely used in areas such as voice as-

sistants, telephone banking, identity verification systems, and network security. By ana-

lyzing features such as frequency, duration and pitch of voice signals, speaker recognition

systems are able to differentiate between different speakers, enabling personalized ser-

vices and secure access control [1].

With the development of deep learning, convolutional neural networks (CNNs) have

gradually become one of the main methods for speaker recognition tasks. CNN archi-

tectures such as VGG-Net [2] and ResNet [3], known for their excellent performance in

image classification tasks, have been widely adopted in speaker recognition [4] [5] [6].

However, since these networks were originally designed for image classification related

tasks, directly applying them to speech related tasks may leads to performance bottlenecks

since the differences between audio and image signal [7]. The differences between these

signals may lead to low efficiency and highmodel complexity in speech feature extraction.

In addition to this, manually adjusting these architectures for speaker recognition tasks is

time-consuming and limited by human expertise, making it challenging to achieve opti-

mal performance. Consequently, designing network architectures that better align with

the needs of speaker recognition has become a key focus for researchers.

Neural Architecture Search (NAS) [8] [9] offers a novel solution for optimizing CNNs

1

in speaker recognition tasks. NAS can automatically explore and optimize neural network

structures, reducing the complexity of manual design and discovering efficient architec-

tures for specific tasks. Among NAS technologies, Differentiable Architecture Search

(DARTS) [10] is a notable innovation. DARTS transforms the discrete architecture search

space into a continuous and differentiable space, allowing the search process to be opti-

mized through gradient descent. This significantly enhances search efficiency and reduces

computational costs. DARTS has achieved remarkable success in image classification

tasks, inspiring researchers to explore its potential applications in other domains.

AutoSpeech [7] is the first method to apply DARTS to speaker recognition tasks,

demonstrating the effectiveness of automated architecture search in speech applications.

AutoSpeech automates the search for CNN architectures optimized for speaker recogni-

tion, reducing the need for manual intervention and improving accuracy and flexibility.

However, considering AutoSpeech is a pure CNN network, limitations in speech signal

processing still exist, and there is still room for further optimization, particularly in mod-

eling long-term sequences and extracting complex speaker features.

1.2 Research Objectives

In this work, we aim to develop a refined framework for speaker recognition by inte-

grating Differentiable architecture search (DARTS) with LSTM and self-attention pool-

ing. The specific objectives of this study are summarized as follows:

1. We incorporate self-attention pooling and LSTM layers into the purely DARTS op-

timized network. These modules are designed to improve the model’s ability to capture

both global dependencies and temporal features in speech data, enabling better represen-

tation of speaker-specific characteristics.

2. We evaluate the proposed framework on standard speaker recognition benchmarks,

such as VoxCeleb1 and VoxCeleb2 datasets. Experimental results demonstrate that the

proposed framework achieves superior performance compared to traditional CNN meth-

ods and purely DARTS-optimized architectures in both speaker identification and verifi-

cation tasks.

3. We conduct extensive ablation studies to analyze the contributions of individual

2

components in the proposed architecture. The results reveal the effectiveness of LSTM

and self-attention pooling in improving feature extraction, showing the advantages of com-

bining these modules with DARTS-based designs.

1.3 Outlines of Thesis

The structure of this thesis is as follows:

Chapter 1: In this chapter, we introduce the background, challenges and the applica-

tions of speaker recognition. We discuss the limitations of traditional CNN-basedmethods

and the motivation for utilizing DARTS to improve speaker recognition performance.

Chapter 2: This chapter reviews related works, including the principles of convolu-

tional neural networks (CNNs), neural architecture search (NAS), and DARTS. It also

discusses key components such as self-attention pooling and long short-term memory

(LSTM) networks, which are essential for our proposed method.

Chapter 3: In this chapter, we detail our proposed method. We describe the DARTS-

based architecture search, the incorporation of self-attention pooling, and the integration of

LSTM for enhanced feature representation. The theoretical foundations and mathematical

formulation of DARTS and self-attention pooling are also presented in this chapter.

Chapter 4: This chapter focuses on experiments conducted to evaluate the proposed

framework. We introduce the datasets, evaluation metrics, and baseline models used for

comparison. Results are presented for both speaker identification and verification tasks.

Additionally, we perform an ablation study to analyze the contributions of LSTM and

self-attention pooling to the overall performance.

Chapter 5: The conclusion summarizes the findings and advantages of the proposed

framework. We also discuss potential future directions, such as extending the framework

to speaker-conditioned generation tasks and optimizing it for real-time applications.

3

Chapter 2

Related Works

2.1 Convolutional Neural Network

2.1.1 Overview of Convolutional Neural Network

Convolutional neural networks (CNNs) have become a popular model in various deep

learning tasks.Compared with traditional convolution, the traditional fully connected layer

or standard convolution of CNN shows higher computational efficiency and generaliza-

tion ability when dealing with high-dimensional data due to mechanisms such as local

receptive fields, weight sharing and hierarchical feature extraction. Local receptive fields

enable the model to focus on specific regions of the input, effectively capturing fine de-

tails while avoiding redundant information processing. Weight sharing allows the same

convolutional kernels to be applied across different spatial locations, significantly reduc-

ing the number of parameters and computational complexity, thereby accelerating training

andmitigating overfitting. Hierarchical feature extraction leverages stacked convolutional

layers to progressively learn more abstract and complex features, from simple edges and

textures to intricate patterns and high-level representations.

