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Abstract—Scalable image compression methods that serve both
machine and human vision (ICMH) have gained increasing
attention due to their applicability in various scenarios such
as traffic monitoring. While prior studies have made significant
strides in this field, many existing models are optimized for
specific recognition tasks, which may limit their adaptability. A
recent approach, ICMH-FF, addresses this issue by incorporating
a task-agnostic codec for machines and a separate codec for
additional information required for human-oriented reconstruc-
tion. However, its architecture does not incorporate encoder-side
interaction and relies on the encoder to implicitly infer residuals,
which can pose challenges for interpretability and rate-distortion
performance. In this paper, we propose a residual-based ICMH
framework that explicitly models the additional information
required for human visual perception. Specifically, we present
two complementary methods: Feature Residual-based Scalable
Coding (FR-ICMH) and Pixel Residual-based Scalable Coding
(PR-ICMH). These methods aim to enhance coding efficiency and
interpretability without modifying the task-agnostic machine-
oriented codec. Moreover, the proposed framework provides
flexibility to choose between encoder complexity and compression
performance, making it adaptable to diverse application require-
ments. Experimental results demonstrate the effectiveness of our
proposed methods, with PR-ICMH achieving up to 29.57% BD-
rate savings over ICMH-FF.

Index Terms—Image coding for machines, Learned image
compression, Residual information, Scalable image coding

I. INTRODUCTION

With the rapid advancement of deep learning, recognition
models have become integral to a wide range of real-world
applications, including traffic monitoring, agricultural manage-
ment, camera surveillance, and industrial machine vision. In
such scenarios, images are primarily analyzed by recognition
models with occasional human inspection. To accommodate
such dual-purpose use cases, image compression techniques
that can simultaneously support both machine and human
vision need to be investigated.

To support the needs of human visual perception, numer-
ous Learned Image Compression (LIC) methods have been
developed [1] - [6]. More recently, image codecs tailored
specifically for machine vision tasks, which is referred to as
Image Coding for Machines (ICM), have also been explored
[7] - [16]. Unlike LIC, ICM focuses on preserving recognition-
related features while discarding human-perceptual details.
Therefore, these two types of codecs serve fundamentally
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Fig. 1. Overview of scalable image coding pipelines. (a) Conventional task-
specific method, (b) ICMH-FF using decoder-side feature fusion, (c) FR-
ICMH introducing encoder-side feature residual modeling, (d) PR-ICMH
employing pixel-level residual compression.

different objectives. To achieve a scalable framework for
machine and human vision, bridging the gap between these
two approaches has become a critical research challenge.

Many scalable coding methods have been proposed to
address this need [17] - [36]. Although they provide effi-
cient structures for scalability, most existing approaches are
designed only for specific machine vision tasks and require
independent training for each task, as shown in Fig. 1(a).
This task-dependency may reduce their flexibility in real-world
applications where multiple recognition tasks are involved.

A notable attempt to address this challenge has been pro-
posed in ICMH-FF [17], which introduces a task-agnostic
scalable coding architecture. The overview of the framework
is illustrated in Fig.1(b). ICMH-FF is based on the idea that
the information in the image required for humans includes
the information needed for machine vision. Specifically, it
employs a machine-oriented codec that is independent of
downstream tasks and a separate LIC model to compress
additional information necessary for human vision. On the
decoder side, their features are merged to reconstruct human-



oriented images. However, its design relies heavily on the
encoder of the additional LIC to implicitly infer the residual
information needed for human viewing without direct access to
the original image. This implicit mechanism creates black-box
behavior and may result in sub-optimal compression efficiency
as well as limited interpretability.

In this paper, we propose a residual-based scalable im-
age coding framework that explicitly models the additional
information required for human-oriented reconstruction. In
particular, we propose two complementary methods: Feature
Residual-based ICMH (FR-ICMH) and Pixel Residual-based
ICMH (PR-ICMH). The overview of the pipelines for these
proposed methods are shown in Fig.1(c) and (d), respec-
tively. In FR-ICMH, the residual between machine-oriented
and human-required features is explicitly computed on the
encoder side. This approach not only improves rate-distortion
performance, but also enhances interpretability by eliminating
the dependence on the encoder’s feature selection ability.
PR-ICMH extends this idea to the pixel domain by directly
compressing the difference image between the reconstructed
machines-oriented image and the original image. While FR-
ICMH is suitable for scenarios that require a lightweight
encoder design, PR-ICMH achieves improved rate-distortion
performance by utilizing a more detailed residual representa-
tion through additional encoder-side processing. This trade-
off between encoder complexity and reconstruction quality
enables the proposed framework to flexibly adapt to a wide
range of application constraints without affecting the recogni-
tion pipeline.

