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ABSTRACT The consumption of image data by machines is rapidly increasing due to the growing
adoption of image recognition technologies. This trend has accelerated research in image compression
techniques tailored for machine processing. This emerging field, known as Image Coding for Machines
(ICM), has gained significant attention in recent years. In particular, ICM is increasingly seen as essential
for collaborative systems between edge devices and cloud AI. Since large AI models are challenging to
deploy on edge devices, cloud AI services are made available to edge users, who can utilize them by
transmitting images to the cloud. Cloud AI is expected to handle various tasks, including image generation
and image recognition, with the latter being especially valuable for video and image analysis. Given its
utility, image recognition models are anticipated to replace human analysts in applications such as farm
and traffic monitoring. Moreover, since recognition models require only a small fraction of the total
image data, developing specialized image compression methods for recognition can significantly enhance
communication efficiency. However, applying conventional ICM methods to edge-cloud systems presents
challenges, such as increased computational load on edge devices and limited versatility. In this paper,
we address these challenges by proposing two novel image compression methods—SA-ICM and ST-ICM—
designed for recognition models. These methods focus on preserving object contours within images while
maintaining compatibility with various recognition models, without adding computational overhead to edge
devices. Through experimental evaluations, we demonstrate the versatility and effectiveness of our proposed
methods by comparing them with conventional approaches.

INDEX TERMS Edge-cloud system, image coding for machines, image coding for image recognition, image
compression, learned image compression.

I. INTRODUCTION
Image compression technology refers to techniques that
reduce the amount of data needed to represent an image by
eliminating redundancy in the image information. This tech-
nology is crucial for efficient image data storage and transfer
while preserving image quality as much as possible. Due to
its significance, numerous standardization bodies have been
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actively involved in the research and development of image
compression methods. For instance, the Joint Photographic
Experts Group introduced the first JPEG [1] in 1992 and
has continuously maintained and updated it. Over the years,
this group has also established other standards, such as
JPEG 2000 [2], JPEG-XL [3], and JPEG-AI [4], significantly
contributing to the widespread adoption of image com-
pression technology. Similarly, the Moving Picture Experts
Group (MPEG) primarily focuses on video compression
standards but has also contributed to image compression
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technologies [5], [6]. Video compression typically involves
two types of compression: intra-frame (Intra) and inter-
frame (Inter). Intra-compression is a technique used in video
compression where each frame is compressed independently,
without referring to other frames. It is equivalent to image
compression, since intra-compression treats each video frame
as a standalone image. As a result, MPEG has been involved
in standardizing image compression technologies, developing
formats like HEVC-Intra [7] and VVC-Intra [8]. Many
of the image compression standards established by these
organizations aim to represent images more faithfully to the
original ones while minimizing the required data. In technical
terms, these standards strive to achieve a high Peak Signal-
to-Noise Ratio (PSNR) at low bit rates [9]. Compression
technologies developed under these aims are widely applied
in a variety of applications and enable smooth management
and sharing of image data.

Conversely, limiting the intended use of images opens
the door to exploring compression methods with improved
performance. Extracting task-specific image information
enables the elimination of redundant content, thereby achiev-
ing a more efficient and compact representation. In such
cases, faithfully reproducing the original image becomes less
critical, primarily focusing on encoding only the essential
information as small as possible. Compression techniques
tailored to typical image data applications are in high
demand and often necessitate standardization. In this context,
a particularly noteworthy research area is Image Coding for
Machines (ICM) [10], [11], [12], [13]. Recent advancements
in AI have led to remarkable improvements in the perfor-
mance of image recognition models. These AI advancements
catalyzed the utilization of image recognition models for
image analysis, leading to increased image data processing
requests for machines. This trend has created a pressing need
for research into ICM to address these demands. Standards
organizations have acknowledged this need and initiated
efforts to standardize image compression methods designed
for machine consumption. For example, the white paper
associated with the JPEG-AI [4] standardization process
highlights the goal of developing an image compression
method applicable to machine tasks [14]. Similarly, MPEG is
working on the standardization ofVideoCoding forMachines
(VCM) and is actively exploring the technology through calls
for proposals [15], [16], [17], [18], [19].
Despite significant research efforts, ICM methods have

yet to be standardized or widely adopted in practice, and
several challenges remain. The first challenge lies in ensuring
the general applicability of ICM methods. Many of the
currently proposed approaches are optimized for specific
recognition models, limiting their versatility and preventing
their use with other models [20]. This lack of flexibility
is particularly problematic in a system of Collaborative
Intelligence between edge devices and cloud AI. In these
scenarios, images captured at the edge are often processed
and analyzed by various recognition models hosted in the
cloud server [21], [22], [23], [24]. Since the cloud hosts

a diverse array of recognition models, edge devices need
image compression methods that are robust and adaptable to
changes in these models. The second challenge is to limit the
computational complexity of the encoder. In many practical
use cases, it is assumed that the encoder for ICM methods
will be implemented on edge devices, while the decoder will
operate in the cloud. Given the limited computing power
of edge devices, it is crucial to keep the computational
load of the encoder low [25]. Designs that impose a heavy
processing burden on image encoding are unsuitable for
ICM methods in such contexts. These challenges stem
from the practical considerations of real-world applications.
Research that focuses solely on improving the compression
performance of ICMmethods risks overlooking these critical
implementation constraints.