In the following sections, we will introduce some key components of CNN, including

convolutional layers, pooling layers. Additionally, we will introduce two critical opti-

mization techniques for CNN: Separable Convolution and Dilated Convolution.

4

2.1.2 Convolutional Layer

The process of convolution involves applying a filter, or convolution kernel, to a block

of data rather than processing individual elements. This method enables neural networks

to capture local patterns and hierarchical structures, allowing for a deeper understanding

of the input. By recognizing features such as edges and textures in images, shifts and

trends in time-series data, or patterns like n-grams in text, convolution helps the network

extract meaningful representations from diverse data sources.

0 1 2 1 3

3 2 2 0 1

1

2

0

0

1

3

1

0

2

3

0

1

13

1

2

1 0

1 0 1

1 2 0

7 6 9

8 5 9

8 14 8

x0 x1 x0

x0

x1 x1x0

x1 x2

Input Convolution kernel Output

Fig. 2.1. Convolution layer.

As shown in Fig. 2.1, the 3× 3 block in the center represents the convolution kernel.

This kernel slides across the input data, extracting features and producing an output known

as the featuremap. In addition to the kernel size, convolution involves two key parameters:

stride and padding. Stride defines the step size of the kernel’s movement, typically set to

1 or 2, depending on the task. Without padding, the feature map will be smaller than the

input data. Padding addresses this by adding zeros around the input, effectively enlarging

it and ensuring that the output feature map maintains the same dimensions as the input.

2.1.3 Separable Convolution

Separable convolution is a convolutional operation that decomposes standard convo-

lution into two smaller steps: depthwise convolution and pointwise convolution. This

technique significantly reduces the number of parameters and computations required in

CNNs while maintaining competitive performance.

5

Fig. 2.2. Depthwise convolution.

There are two types of convolution involved in the process. It begins with depthwise

convolution, where the convolution operation is applied independently to each channel of

the input, using a separate convolution kernel for each channel. As the Fig. 2.2 shows,

This step extracts spatial features from each channel without mixing information across

channels. Following this, pointwise convolution is applied across all channels as shown in

Fig. 2.3, which is actually a 1×1 convolution, combining the spatial features and enabling

interaction between channels.

Fig. 2.3. Pointwise convolution.

By separating spatial filtering and channel-wise feature aggregation, separable convo-

lution drastically reduces the computational cost compared to standard convolution, which

applies multiple kernels simultaneously to all channels.

2.1.4 Dilated Convolution

Dilated convolution is another convolutional technique that expands the receptive field

of a CNNwithout increasing the number of parameters or computational cost. By inserting

spaces between the kernel elements, dilated convolution allows themodel to capturemulti-

6

scale contextual information more effectively.

(a) (b) (c)

Fig. 2.4. Overview of dilated convolution.

Compared to standard convolution, dilated convolution introduces a hyper-parameter

called dilation rate, this hyper-parameter defines the spacing of the values when the con-

volution kernel processes the input data. The receptive field F can be computed as:

F = k + (k − 1)(r − 1), (2.1)

Where k represent the kernel size, r is the dilation rate. Fig. 2.4 emphasizes the effect

of different dilation rates on the receptive field:

(a) is the convolution process when the dilation rate is 1. At this dilation rate, the

dilation convolution can be treated as an ordinary convolution with a convolved receptive

field of 3.

(b) is the convolution process when the dilation rate is 2, the convolved receptive field

is 5.

(c) is the convolution process when the dilation rate is 3, the convolved receptive field

is 7.

2.1.5 Pooling Layer

Pooling layers are also key components of CNNs which reduce the spatial dimensions

of feature maps while remaining the most important information. This downsampling

operation helps to decreasing computational complexity and mitigating the risk of over-

fitting. There are two common pooling operation: max pooling and average pooling.

7

4 6 8 5

9 7 6 5

12 8 5 20

1 3 8 1

9 8

12 20

2 X 2 Max Pooling

Fig. 2.5. Overview of max pooling operation.

Max Pooling

The max pooling is one of the most common pooling operations, which aims to select

the maximum value within a localized region of the feature map to represent the activation

intensity of that localized region. As the Fig. 2.5 shows, max pooling slides a fixed

receptive field across the feature map according to a predefined window size and stride.

It then performs a“take maximum”operation on all elements within that local region,

using the resulting maximum value as the output for that region.

4 8 10 0

2 6 2 0

7 9 8 7

9 11 12 1

5 3

9 7

2 X 2 Average Pooling

Fig. 2.6. Overview of average pooling operation.

Averge Pooling

average pooling is a commonly used pooling operation that aims to compute the aver-

age value within a localized region of the feature map, representing the overall activation

8

intensity of that region. As shown in Fig. 2.6, average pooling slides a fixed receptive

field across the feature map based on a predefined window size and stride. For each local

region, it calculates the mean of all elements and uses this average value as the output for

that region. This process effectively reduces the spatial resolution of the feature map while

retaining the overall distribution of activations, resulting in smoother downsampling.

2.2 Neural Architecture Search (NAS)

Neural Architecture Search (NAS) [8] automates the process of designing neural net-

work architectures by formulating it as a search problem over a defined architecture space.