II. RELATED WORK

A. LIC and ICM

Most state-of-the-art LIC methods build on the frameworks
of J. Ballé et al. [1] and D. Minnen et al. [2]. To improve
the decoding speed, channel-wise autoregressive model (Ch-
ARM) [3] was proposed, which slices the latent representation
along the channel dimension and predicts entropy parameters
using previously decoded slices. Building upon Ch-ARM,
LIC-TCM [4] further enhances the compression performance.

Existing ICM approaches include ROI-based [7] - [9], Task-
Loss-based [10] - [12], and Region-Learning-based [13] -
[15]. The first two depend on task-specific prior analysis or
loss functions, thus require separate training for each recogni-
tion task. In contrast, Region-Learning-based methods aim to
achieve task-agnostic compression by preserving recognition-
relevant spatial regions. For instance, SA-ICM [13] leverages
the Segment Anything model [37] to learn to retain only object
boundaries while discarding textures during compression. This
also provides privacy protection by removing most facial
details. The model is trained using the following loss function:

L=R(y)+R(z)+ X -mse(x ®m,T®m). (1)

In (1), y and z denote the output of the encoder and hyperprior-
encoder of the LIC model, respectively. R(y) and R(z)
represent the estimated bitrates of y and 2. z is the original
image, and & is the reconstructed image. mse denotes the

mean squared error function. A is a weighting parameter that
controls the trade-off between bitrate and distortion. m is the
object mask obtained by the Segment Anything model. The
model architecture is based on LIC-TCM with Ch-ARM for
entropy modeling.

B. Scalable Image Coding for Humans and Machines

Scalable coding for human and machine vision has emerged
as an important direction in recent research. H. Choi et
al. [18] proposed a dual-stream framework that splits the latent
representation extracted from the input image into machine-
and human-oriented components. These two streams are trans-
mitted separately, and jointly decoded to reconstruct a human-
oriented image. More recently, Adapt-ICMH [19] introduced a
plug-and-play adaptation module called the spatial-frequency
modulation adapter. In this approach, a human-oriented LIC
is employed as a base model, and the adapter is inserted and
trained to convert it into a machine-oriented codec. Notably,
the adapter can be integrated into any LIC regardless of their
model structures. Although these methods are effective in
terms of scalability and compression performance, they are
trained to optimize recognition accuracy and therefore remain
task-specific.

To address this limitation, ICMH-FF has been proposed. In
this framework, SA-ICM is utilized for machine vision, while
the additional LIC model provides complementary information
required for human-oriented reconstruction. These two models
are integrated through a feature fusion network implemented
on the decoder side. Leveraging the channel-wise structure
of Ch-ARM, this network performs channel-wise addition for
overlapping slices and directly forwards the remaining slices
from the SA-ICM stream. Through this architecture, ICMH-FF
achieves scalability, adaptability to various recognition tasks,
as well as effective compression performance. However, as the
two models are connected only on the decoder side, the current
integration scheme leaves room for further reconsideration.

C. Compression Methods Using Residual Connection

Residual connection-based coding has long been one of the
core components of efficient image and video compression
[20] - [23], [38] - [40]. In traditional standards such as HEVC
[38] and VVC [39], the residual between the input frame and
its predicted frame is encoded to achieve high compression
efficiency. G. Lu et al. [40] extended this principal to learning-
based video compression framework.

In the context of scalable coding for both human and
machine vision, A. Harell [20] proposed VVC+M, where a
preview image is reconstructed from machine-oriented features
in the base layer, and the residual between the preview and
the original image is compressed using the inter mode of
VVC. This approach is compatible with a wide range of ICM
methods and leverages the efficiency of standard video codec.
At the same time, there remains potential to explore end-to-
end optimization within LIC-based framework. Furthermore,
W. Shi et al. [21] introduced a scalable coding method with
dual-layer architecture. For vision tasks, intermediate semantic
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Fig. 2. Overall architecture of the proposed FR-ICMH, which computes
and encodes feature-level residuals between the SA-ICM (upper row) and
an additional LIC (lower row). The residuals are subsequently fused with the
quantized features from SA-ICM to reconstruct human-oriented images.
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Fig. 3. Structure of the feature subtraction network in FR-ICMH, which
computes residuals between features from SA-ICM and LIC for each slice.

features from a pretrained recognition model are encoded.
A LRP module is then utilized to generate human-oriented
features, and their difference is compressed. This method
achieves superior performance in both object detection and
image reconstruction, though it depends on prior analysis of
the recognition model and must be retrained for each model.

III. PROPOSED METHOD
A. Overview

To overcome the structural limitations of ICMH-FF while
enhancing both the transparency and efficiency of the encoding
process, we propose a residual-based scalable image coding
framework that explicitly models the additional information
required for human-oriented reconstruction. Our key idea is
to avoid the encoder’s implicit feature selection by directly
providing the residual information as the compression target.
By operating on clearly defined residual signals, the proposed
approach improves compression efficiency, interpretability,
and adaptability to diverse content.

