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Abstract  This paper proposes a conditional diffusion framework for temporal 3D human pose estimation. The method uses 

Transformer architecture to refine pose sequences by treating temporal consistency as a denoising process. Experiments on 

Human3.6M dataset demonstrate significant improvements in pose accuracy while maintaining temporal consistency. 

 

1. Introduction 

Single-frame 3D human pose estimation has shown good 

results in recent years. But temporal inconsistencies remain 

a major problem when processing video sequences. Most 

current methods handle video frames separately. This 

creates jittery and unnatural motion in the final pose 

sequences. 

Recent methods like ZeDO [1] achieve excellent results 

for single frames. But they cannot maintain temporal 

consistency across sequences. Other approaches like 

SmoothNet [2] focus on temporal smoothing after pose 

estimation. But they lack the strong pose knowledge that 

diffusion models can provide.  

This work proposes a conditional diffusion framework 

to address these issues. The method uses a Transformer-

based [3] architecture for temporal 3D human pose 

refinement. We treat pose sequence correction as a step -by-

step denoising process. The framework uses a Transformer 

denoising model to process sequential pose data. This helps 

model temporal dependencies across  joint positions well. 

Our method conditions the diffusion process on initial pose 

predictions. This way, it learns to fix inconsistencies and 

keeps underlying motion patterns at the same time.  

2. Related Works 

2.1 3D Human Pose Estimation 

Current 3D pose estimation methods can be split into 

single-frame and video-based approaches. Single-frame 

methods like ZeDO represents a recent breakthrough that 

uses diffusion models as optimization tools. It gets top 

performance without needing paired 2D-3D training data. 

Video-based methods try to use temporal information 

through temporal convolutional networks and transformer 

architectures. Methods process spatial and temporal 

information together. But these approaches still have 

problems with temporal consistency.  

2.2 Diffusion Models  

Diffusion models learn to generate data by reversing a 

noise corruption process. Ho et al. introduced DDPM  [4], 

which gets strong results in various tasks. Song et al. 

proposed DDIM [5] for faster sampling. This addresses the 

slow sampling problem of standard diffusion models.  

Recent work has applied diffusion models to 3D pose 

estimation. 

2.3 Temporal Consistency Solutions 

Traditional methods use filtering techniques like 

Gaussian filtering and Savitzky-Golay filtering for pose 

smoothing. SmoothNet proposes a plug-and-play temporal 

refinement network. It reduces jitters in outputs from 

existing pose estimators. The method uses motion -aware 

networks to learn temporal relationships for each joint.  

 

Fig. 1 Overview of the proposed method.  

 

3. Proposed Method 

3.1 Temporal Pose Diffusion Framework 

Our method extends diffusion models to temporal pose 

sequences. We set up temporal pose refinement as a 

conditional sequence-to-sequence denoising task. The key 

idea is that predicted pose sequences contain useful 

structural information that can guide the diffus ion process 

toward better solutions.  

Input: A predicted pose sequence 𝑋𝑝𝑟𝑒𝑑 =

{𝑥1, 𝑥2, … , 𝑥𝑇} ∈ 𝑅𝑇×𝐽×3 from any pose estimator. Here T is 

sequence length and J = 17 is the number of joints.  

Output: A refined pose sequence 𝑋𝑟𝑒𝑓𝑖𝑛𝑒𝑑 ∈ 𝑅𝑇×𝐽×3 with 

improved temporal consistency and accuracy.  

3.2 Forward and Reverse Process  

Following the standard DDPM framework, our forward 
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process adds Gaussian noise to ground truth pose sequences 

step by step. For a ground truth pose sequence, noise 

versions can be sampled at timestep 𝑡  using: 𝑥𝑡 =

√𝛼𝑡̅̅ ̅ 𝑥0 + √1− 𝛼𝑡̅̅ ̅ 𝜀,  𝜀 ∼ 𝒩(0, 𝐼). 

The reverse process conditions every denoising step on 

the predicted pose sequence by pθ( xt−1 ∣∣ xt, c ) =

𝒩(xt−1; μθ(xt, t, c), σt
2I) , where 𝑐  represents the 

conditioning information.  

3.3 Temporal Denoising Architecture  

The denoising network puts together three information 

sources: current noisy sequence state, diffusion timestep, 

and condition poses. We use learnable positional 

embeddings for temporal and joint positions. All encoded 

features are combined through element-wise addition. 

A Transformer encoder processes the fused features wit h 

6 layers, 8 attention heads, and dimension 256. We reshape 

the feature tensor to create T × 17 tokens per sequence. 

Each token represents a specific joint at a specific time 

frame. The self-attention mechanism captures both joint 

dependencies within frames and temporal relationships 

across frames.  

4. Experiment 

4.1 Dataset and Metrics  

We use the Human3.6M [6], [7] dataset for evaluation. 

This dataset contains 3.6 million video frames with 

accurate 3D pose annotations. We use subjects S1, S5, S6, 

S7, S8 for training and subjects S9, S11 for testing.  

We use pose predictions from ZeDO as input to our 

temporal refinement approach. ZeDO represents current 

best practices in single-frame pose estimation. We check 

results using three metrics: MPJPE measures absolute pose 

accuracy, P-MPJPE checks pose structure, and MPJAE 

measures temporal smoothness.  

4.2 Results 

Table 1. Quantitative comparison on Human3.6M. Mm for 

MPJPE/P-MPJPE and mm/frames² for MPJAE.  

 MPJPE P-MPJPE MPJAE 

ZeDO  54.77 37.48 2.52 

SmoothNet 53.91 37.45 0.98 

Ours 38.91 27.18 2.58 

Our method gets big improvements over baseline 

methods. Compared to ZeDO, our approach reduces MPJPE 

by 15.86mm (from 54.77mm to 38.91mm) and P -MPJPE by 

10.30mm (from 37.48mm to 27.18mm). The method also 

works better than SmoothNet across MPJPE metrics.  

We test different setups to understand key components. 

Longer sequence lengths give consistent accuracy 

improvements. Using 32 frames instead of 16 frames shows 

better results. DDIM sampling offers big speed advantages 

with 22× speedup but creates temporal quality trade-offs. 

 

Table 2. Ablation study results on Human3.6M.  

 MPJPE P-

MPJPE 

MPJAE Inference 

FPS 

16 frame 

+ DDPM 

38.91 27.18 2.58 13.9 

16 frame 

+ DDIM 

39.09 27.23 10.45 306.2 

32 frame 

+ DDPM 

38.21 27.02 2.38 7.0 

32 frame 

+ DDIM 

37.77 26.86 7.81 151.5 

5. Conclusion 

This work presents a conditional diffusion framework 

that addresses temporal inconsistencies in 3D human pose 

estimation. The method conditions diffusion models on 

predicted poses and uses Transformer-based denoising 

architecture. Experimental results on Human3.6M show 

large improvements over baseline methods . The framework 

keeps plug-and-play compatibility for practical deployment 

and opens new possibilities for temporal motion analysis.  
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