2.2.1 Early NAS Method

Early NAS method employs a controller network to generate candidate architectures

by predicting architecture decisions as a sequence of tokens.

The controller (RNN)
Trains a child network
with architecture A to

get accuracy R

Sample architecture A with probability p

Compute gradient of p and scale it
by R to update the controller

Fig. 2.7. Overview of early NAS method.

As shown in Fig. 2.7, the controller samples an architecture A from the search space

with probability p. The sampled architecture is instantiated as a child network and trained

to obtain an accuracy R on the validation set. The accuracy R will serve as the reward

signal to update the controller, reinforcing the likelihood of generating architecture that

yield higher performance in subsequent iterations.

9

The NAS framework applies the REINFORCE algorithm [11] [12] to update the con-

troller. The policy gradient can be computed as:

∇θcJ(θc) =
T∑
t=1

E [∇θc logP (at|a1:t−1; θc)R] , (2.2)

where θc denotes the controller’s parameters, at denotes the action at step t, and R is

the reward signal. In order to reduce the variance of the gradient estimate, a baseline b is

applied, which is the moving average of previous rewards. The baseline function can be

described as:

∇θcJ(θc) =
T∑
t=1

E [∇θc logP (at|a1:t−1; θc)(R− b)] . (2.3)

Although the early NAS method is effective, it requires high computational cost, as

each sampled architecture required full training. Subsequent approaches, such as Differ-

entiable Architecture Search (DARTS), addressed this limitation by introducing weight

sharing and differentiable search spaces, significantly reducing the search overhead.

2.2.2 Differentiable Architecture Search (DARTS)

Compared to early NAS methods, which rely on reinforcement learing or evolution-

ary algorithms to explore the architecture space, DARTS [10] introduces a more efficient

gradient-based method.

In early NAS method, the searching process involves discrete selection of candidate

architectures, requiring the independent training of numerous child networks, which re-

sults in significant computational overhead. DARTS effectively reduces computational

cost by converting the discrete search space into a continuous differentiable space, using

standard gradient descent methods for architecture optimization.

In DARTS, the architecture search process revolves around the concept of continu-

ously relaxing the selection of candidate operations into a weighted sum, which allows

smooth transitions between different architectures during the search phase.

Specifically, DARTS models the neural network search space as a directed acyclic

graph (DAG), where each node represents a feature representation, and each edge repre-

10

sents a possible operation. Each edge in DAG will be assigned a weighted combination

of the candidate operations. During the training phase, the weights of these operations

are optimized through gradient descent, which allows the model to converge to the most

effective architecture. This approach avoids the inefficiencies of discrete search, allowing

multiple architectures to be evaluated and optimized simultaneously in a single training.

After the search, the operations with the highest weights are selected to obtain the final

architecture by discretizing the learned parameters.

The core mathematical formulations and optimization method will be introduced in

Chapter 3.

2.2.3 A Pure DARTS-based CNN Framework for Speaker Recogni-

tion: AutoSpeech

Network architectures such as VGG-Net and ResNet are widely used as base networks

in traditional speaker recognition systems. These architectures were originally designed

for image classification and were later applied for speaker recognition tasks. While they

perform reasonably well, they are not modified for the unique characteristics of speaker

data. This mismatch between image architectures and speech tasks often leads to poor

performance as well as excessive model complexity. In addition, the process of manually

tuning these architectures for speaker recognition tasks is time-consuming.

AutoSpeech [7] address these limitations to some extent by applying DARTS to the

speaker recognition tasks. AutoSpeech converts the architectural search space into a con-

tinuous domain and optimizes the architecture using gradient descent, thus avoiding the

need to train multiple independent networks as required by early NAS methods. This au-

tomated process generates models that are better suited for speaker recognition, thereby

improving performance.

AutoSpeech’s approach is to search for the optimal combination of operations in the

neural cells that form the basic building blocks of the final CNNmodel. By stacking these

optimized cells, AutoSpeech builds a deep network suitable for speaker recognition. In

the search phase, AutoSpeech follows the DARTS framework and uses a weighted sum

of candidate operations on each edge of the neural units. These weights are dynamically

11

adjusted by gradient descent to gradually converge the model to the optimal architecture.

Once the search is complete, the architecture is discretized by selecting the operations with

the highest weights to finalize the network structure.

Compared to VGG and ResNet, AutoSpeech leverages DARTS for task-specific op-

timization, generating models that are not only more efficient but also achieve higher

recognition performance. By focusing on the unique properties of speaker recognition,

AutoSpeech is able to reduce unnecessary complexity while enhancing model effective-

ness, demonstrating its improved performance in speaker recognition.

2.3 Self-Attention Pooling

2.3.1 Self-Attention Functions

The self-attention mechanism [13] aims to fully capture the long-range dependencies

within a sequence and realize efficient parallel computation without relying on loops or

convolutional structures. Themain idea of Self-attention is to dynamically retrieve contex-

tual information for each element in The input sequence X by measuring its relationship

with other elements, thereby producingmore semantically expressive representations. The

sequence X ∈ Rn×d is first projected into three vector spaces: the query vectors, the key

vectors and the value vectors. Each of them can be expressed as:

Q = XWQ, (2.4)

K = XWK , (2.5)

V = XWV , (2.6)

where WQ, WK ∈ Rd×dk , WV ∈ Rd×dv are learnable parameter matrices. The output

for each time instance ot can be expressed as:

ot = Attn(qt, K)V, (2.7)

where qt represents the query at the time step t. Attn is the attention function which

12

is used to compute the attention score. There are two most commonly used attention

functions: dot-product attention [14] and additive attention [15].

