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Abstract—We present VFI-LoRA, a method for generating
precise and realistic intermediate frames given only a first and a
last frame. By leveraging a pretrained image-to-video diffusion
model (Stable Video Diffusion), our approach produces frames
that remain both spatially and temporally consistent. To adapt
the diffusion model for video frame interpolation, we employ
Low-Rank Adaptation (LoRA) to efficiently finetune the model,
enabling it to handle large motions effectively. Additionally,
we introduce a technique to refine generated frames during
the denoising stages of inference. To address scenarios where
objects may disappear in sequences with large motions, we
further perform renosing and denosing steps after generating
latent features with backward process of inference. We compare
our method against both existing diffusion-based and CNN-
based interpolation methods, demonstrating its effectiveness,
particularly for sequences with complex, nonlinear motions.

Index Terms—Video frame interpolation, Stable Video Diffu-
sion, LoRA

I. INTRODUCTION

Video frame interpolation is one of the core task in computer
vision, aiming to generate intermediate frames using only the
first and last frames [1]. This technology has a broad range
of real-world applications, including frame-rate enhancement
and video compression. Advances in deep neural networks
have fueled significant progress in this field, with existing
approaches primarily relying on convolutional neural networks
(CNNs) [2]–[5]. Meanwhile, recent advancements in large-
scale diffusion models, such as text-to-video [6] and image-to-
video [7] models, have demonstrated the capability to gener-
ate videos with significant motion. Compared to developing
diffusion-based interpolation models from scratch, leverag-
ing these pretrained models allows for training with smaller
datasets and reduces computational complexity. To harness the
capabilities of pretrained diffusion models, we propose VFI-
LoRA, a method for video frame interpolation that builds upon
a pretrained image-to-video diffusion model. Our approach
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leverages the pretrained Stable Video Diffusion (SVD) model
[7], finetuning it with Low-Rank Adaptation (LoRA) [8] to
preserve its knowledge while generating high-quality frame
predictions. Moreover, to address object disappearance in se-
quences with large motions, we introduce Frame Refinement.
This strategy injects noise into features generated by the 3D U-
Net after the backward inference process and then re-denoises
them, producing finer details that better approximate the true
data distribution. Extensive experiments demonstrate that our
LoRA-based finetuning and Frame Refinement outperform
existing diffusion-based and CNN-based methods.

II. RELATED WORK

A. Video Frame Interpolation (VFI)

Video frame interpolation (VFI), the process of generat-
ing intermediate frames between existing frames of a video
sequence, has become a critical technique in the field of
computer vision [1]. By artificially increasing the frame rate,
frame interpolation enhances the smoothness, making it es-
pecially valuable for a wide range of applications such as
slow-motion playback, frame rate upconversion and video
compression. Breakthroughs in deep neural networks have led
certain interpolation approaches to incorporate CNNs within
their frameworks. Such techniques typically involve using
CNNs to estimate motion vectors between frames. These
estimated vectors are then employed to warp existing frames,
enabling the generation of intermediate frames based on
the computed motion. However, CNN-based techniques are
often inadequate for processing sequences that involve large
motions. To effectively handle sequences with large motions,
recent studies have introduced diffusion-based methods.

B. Latent Diffusion Models (LDMs)

Latent Diffusion Models (LDMs) [9] perform diffusion
steps within a lower-dimensional latent space learned by an
autoencoder. An autoencoder is first trained so that its encoder
E maps an input image x ∈ RD to a latent representation
z ∈ Rd (with d ≪ D), and its decoder D reconstructs x



Fig. 1. Forward and backward predictions from SVDKFI.

from z. Once the autoencoder is trained, the diffusion process
proceeds on the latent representation z. At each diffusion step
t, Gaussian noise is added according to

q(zt | zt−1) = N
(
zt |

√
1− βt zt−1, βtI

)
. (1)

Here, βt is the variance schedule parameter at step t. It controls
the amount of noise introduced into the latent representation
zt−1 to obtain zt. A corresponding reverse process pθ(zt−1 |
zt) is also assumed to be Gaussian, and it is learned via a
neural network ϵθ(zt, t) that predicts the added noise. The
training objective for this noise-predicting network typically
takes the form

L(θ) = Ez0, ϵ, t

[
∥ϵ− ϵθ(zt; t)∥2

]
, (2)

where ϵ is the actual noise at step t, and zt is the noisy
version of the latent representation. Sampling from an LDM
involves first drawing a latent zT from the Gaussian distri-
bution N (0, I). Then, using the learned reverse process, one
iteratively removes noise step by step to generate z0. Finally,
this denoised latent vector is passed through the decoder D to
produce the resulting image xsample in the pixel space.