We propose two complementary methods:
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Fig. 4. Overall architecture of the proposed PR-ICMH, which computes pixel-
level residuals between the machine-oriented output of SA-ICM (upper row)
and the original image. The residuals are encoded by an additional LIC (lower
row) and added back to reconstruct human-oriented images.

o Feature Residual-based Scalable Coding (FR-ICMH):
Computes and compresses the difference between human-
oriented and machine-oriented features by utilizing a
feature subtraction network.

o Pixel Residual-based Scalable Coding (PR-ICMH):
Directly compresses the pixel-level difference between
the original image and the machine-oriented image.

These methods offer distinct trade-offs: PR-ICMH prior-
itizes compression efficiency at the cost of higher encoder
complexity, while FR-ICMH reduces complexity with a slight
loss in performance. This enables the framework to adapt to
various application scenarios.

B. Feature Residual-based Scalable Coding

The architecture of FR-ICMH is shown in Fig.2. In this
method, SA-ICM is utilized as the ICM model, while LIC-
TCM is utilized as the additional LIC model for residual
information. SA-ICM first encodes the input image into latent
features ym, which are then quantized. Simultaneously, the
additional LIC encoder processes the input image to produce
y. The latent features from SA-ICM and the additional LIC
model are divided along the channel dimension into /V,, and
N, slices, respectively, denoted as {ymi,yma,...,ymny,, }
and {y1,y2,...,yn,}, where 1 < N, < N,,. By setting
the number of slices N, smaller than IN,,, the number of
channels dedicated to residual information is decreased and
computational cost can be reduced.

To support residual computation between features with
different numbers of slices, a feature subtraction network is
employed to ensure compatibility. As shown in Fig. 3, in this
network, the residual features ya are computed slice-by-slice
between corresponding slices of y and quantized ym as:

yar = Yr — ymg, where k=1,2,... N,. 2)

In (2), yay represents a slice of residual features. These
residual slices yaj are then compressed using Ch-ARM-
based entropy modeling, maintaining the inherent decoding
efficiency and scalability of the slice-wise structure. The
decoder reconstructs the full latent representation by adding
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Fig. 5. Examples of reconstructed images for machine and human vision. (a) Ground truth, (b) Machine-oriented reconstruction by SA-ICM (N, = 5), (c)
Human-oriented reconstruction by ICMH-FF (N, = 4), (d) Human-oriented reconstruction by the proposed FR-ICMH (N, = 4), and (¢) Human-oriented
reconstruction by the proposed PR-ICMH (N, = 4). All reconstructions are obtained with A = 0.05.

the decoded residual features ya and yin using the feature
fusion network proposed in ICMH-FF. The feature fusion
function is shown below:

- Jyrutya, (1<k<N,)
Yk = o S
YMg (N, <k < Np)
g = conc(Yi,Ya, - - - YN, )- @)

In (3) and (4), y denotes the input to the main decoder of
additional LIC model. conc stands for the concatenate func-
tion. Only the additional LIC model for residual information
is trained using the following loss function:

L =R(ya) + R(z) + X - mse(z, £). 3)

In (5), ya and z represent the outputs of the encoder and
hyperprior-encoder of the additional LIC model.

C. Pixel Residual-based Scalable Coding

The architecture of PR-ICMH is illustrated in Fig.4. Similar
to FR-ICMH, SA-ICM is employed as the ICM model, and
LIC-TCM serves as the additional LIC model for encoding the
residual information. In this method, the pixel-level difference
image xd is computed by directly subtracting the machine-
oriented reconstructed image xin from the original image x.
This difference image is then compressed using an additional
LIC model, which employs Ch-ARM for entropy modeling.

Same as the architecture in FR-ICMH, the latent features are
divided into N, slices, denoted as {ydy,yds,...,ydn,}. By
setting IV, to a smaller value, the number of channels used to
represent xd is reduced, thereby lowering the computational
cost. At the decoder side, the final human-oriented reconstruc-
tion % is obtained by adding the machine-oriented image zm
and the decoded difference image zd. During the training, only
the additional LIC model for difference image is trained with
the following loss function:

L = R(yd) + R(zd) + X - mse(xd, xd). (6)

In (6), yd and zd denotes the outputs of encoder and
hyperprior-encoder of LIC for difference image, respectively.