Dot-Product Attention

MatMul

Scale

Mask (opt.)

SoftMax

MatMul

VQ K

Fig. 2.8. Overview of dot-product attention.

As Fig. 2.8 shows, the dot products of the query with all keys are computed, each

result is divided by
√
dk, and a softmax function is applied to obtain the weights on the

values. The output can be expressed as:

O = softmax
(QKT

√
dk

)
V, (2.8)

where dk is the dimensionality of the key vectorsK.

13

Add

Tanh

Linear

SoftMax

MatMul

VQ K

Fig. 2.9. Overview of additive attention.

Additive Attention

As Fig. 2.9 shows, additive attention computes the similarity score between each query

and all keys using the formula:

E = vT tanh(WqQ+WkK
T), (2.9)

where v ∈ Rdk is a learnable weight vector,Wq and Wk are learnable matrices which

converts query qt and ki into the same space for comparison. A softmax function is applied

to these scores to obtain the attention weights. The output is computed as the weighted

sum of the value vectors. The output can be computed as:

O = softmax(E)V. (2.10)

14

2.3.2 Self-Attention Pooling

Self-attention pooling [16] is used to convert frame-level features into fixed-length

representations, which is suitable for tasks involving sequential data such as audio pro-

cessing. Unlike traditional average pooling or maximum pooling, self-attention pooling

is able to dynamically adjust its impact based on the importance of each frame. This adap-

tive mechanism enables the model to retain critical information and thus perform better in

downstream tasks.

The main idea of self-attention pooling is to learn the importance of each frame rather

than relying on fixed aggregation rules. By assigning different weights to different frames,

the model is able to highlight the most informative parts of the input sequence, while less

important frames contribute less to the final representation. This process is inspired by

the additive attention mechanism, where the importance of each frame is computed from

a set of trainable parameters.

In self-attention pooling, the model learns to ”focus” on the most valuable frames

by comparing each frame to a trainable reference point. The final output is a weighted

combination of all the frames that reflects howwell each frames is aligned to that reference

point. This approach is conceptually similar to dot product attention, but differs in that

self-attention pooling uses a simple trainable vector as the query, rather than extracting

the query from the input sequence.

By adopting this approach, self-attentive pooling enhances the model’s ability to han-

dle variations in the input sequence, ensuring that the generated representation captures

the most critical parts of the data. This property makes self-attentive pooling well-suited

for tasks with significant frame-wise variability, as it allows the model to prioritize and

integrate the most informative parts of the sequence effectively.

2.4 Long Short-Term Memory Network

Long short-term memory network (LSTM) [17] is a special recurrent neural networks

(RNN) which is designed to solve the vanishing or gradient exploding that occurs when

traditional RNNs process long sequence data. When dealing with long sequence data, tra-

ditional RNNs usually have difficulty in retaining early information in the model due to

15

gradient vanishing or gradient explosion during backpropagation, resulting in poor per-

formance in drawing long-term information. LSTM introduces a “gating mechanis” that

effectively controls the storage and forgetting of information, allowing the model to cap-

ture dependencies over longer time spans while preventing gradient-related issues.

As usual for RNNs, the LSTM consists of repeating neural network modules. How-

ever, the repeating modules of LSTM have a different structure from RNNs.

σ σ tanh

X

σ

X

tanh

ht-1

+X

xt-1

Ct-1

ht-1

A
σ σ tanh

X

σ

X

tanh

ht

+X

xt

Ct

ht

σ σ tanh

X

σ

X

tanh

ht+1

+X

xt+1

Ct

ht

A

Fig. 2.10. Structure of LSTM.

Fig. 2.10 shows the chain structure of LSTM and the composition of a repeating mod-

ule. The key to LSTM is the cell state, the horizontal line across the top of the graph. The

cell state is similar to a conveyor belt. It runs directly along the entire chain with only a

few small linear interactions. Information can easily flow on unchanged. In addition to

this, each module uses three gates to determine the information that needs to be retained:

1. Forget Gate. The forget gate performs the selection of the last cell state Ct−1,

which determines how much of the previous cell stateCt−1 will be retained for the current

moment Ct. The output ft can be expressed as:

ft = σ(Wf · [ht−1, xt] + bf), (2.11)

where σ is the sigmoid activation function, which compress the output to a range of

[0, 1] to control the degree of forgetting. Wf represents the weight matrix of the forget

gate, which learns the influence of the input and hidden state on forgetting. ht−1 is the

hidden state from the previous time step. bf is the bias term for the forget gate, which

adjusts the output of the forget gate.