C. Diffusion-based Video Interpolation

Multiple studies have exploited diffusion-based methods to
VFI, leveraging the capacity to produce visually appealing
intermediate frames [10], [11]. Recent advances in image-
to-video diffusion models, such as Stable Video Diffusion
(SVD), have introduced sophisticated sampling strategies that
integrate both forward and backward predictions. For instance,
TRF [12] integrates forward and backward conditioned denois-
ing without finetuning SVD. Similarly, SVDKFI [13] rotates
attention maps of SVD and finetunes the temporal layers
conditioned on the last frame to generate a model for backward
prediction. During inference, both the forward and backward
models generate noise, which is then merged to produce
time-consistent features. However, we observed that backward
predictions are less effective at generating synthetic frames
than the standard forward prediction model. Fig. 1 compares
outputs from both the forward model and the backward model
of SVDKFI. As illustrated in Fig. 1, the object (car) vanishes
in the frames produced by the backward prediction. We
hypothesize that this issue arises because the pretrained SVD
model was primarily trained for forward prediction. Finetuning
this model for backward prediction may disrupt the temporal
knowledge necessary to produce temporally consistent frames.

D. Low-Rank Adaptation (LoRA)

Generative AI, including text-to-video diffusion models
[6], and image-to-video diffusion models [7] have gained
prominence. Alongside these advancements, efficient finetun-
ing techniques have been developed. Low-Rank Adaptation
(LoRA) [8] serves as an example of an efficient finetuning
technique. LoRA focuses on learning the differences between
the original model weights and the finetuned weights. Finetun-
ing adjusts model parameters from their original values θ to
new values θ′ by learning a parameter update ∆θ, θ′ = θ+∆θ.
Given that the original parameters θ reside in Rd×k, the
approach factorizes the update ∆θ as ∆θ = BA, where
B ∈ Rd×r and A ∈ Rr×k(with r ≪ d). This low-rank
factorization significantly reduces the number of parameters
that need to be learned during finetuning.

III. PROPOSED METHOD

A. LoRA Finetuning for Video Interpolation

We propose a method, VFI-LoRA, for leveraging a pre-
trained image-to-video diffusion model, Stable Video Diffu-
sion (SVD) for video interpolation using Low-Rank Adapta-
tion (LoRA). As shown in Fig. 2, our finetuning phase diverges
from previous work like SVDKFI, which requires finetuning
for backward prediction. Instead, we finetune SVD to generate
videos that progress forward in time while conditioning on
the last frame. This approach preserves the model’s learned
forward motion dynamics, which were acquired from abundant
video data. Given a first frame I0 and a last frame IN−1, our
objective is to generate N frames: I0, I1, . . . , IN−1. During
finetuning, we concatenate these frames to form an input
tensor x ∈ RD. The encoder E of a pretrained Variational
Autoencoder (VAE) [14] maps the input tensor x to a latent
representation z ∈ Rd(d ≪ D). To simulate the diffusion
process, Gaussian noise is added to the latent representation
at time step t, resulting in

zt = αtz+ σtϵ, (3)

where ϵ ∼ N (0, I) is Gaussian noise, and αt and σt are
scalars defined by a noise schedule. Additionally, the first
and last frames, I0 and IN−1, are encoded into embeddings
using a pretrained CLIP Image Encoder (ECLIP ) [15]. These
embeddings, c0, cN−1 ∈ Rd′

(d′ ≪ D), serve as conditions for
the 3D U-Net ϵθ within the SVD model. We incorporate LoRA
into the 3D U-Net, which dramatically reduces the number of



Fig. 2. Overview of our VFI-LoRA.

trainable parameters. The network is optimized by minimizing
the loss function,

L(θ) = Ez0, ϵ, t

[
∥ϵ− ϵθ(zt; t, c0, cN−1)∥2

]
. (4)