IV. EXPERIMENT
A. Performance of Image Compression for Humans

We evaluate the compression performance for humans of
our proposed methods, FR-ICMH and PR-ICMH. For ICM,
we utilize SA-ICM model pre-trained with A = 0.05 ac-
cording to the loss function defined in (1). For the additional
LIC model for residual information, LIC-TCM is utilized. In
both methods, only the additional LIC is trained. Since the
parameters of SA-ICM are fixed, its compression performance
for machines is the same as that of SA-ICM. We train
both FR-ICMH and PR-ICMH using their respective loss
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Fig. 6. Rate-distortion curves for human-oriented image reconstruction with
Ng =5.

w
vy

PSNR [dB]

~
i

w
b=

EEEEEE

RN R

EEEEEs

3%.0 0.2 0.4

=
o
=
o

0.4 0.6 0. 12
bitrate [bpp]

(b) PR-ICMH

0.6 0.8
bitrate [bpp]
(a) FR-ICMH

Fig. 7. Rate-distortion performance of (a) FR-ICMH and (b) PR-ICMH with
different numbers of residual slices (N, = 3,4, 5).

functions, (5) and (6). During the training, five different A
values {0.005,0.01,0.02,0.03,0.05} are utilized. COCO-train
dataset is utilized for training and COCO-val is utilized for
evaluation [41]. The number of feature slices for SA-ICM,
N,,, is fixed to 5, while the additional LIC is trained with
N, = {3,4,5} to evaluate the effect of number of slices of
residual features. Fig. 5 shows that the proposed FR-ICMH
and PR-ICMH provide clearer reconstructions of critical visual
details, such as facial components and textures in grass, which
are less distinct in ICMH-FF.

The rate-distortion curves for human-oriented images with
N, = 5 are presented in Fig. 6. The solid lines indicate
the bitrate of additional information only, while dashed lines
represent the total bitrate (machine-oriented + additional). We
compare our proposed methods with ICMH-FF and LIC-TCM.
FR-ICMH outperforms ICMH-FF especially at high bitrate
regions, while PR-ICMH consistently outperforms across all
bitrate ranges. Notably, PR-ICMH achieves performance that
is even close to LIC-TCM at high bitrate levels, despite its
scalable structure. The performance degradation of FR-ICMH
at low bitrates is primarily due to subtracting the high-quality
machine-oriented features of SA-ICM (A = 0.05) from the
human-oriented features. This subtraction yields a very small
residual, and results in limited information recovery and lower
PSNR.

TABLE I
BD-RATE COMPARISON WITH ICMH-FF FOR DIFFERENT VALUES OF THE
RESIDUAL FEATURE SLICES N,

BD-rate(%)

Method
Ng=3 Nqg=4 Ng=5
ICMH-FF 0.00 0.00 0.00
FR-ICMH (ours) -2.43 -4.23 -7.93
PR-ICMH (ours) -29.57 -26.06 -26.78
TABLE II

COMPARISON BETWEEN THE SIZE OF RESIDUAL INFORMATION
COMPRESSION MODEL AND THE NUMBER OF SLICES N,

Ng [ 3 4 5
Number of channels for residual information 192 256 350
Number of parameters (M) 587 670 76.6

The BD-rate of our proposed methods compared to ICMH-
FF for different number of slices, N,, is shown in Table I.
For each value of N,, the corresponding ICMH-FF model is
utilized as the baseline. As shown in the table, both proposed
methods outperform ICMH-FF across all configurations. In
particular, PR-ICMH demonstrates consistently large gains
regardless of the number of slices, achieving the best perfor-
mance with a BD-rate reduction of 29.57% when N, = 3.

B. Effect of Reduction in Number of Slices

We further evaluate our proposed methods by investigating
the effect of parameter reduction in the additional LIC model
for residual information. Increasing the number of slices IV,
leads to a larger number of intermediate features, which in turn
increases the number of model parameters. Fig. 7 illustrates
how the number of residual feature slices IV, affects the rate-
distortion performance of FR-ICMH and PR-ICMH. While
both methods show improved performance with higher N,
the gain is marginal, especially for PR-ICMH. Table II shows
the corresponding increase in model parameters. These results
indicate that a smaller model can be achieved by reducing the
number of slices without significantly sacrificing compression
performance.

V. CONCLUSION

In this paper, we propose a residual-based scalable im-
age coding framework for both human visual perception
and machine vision. We introduce two complementary
ICMH methods, Feature Residual-based (FR-ICMH) and Pixel
Residual-based (PR-ICMH). Both proposed methods explicitly
model the residual information between machine-oriented and
human-required representations, while offering flexible trade-
offs between computational cost and compression performance
across a wide range of practical applications. Experimental re-
sults show that our proposed methods significantly outperform
the prior scalable method, ICMH-FF, with PR-ICMH achiev-
ing up to 29.57% BD-rate reduction. Future work includes
extending our residual-based framework to video coding and
supporting variable bitrate control for greater deployment
adaptability.
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