2. Input Gate. The input gate determines how much information of the input xt will

be saved to the cell state Ct. The output it can be expressed as:

16

it = σ(Wi · [ht−1, xt] + bi), (2.12)

whereWi represents the weight matrix of the input gate, which controls how the input

influences the cell state update. bi is the bias term for the input gate. The candidate cell

state can be expressed as:

C̃t = tanh(Wc · [ht−1, xt] + bC), (2.13)

whereWc represents the weight matrix for the candidate cell state. bC is the bias term

for the candidate cell state. The cell state can be updated as:

Ct = ft · Ct−1 + it · C̃t. (2.14)

3. Output Gate. The fianl output and the hidden state can be computed as:

ot = σ(Wo · [ht−1, xt] + bo), (2.15)

ht = ot · tanh(Ct), (2.16)

where Wo represents the weight matrix of the output gate and bo is the bias term for

the output gate.

LSTM is widely used in sequential data tasks, such as speech recognition, machine

translation, and stock price prediction. CNNs are effective for extracting spatial features

from spectrograms or mel-frequency cepstral coefficients (MFCCs), while LSTMs are

adept at capturing temporal dependencies across frames. This combination leverages the

strengths of both architectures, enabling accurate modeling of speaker characteristics and

temporal patterns, which is crucial for speaker-related applications [18].

17

Chapter 3

Proposed Method

3.1 Overview of Proposed method

In this chapter, we mainly discuss the proposed method along with its architecture, the

principles behind DARTS, and the working mechanism of self-attention pooling.

As Fig. 3.1 shows, the workflow of the proposed method can be divided into three key

steps: DARTS Architecture Search, Replacing Max Pooling with self-attention Pooling,

and Integrating LSTM in the Training Phase.

Input Output

D
en

se
 L

ay
er

L
ST

M

DARTS-Optimized CNN Network

Fig. 3.1. Structure of proposed method.

First, we employ DARTS to identify the optimal neural network architecture. DARTS

transforms the architecture search problem into a differentiable optimization task by re-

laxing the search space, represented as a weighted mixture whose weights are optimized

by gradient descent. During the search process, these weights are gradually adjusted to

determine the most efficient operations and connections. After a certain number of itera-

18

tions, the operation with the highest weight on each edge is selected, resulting in a discrete

optimal architecture.

layers in the network with self-attention pooling. Directly incorporating self-attention

pooling into the candidate operations during the DARTS search phase significantly in-

creases computational overhead due to the resource-intensive nature of the attentionmech-

anism for weight computation. By contrast, our approach defers the integration of self-

attention pooling until after the architecture is finalized, which substantially improves

training efficiency. This design saves search time while leveraging the ability of self-

attention pooling to capture long-term dependencies, effectively balancing computational

cost and model performance.

Finally, in the training phase, we integrate an LSTM network after the DARTS opti-

mized CNN network.The CNN is first trained to extract local and spatial features from the

input, and the resulting feature maps are subsequently fed into an LSTM. The LSTM is

implemented with a single-layer structure to avoid overfitting, and its hidden state size is

set to be dimensionally identical to the CNN output. At this stage, the sequence of feature

maps generated by the CNN is used as input to the LSTM, which processes the data in

sequence to capture long time dependencies. In order to address the instability that may

result from training on long sequences, a gradient cropping technique is introduced at this

stage.

3.2 Derivation of the DARTS Procedure

In our method, we employ DARTS [10] to automatically search an optimal CNN ar-

chitecture for speaker recognition tasks. The network backbone is constructed by stacking

neural cells, where each cell is designed as a DAG. Nodes in the graph represent feature

representations, while edges denote candidate operations such as convolutions, pooling,

or skip connections.

Fig. 3.2 shows the DARTS search steps as follows:

3.2.1 Search Space Definition

The search space O contains 8 candidate operations:

19

0

1

2

3

0

1

2

3

0

1

2

3

?

?

??

?

?

(a) (c)(b)

0

1

2

3

(d)

Fig. 3.2. Overview of DARTS search process: (a) Operations on the edges are unknown,
(b) Continuous relaxation of the search space, (c) Bi-level optimization, (d) Final archi-
tecture.

• 3× 3 separable convolution

• 5× 5 separable convolution

• 3× 3 dilated convolution

• 5× 5 dilated convolution

• 3× 3 average pooling

• 3× 3 max pooling

• skip connection

• no connection (zero)

To balance the feature resolution and computational efficiency, two types of cells are

defined as:

• Normal cells: Maintain spatial resolution and compute intermediate feature repre-

sentations.

• Reduction cells: Reduce spatial resolution by a factor of two and double the number

of channels.

Each cell is defined as having 7 nodes, with 2 input nodes and 4 intermediate nodes,

and 1 output cell.

The placement of reduction cells follows a consistent strategy, located at 1/3 and 2/3

of the total depth of the stacked cells [10] [19]. Each type of cell shares its architecture

across the entire network to simplify design complexity.

20

3.2.2 Relaxation of the search space

In early NAS method, the architecture is defined by discrete choices, such as se-

lecting specific operations or connection paths. This makes the optimization process

non-differentiable, requiring techniques like reinforcement learning or evolutionary al-

gorithms.

Instead of selecting discrete operations for each edge, DARTS assigns a weighted com-

bination of all candidate operations:

ō(i,j)(x) =
∑
o∈O

exp(α(i,j)
o)∑

o′∈O exp(α(i,j)
o′)

· o(x), (3.1)

where α(i,j)
o is a learnable parameter associated with operation o on edge (i, j). This

relaxation enables the architecture search to be formulated as a differentiable optimization

task.