B. Frame Refinement (FR)

During inference, the latent representation z input to the
3D U-Net with LoRA is initialized by random Gaussian
noise. 3D U-Net then receives embeddings c0, cN−1 ∈ Rd′

from the CLIP Image Encoder (ECLIP ), which serve as
conditions. As shown in Fig. 4, our experiments reveal that for
sequences with extreme motions, the proposed method strug-
gles to generate objects faithfully. To address this, we intro-
duce Frame Refinement. For sequences exhibiting significant
motion, after completing the standard diffusion process, an
additional diffusion process is executed to correct occlusions
or artifacts that occurred during the initial denoising steps.
The detailed procedure is outlined in Fig. 2 and Alg. 1. The
Frame Refinement process begins by estimating the optical
flow between the first and last frames using RAFT (F) [16].
Sequences are subsequently ranked based on the magnitude of
motion. Sequences exhibiting motion magnitudes above the
threshold τ are classified as large-motion sequences, while
others are categorized as small-motion sequences. For large-
motion sequences, the latent representation is re-noised for
a few steps by reintroducing Gaussian noise according to the
scheduler. Then, iterative denoising is performed again to yield
the final latent features. This method aims to guide latent
features that diverged from the true distribution back towards

a more accurate representation, using insights gained from the
initial diffusion stage. Finally, the refined latent representation
is fed into the decoder D of a pretrained VAE to generate the
final output frames. This Frame Refinement step enhances the
quality of generated frames, particularly for sequences with
large motions.

IV. EXPERIMENT

A. Implementation Details

We trained our method using the high-quality OpenVid-
1M dataset [17] with an image resolution of 512×512 pixels.
Specifically, our 3D U-Net is trained to generate all 9 frames
given only the first and last frames. For finetuning the 3D U-
Net, we apply LoRA with a rank of 8 to adapt the weights of
linear and convolutional layers. This approach dramatically
reduces the number of trainable parameters from 1.52B to
14M. The training procedure runs for 30,000 iterations using
the AdamW optimizer [18] with a learning rate of 1e-4. We
use a batch size of 2 and apply gradient accumulation over 4
steps to stabilize training. During inference, we first use RAFT
to extract the optical flow between the first and last frames.
Sequences are then ranked by the magnitude of motion, with
the top 10% of sequences classified as large-motion and the
remainder as small-motion sequences. For all sequences, an
iterative denoising process is performed for 50 timesteps using
the Euler Discrete Scheduler [19]. For sequences categorized
as having large motions, an additional re-noising step is
applied for 35 timesteps after the diffusion process, followed



TABLE I
QUANTITATIVE COMPARISON ON DAVIS AND VISDRONE-VID DATASETS.

DAVIS VisDrone-VID

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓

RIFE 19.87 0.6571 0.2869 14.90 391.4 26.34 0.8557 0.1338 7.338 140.9
FILM 19.68 0.6458 0.2764 11.53 341.1 26.54 0.8568 0.1253 5.935 96.17
AMT 20.16 0.6729 0.3160 25.06 391.5 27.05 0.8662 0.1424 10.77 106.9
LDMVFI 19.30 0.6244 0.3173 17.97 460.0 24.78 0.8265 0.1554 9.489 194.8
TRF 15.72 0.5146 0.4495 32.80 570.9 17.39 0.5886 0.3626 37.75 645.0
SVDKFI 16.35 0.5265 0.3781 27.14 300.3 19.32 0.6478 0.2604 31.33 297.8
VFI-LoRA w/o FR 17.64 0.5796 0.3272 24.37 155.1 21.25 0.7343 0.2107 26.27 68.50
VFI-LoRA w/ FR 17.56 0.5768 0.3305 23.60 150.5 21.29 0.7348 0.2111 25.77 66.34

Algorithm 1 Diffusion sampling using Frame Refinement.
Require: I0, IN−1, ϵθ, ECLIP (·),D(·),F

1: Define optical flow threshold τ using F
2: Generate c0, cN−1 from ECLIP (I0), ECLIP (IN−1)
3: Set zT ∼ N (0, I)
4: Denosing steps:
5: for t← T to 1 do
6: v̂t = ϵθ(zt; t, c0, cN−1)
7: zt−1 = update(zt, v̂t; t)
8: end for
9: if F(I0, IN−1) > τ then

10: Perform K steps of renosing:
11: for k ← 1 to K do
12: v̂′k−1 = ϵθ(zk−1; k − 1, c0, cN−1)
13: zk = inverse update(zk−1, v̂

′
k−1; k − 1)

14: end for
15: Additional denosing steps:
16: for k ← K to 1 do
17: v̂′k = ϵθ(zk; k, c0, cN−1)
18: zk−1 = update(zk, v̂′k; k)
19: end for
20: end if
21: Return D(z0)

by further iterative denoising. This additional step aims to
refine frames affected by substantial motion artifacts.