The feature at node j is then calculated as the summation over all its predecessors:

x(j) =
∑
i<j

o(i,j)(x(i)). (3.2)

3.2.3 Bi-level Optimization

The search process involves two sets of parameters:

• Network weights ω: Parameters of the candidate operations.

• Architecture parameters α: Weights determining the importance of each opera-

tion.

The bi-level optimization problems [20] can be formulated as:

min
α

Lval(w
∗(α), α)

s.t. w∗(α) = argmin
w

Ltrain(w, α),
(3.3)

where Ltrain and Lval represent the training and validation losses, respectively. Both

Ltrain and Lval are defined as cross-entropy losses:

21

L := −
K∑
k=1

I(y = k) log pk, (3.4)

where K is the number of speakers, y represents the ground-truth speaker label and pk is

the softmax probability of speaker k.

To reduce computational costs, we employ a one-step gradient approximation:

∇αLval(w
∗(α), α)

≈ ∇αLval(w − ξ∇wLtrain(w, α), α).
(3.5)

In this approximation format, ω is updated for a single step with learning rate ξ to

approximate the solution.

3.2.4 Architecture Derivation

After the search phase, DARTS converts the continuous architecture into a discrete

one by selecting the operation with the highest weight for each edge:

p(i,j)o =
exp(α(i,j)

o)∑
o′∈O exp(α(i,j)

o′)
. (3.6)

The derived architecture is then stacked to form the CNN backbone, with reduction

and normal cells arranged according to the predefined placement.

To determine the convergence of the architecture search process, we evaluate the en-

tropy of the architecture parameters α. The entropy is computed as:

E =
∑
(i,j)

∑
o∈O

α(i,j)
o logα(i,j)

o , (3.7)

where αo
ij represents the weight of operation o on edge (i, j) in the search spaceO. A

smaller entropy value indicates a higher confidence in selecting a specific operation among

all possible candidates for each edge. The architecture search is considered converged

when the entropy stabilizes and no longer decreases.

22

3.3 Derivation Self-Attention Pooling

Self-attention pooling [16] is an effective mechanism for aggregating frame-level fea-

tures into a fixed-length utterance-level representation. Traditional pooling methods, such

as average and max pooling, often fail to dynamically adjust to the varying importance of

different frames in the input sequence. Self-attention pooling addresses this limitation by

learning the importance of each frame, thereby retaining more informative representations

for downstream tasks.

The main idea of self-attention pooling is based on additive attention, which com-

putes the importance of each frame by training a set of trainable weights. Given an input

sequence of frame-level features, which can be expressed as:

H = [h1, h2, ..., hT]
T ∈ RT×dm , (3.8)

whereT denotes the number of time steps and dm is the feature dimension, the segment-

level representation is computed as:

C = Softmax(WcH
T)H, (3.9)

where Wc ∈ Rdm is a learnable parameter representing the weight vector applied to

each frame, HT denotes the transposed feature matrix, which enables the attention mech-

anism to compute the importance score for each time step.

In particular, in self-attention pooling, the keys and values are from the same feature

sequence H , the query is represented by a learnable vectorWc.

Conceptually, this process can be treat as dot-product attention, where the query, key,

and value interact to compute attention scores. However, in self-attention pooling, the

query is simplified to a learnable vector rather than being derived from the input sequence.

Thus, the output representation C is a weighted average of the output sequence, with the

weights reflecting the alignment learned by the self-attention mechanism.

23

Chapter 4

Experiment

4.1 Datasets

We evaluated our method on the VoxCeleb1 [5] and VoxCeleb2 [6] datasets, which

consisted of large-scale collections of real-world speech data, providing a challenging

and diverse environment for training and evaluating speaker-related models.

VoxCeleb1 contained voice recordings of 1,251 speakers, totaling more than 140,000

utterances fromYouTube. The data was derived from online interviews involving speakers

of different nationalities, occupations, and genders.

VoxCeleb2 provided a larger dataset containing 6,112 speakers andmore than 1million

utterances, which differed from VoxCeleb1.

We evaluated both speaker identification and verification on VoxCeleb1 and speaker

verification on VoxCeleb2..

4.2 Evaluation Metrics

For speaker recognition, we used top-1 accuracy and top-5 accuracy as evaluation

metrics. Top-1 accuracy measured the proportion of test samples for which the model’s

highest confidence prediction agreed with the true label. This metric reflected the model’s

ability to correctly recognize a speaker in a single attempt and served as a straightforward

and rigorous way of evaluating performance. The top-5 accuracy rate, on the other hand,

treated a prediction as correct if the true label appeared in the top 5 predictions of the

24

model with the highest confidence.

For speaker verification, we used the equal error rate (EER) as the primary evaluation

metric. EER was the point at which the false acceptance rate (FAR) equaled the false re-

jection rate (FRR). The FARmeasured the proportion of impostors incorrectly accepted as

the claimed speaker, while the FRR measured the proportion of genuine speakers incor-

rectly rejected. A lower EER indicated a better trade-off between these two error types,

signifying a more balanced and robust verification system.

4.3 Experimental Result

To evaluate the effectiveness of our proposed model, we conducted a series of experi-

ments to compare its performance against ResNet-34 [21] and AutoSpeech. Specifically,

we evaluated our method and AutoSpeech under the same settings, with the number of

cells set to 8 and the initial channel size set to 128. For speaker identification, the models

were trained on the identification split of VoxCeleb1, and the testing set was used to eval-

uate identification accuracy. We reported both top-1 and top-5 accuracies as the primary

evaluation metrics. For speaker verification, the models were trained on the verification

splits of VoxCeleb1 and VoxCeleb2. The EER was employed as the key metric for verifi-

cation tasks, which quantified the trade-off between false acceptance and false rejection.

Table 4.1 Comparative experimental results with ResNet and AutoSpeech

VoxCeleb1 VoxCeleb2

Method Top-1(%) Top-5(%) EER(%) EER(%)

ResNet-34 81.37 94.49 11.53 5.10

AutoSpeech 87.57 95.98 8.96 4.32

Proposed 88.13 96.71 8.91 4.24

As Table 4.1 shows, for speaker identification, our model achieved a top-1 accuracy of

88.13% and a top-5 accuracy of 96.71%, significantly outperforming ResNet-34 and Au-

toSpeech. Specifically, compared to ResNet-34, the top-1 and top-5 accuracies increased

by 6.76% and 2.22%, respectively, while compared to AutoSpeech, the improvements

25

were 0.56% and 0.73%. For speaker verification, our model achieved an EER of 8.91%

on VoxCeleb1 and 4.24% on VoxCeleb2. These values represented reductions in error

rates compared to ResNet-34 and AutoSpeech. On VoxCeleb2, the EER was reduced by

0.86% compared to AutoSpeech. These results validated the effectiveness of our pro-

posed method, demonstrating its superior ability to capture and represent speaker-specific

features.

4.4 Ablation Study

To better validate and analyze the effectiveness of each individual component in our

model, we conducted an ablation study focusing on the LSTMmodule and the self-attention

pooling mechanism. We designed two model variations:

1. Proposed w/o LSTM: In this configuration, the LSTMmodule was removed from

the proposed architecture. After the convolutional backbone, a simple fully connected

layer was used to aggregate the extracted features. This modification isolated the influence

of the LSTM in modeling temporal dependencies.

2. Proposed w/o self-attention pooling: In this configuration, the self-attention

pooling mechanismwas replaced with max pooling. The rest of the architecture, including

the LSTM module, remained intact. This setup isolated the effectiveness of self-attention

pooling in capturing global feature dependencies.

All other hyperparameters and training settings were kept the same for a fair compar-

ison.

Table 4.2 Experimental result for ablation study

Method Top-1(%) Top-5(%) EER(%)

Proposed w/o LSTM 88.04 96.42 8.93

Proposed w/o self-attention pooling 88.09 96.39 8.95

Proposed 88.13 96.71 8.91

We evaluated the performance of both variants on VoxCeleb1 in the speaker identifi-

cation and verification tasks. The results of the ablation study are presented in Table 4.2.

26

The ablation study results are summarized as follows:

1. Removing the LSTM module caused a slight decline in both Top-1 and Top-5 ac-

curacies for speaker identification, dropping from 88.13% to 88.04% and from 96.71%

to 96.42%, respectively. This showed the importance of LSTM in modeling temporal

dependencies inherent in sequential speech data.

2. Replacing self-attention pooling with max pooling also resulted in a slight de-

crease in speaker identification performance. The Top-1 accuracy dropped from 88.13%

to 88.09%, and the Top-5 accuracy decreased from 96.71% to 96.39%. This demonstrated

the role of self-attention pooling in capturing global speaker-specific dependencies, which

were critical for distinguishing speakers in identification tasks.

3. Replacing self-attention pooling with max pooling further caused a marginally

higher EER on VoxCeleb1, increasing from 8.91% to 8.95%. This indicated that self-

attention pooling improved the representation of speaker-specific features by capturing

global dependencies, which helped reduce errors in speaker verification tasks.

4. The impact of removing the LSTM module was most noticeable in the Top-5 ac-

curacy, which decreased by 0.29%. This suggested that the LSTM excelled at captur-

ing fine-grained information within the sequence, which was critical for improving the

model’s performance in complex identification tasks. On the other hand, replacing the

self-attention Pooling with Max Pooling had a more significant effect on both the EER,

which increased by 0.04%, and the Top-5 accuracy, which dropped by 0.32%. This indi-

cated that Self-Attention Pooling played a crucial role in modeling global features, signif-

icantly enhancing the overall discriminative power of the model.

27

Chapter 5

Conclusion and Future Works

5.1 Conclusion

Our work presents a refined approach to speaker recognition by integrating a DARTS-

optimized CNN architecture with self-attention pooling and LSTM modules. Compared

to traditional CNN methods and purely DARTS-optimized architectures, the proposed

framework effectively enhances speaker recognition performance by leveraging both tem-

poral and global dependencies in speech data. By combining neural architecture search

with task-specific modules, the proposed framework addresses limitations in feature rep-

resentation, resulting in improved flexibility and accuracy in both speaker identification

and verification tasks.

The results of the ablation study demonstrate the unique contributions of LSTM and

self-attention pooling to the proposed architecture. LSTM enhances the model’s ability

to capture temporal dependencies, which is essential for effectively processing sequen-

tial speech signals. Self-attention pooling, on the other hand, refines the representation

of global dependencies across the feature space, enabling the model to focus on critical

speaker-specific features. Collectively, these components enable the model to focus on

sequential and global aspects of feature extraction, achieving superior performance over

baseline architectures.