B. Evaluation

For evaluation, we use the DAVIS [20] and VisDrone-VID
[21] datasets with a resolution of 448×832 pixels. Unlike
previous works that cropped DAVIS sequences to 256×256
(which is unsuitable for the original SVD model trained on
high-resolution data), we retain the high-resolution sequences.
Given the first and last images of a sequence, models per-
form multiple frame interpolations to generate 7 intermediate
frames, and performance is evaluated based on these gener-
ated frames. We compare our method with the CNN-based
methods, RIFE [2], FILM [3], AMT [4] and diffusion-based
methods, LDMVFI [10], TRF [12], SVDKFI [13].

TABLE II
IMPACT OF FRAME REFINEMENT ON SVDKFI.

DAVIS

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓

SVDKFI 16.35 0.5265 0.3781 27.14 300.3
SVDKFI w/ FR 16.41 0.5298 0.3766 26.74 289.8

C. Qualitative Comparison

Qualitative comparisons of intermediate frames generated
by our method alongside those produced by previous ap-
proaches is presented in Fig. 3. Our VFI-LoRA produces
frames that are more detailed and temporally smooth, offering
a more coherent result. CNN-based approaches (FILM, AMT)
fail to maintain spatial and temporal coherence, resulting in
occlusions. While SVDKFI captures some temporal informa-
tion, it struggles with accurately modeling complex motions,
leading to distortions in the generated frames. In contrast,
our method especially with FR preserves the shape of ob-
jects, achieving both spatial and temporal consistency. Fig.
4 highlights the benefits of our Frame Refinement approach
in scenarios with extreme motions. Without FR, the object
(person) disappears from the generated sequence. However,
with Frame Refinement, VFI-LoRA successfully generates the
person while accurately capturing the correct motion, thereby
demonstrating its effectiveness in handling large-motion se-
quences.

D. Quantitative Comparison

For quantitative evaluation, we employed several metrics,
PSNR, SSIM [22], LPIPS [23], FID [24], and FVD [25] to
assess the quality of 7 generated frames. Table 1 presents
the results on the DAVIS and VisDrone-VID datasets. While
CNN-based methods such as FILM and AMT achieve the
highest scores in PSNR, SSIM, LPIPS, and FID, our method
excels in terms of FVD on both datasets. As noted in VIDIM
[11], metrics like PSNR, SSIM, LPIPS, and FID may not fully
capture the perceptual quality of video interpolation results,
as they fail to consider temporal consistency across frames.
Furthermore, our proposed FR approach results in a modest
improvement in FVD, as it is applied exclusively to sequences
with large motions.



Fig. 3. Qualitative comparison on intermediate frames.

Fig. 4. Comparison of Frame Refinement (FR) in sequence with extreme motion.

E. Ablation Study on Frame Refinement

We conducted an ablation study on Frame Refinement by
integrating it with SVDKFI. Table 2 presents the quantitative
comparison of SVDKFI with and without Frame Refinement.
The results in Table 2 indicate that our proposed sampling
scheme improves SVDKFI across all evaluated metrics. This
enhancement suggests that our Frame Refinement technique is
not only beneficial for VFI-LoRA but can also be effectively
applied to other diffusion-based interpolation methods.

V. CONCLUSION

In this paper, we present VFI-LoRA, a method for gen-
erating visually faithful intermediate frames given only the
first and last frames of a video. By leveraging Stable Video
Diffusion (SVD) with Low-Rank Adaptation (LoRA), our
approach produces frames that are both spatially and tempo-
rally consistent. Furthermore, we introduce Frame Refinement,
which improves the quality of generated frames during the
denoising stages of inference, particularly in sequences with
large motions. Through extensive experiments, we demonstrate
that VFI-LoRA outperforms existing methods in terms of
frame quality. Additionally, Frame Refinement can be adapted

to other diffusion-based interpolation methods, underscoring
its potential applicability in future approaches.
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