Overall, our method shows the effectiveness of combining neural architecture search

with advanced feature extraction modules in addressing the challenges of speaker recog-

nition. The proposed framework benefits from the flexibility and adaptability of DARTS-

28

optimized architectures while leveraging the Combined advantages of LSTM and self-

attention pooling to enhance feature representation. This integration improves model per-

formance, demonstrating the effectiveness of hybrid architectures in advancing speaker

recognition systems.

5.2 Future Work

While the proposed framework achieves promising results, several directions remain

open for future exploration. The computational complexity introduced by the self-attention

pooling mechanism, although beneficial for capturing global dependencies, increases the

overall model size and may pose challenges in real-time or resource-constrained applica-

tions. Developing lightweight alternatives or approximation methods to reduce this over-

head will be critical for broadening the framework’s applicability.

Furthermore, extending the framework to speaker-conditioned generation tasks (e.g.,

speech cloning and speech synthesis) is a direction worth exploring. Such tasks require

high accuracy in speaker-specific representations to ensure that the generated speech achieves

a good level of sound quality and naturalness. Future research could consider combining

multi-task learning or contrastive learning frameworks to enhance the model’s adaptabil-

ity in multi-task scenarios by simultaneously optimizing the recognition and generation

objectives. This direction is expected to further enhance the unified modeling of speaker

features and promote the synergistic development of speaker recognition and generation

tasks, thus offering the possibility of developing more comprehensive speaker-related sys-

tems.

29

List of Publication

• Minghao Duan, and Hiroshi Watanabe: “A Refined DARTS-based Method for

Speaker Recognition,”IEICE General Conference, Mar. 2025 (to appear)

30

Bibliography

[1] John H. L. Hansen and Taufiq Hasan. Speaker recognition by machines and humans:

A tutorial review. IEEE Signal Processing Magazine, 32(6):74–99, Nov. 2015.

[2] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. Sep. 2014.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. Dec. 2015.

[4] Maros Jakubec, Eva Lieskovska, and Roman Jarina. Speaker recognition with resnet

and vgg networks. In Proc. 2021 31st International Conference Radioelektronika

(RADIOELEKTRONIKA), pages 1–5, Apr. 2021.

[5] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb: a large-scale

speaker identification dataset. In Proc. INTERSPEECH, Sep. 2017.

[6] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. Voxceleb2: Deep speaker

recognition. In Proc. INTERSPEECH, Sep. 2018.

[7] Shaojin Ding, Tianlong Chen, Xinyu Gong, Weiwei Zha, and ZhangyangWang. Au-

toSpeech: Neural Architecture Search for Speaker Recognition. InProc. Interspeech

2020, pages 916–920, Oct 2020.

[8] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search:

A survey. Journal of Machine Learning Research, 20(55):1–21, Jan. 2019.

[9] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evo-

lution for image classifier architecture search. arXiv:1802.01548, Feb. 2019.

31

[10] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture

search. Jun. 2018.

[11] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning.

arXiv:1611.01578, Nov. 2017.

[12] Ronald J. Williams. Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine Learning, 8:229–256, Nov. 1992.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in Neural Information Processing Systems, Dec. 2017.

[14] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches

to attention-based neural machine translation. arXiv:1508.04025, Aug. 2015.

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-

tion by jointly learning to align and translate. arXiv:1409.0473, Sep. 2016.

[16] Pooyan Safari, Miquel India, and Javier Hernando. Self-attention encoding and pool-

ing for speaker recognition. arXiv:2008.01077, Aug. 2020.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

putation, 9(8):1735–1780, Nov. 1997.

[18] Tara N. Sainath, Oriol Vinyals, Andrew Senior, and Haşim Sak. Convolutional, long

short-termmemory, fully connected deep neural networks. InProc. 2015 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

4580–4584, Apr. 2015.

[19] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning trans-

ferable architectures for scalable image recognition. arXiv:1707.07012, Jul. 2018.

[20] Benoît Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel opti-

mization. Annals of Operations Research, 153:235–256, Apr. 2007.

[21] Weidi Xie, Arsha Nagrani, Joon Son Chung, andAndrewZisserman. Utterance-level

aggregation for speaker recognition in the wild. arXiv:1902.10107, Feb. 2019.

32

	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Research Background
	Research Objectives
	Outlines of Thesis

	Related Works
	Convolutional Neural Network
	Overview of Convolutional Neural Network
	Convolutional Layer
	Separable Convolution
	Dilated Convolution
	Pooling Layer

	Neural Architecture Search (NAS)
	Early NAS Method
	Differentiable Architecture Search (DARTS)
	A Pure DARTS-based CNN Framework for Speaker Recognition: AutoSpeech

	Self-Attention Pooling
	Self-Attention Functions
	Self-Attention Pooling

	Long Short-Term Memory Network

	Proposed Method
	Overview of Proposed method
	Derivation of the DARTS Procedure
	Search Space Definition
	Relaxation of the search space
	Bi-level Optimization
	Architecture Derivation

	Derivation Self-Attention Pooling

	Experiment
	Datasets
	Evaluation Metrics
	Experimental Result
	Ablation Study

	Conclusion and Future Works
	Conclusion
	Future Work

	List of Publication
	Bibliography