In this paper, we propose a novel ICM method designed to
address these challenges in real-world use cases. The method
leverages Learned Image Compression (LIC), a neural
network-based image compression model [26], [27], [28].
By training the LIC model to learn the shape of objects,
a compression model is developed that accurately preserves
the contours of objects within images. This approach allows
the LIC model to discard other parts of the image, thereby
significantly reducing the amount of image data. At the same
time, since the shape and position of objects are faithfully
retained, the compressed images remain suitable for a wide
range of recognition tasks. The proposed model does not
impose any additional computational burden compared to
standard LIC models, nor is it tailored to specific recognition
models. In other words, it can be seamlessly adopted in target
applications while addressing the aforementioned challenges.
Moreover, the proposed method offers superior compres-
sion performance, achieving higher efficiency compared to
existing ICM methods. Through experimental evaluation,
we demonstrate that the proposed method is applicable
to a variety of recognition models. We also measure its
compression performance and compare it against other ICM
methods to validate its effectiveness.

II. RELATED WORKS
A. ICM IN EDGE-CLOUD SYSTEM
The collaboration between edge devices and cloud AI enables
users to leverage state-of-the-art large models [21], [22],
[23], [24]. Thanks to the cloud’s vast data capacity and
seamless update capabilities, a wide range of new image
recognition models can be hosted and accessed, regardless
of their model size. To use these models, images must be
transmitted from edge devices to the cloud. In this process,
image coding methods are expected to play a critical role
[29]. However, as discussed in Chapter 1, ICM method faces
challenges in terms of versatility and computational cost
when implemented in edge-cloud systems. To ensure easy
access to large models for everyone, research is needed to
address these challenges in ICM methods while striving to
enhance compression performance.
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FIGURE 1. Image processing flow for each image compression method. (A): Standard image compression method for reconstruction of the entire
image, as well as Task-Optimization-based ICM and Region-Learning-based ICM during the inference stage. (B): ROI-based ICM, (C):
Task-Optimization-based ICM during the training stage, (D): Region-Learning-based ICM during the training stage.

As a first step, we investigate the applicability of
existing ICM methods in the edge-cloud system. Existing
ICM approaches can be broadly classified into three cate-
gories: ROI-based ICM, Task-Optimized ICM, and Region-
Learning-based ICM. Each of these methods offers specific
advantages and disadvantages, with their effectiveness vary-
ing depending on the use case. In this chapter, we explore
related research in these three categories, examining their
application to edge-cloud systems in Sections II-A, II-B,
and II-C, respectively.

B. ROI-BASED ICM
Region-of-Interest (ROI) is a concept for defining specific
regions in an image that are of particular importance. Several
ICM methods, known as ROI-based ICM methods, have
been proposed based on this concept, as illustrated in Fig. 1
(B). In these methods, the core assumption is that object
regions within an image are crucial for the recognition model.
Accordingly, these methods prioritize bit allocation to these
regions by utilizing an ROI map [30], [31], [32], [33].
This approach allows object regions to be faithfully repre-
sented while disregarding less relevant parts of the image,
thereby creating an efficient image representation tailored for
machine use. ROI-based bit allocation modules have been
integrated into certain Learned Image Compression (LIC)
models and standards designed for human perception, such as
HEVC and VVC [34], [35]. By leveraging this module, these
compression methods can be extended to image compression
specifically designed for machines. Moreover, since general
detection and classification models tend to focus on object

regions within an image, ROI-based ICM methods can
serve as effective compression techniques across various
recognition models.

However, ROI-based ICM methods are not well-suited
for application in edge-cloud systems. This limitation arises
from the necessity of ROI estimation on the edge side.
Since ROI estimation plays a crucial role in determining the
compression performance of ROI-based methods, deploying
an accurate ROI estimation model—typically an object
detection model—on edge devices is required. Implementing
large models on edge devices is often challenging due to
constraints in memory capacity and computational power.
In fact, these limitations are a key reason for leveraging cloud
AI in the first place. Therefore, assuming that ROI estimation
models can be deployed on edge devices contradicts this
premise and should be avoided. In summary, ROI-based ICM
methods are not an ideal choice for facilitating the connection
between edge devices and cloud AI.

C. TASK-OPTIMIZATION-BASED ICM
The ICM method, which optimizes the LIC model based
on the recognition model, provides an effective approach to
obtaining image representations tailored for machines [36].
The core concept of this method is to design a loss function
that preserves the accuracy of the recognition task during
the training process of the LIC model. [37], [38], [39], [40].
Initially, the loss function of the LIC model, designed for the
faithful reconstruction of an image, is expressed as follows:

L = R(ŷ) +R(ẑ) + λ · mse(x, x̂). (1)
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FIGURE 2. Image processing flow of the proposed methods during the training and inference stages. Left: Training stage. Mask image [i] and Mask
image [ii] are binary masks that are utilized in SA-ICM and ST-ICM training processes, respectively. These binary masks are generated using Segment
Anything and Grounded-SAM with fixed weights. Right: Inference stage. In this stage, no binary mask is required, only a pre-trained compression
model is run to decode the image for image recognition.

In (1), x represents the original image, and x̂ represents the
output image. ŷ is a quantized feature of x, and ẑ is a latent
feature to condition ŷ. R(ŷ) and R(ẑ) are the bitrates of ŷ
and ẑ, respectively. mse represents the mean squared error
function and λ is a constant to control the rate [26], [27]. The
roles of these variables in the LIC model are shown in Fig. 1
(A). Task-Optimization-based ICMmodifies the original loss
function by incorporating the impact of recognition accuracy.
The updated loss function is expressed as follows:

L = R(ŷ) +R(ẑ) + λ1 · mse(x, x̂) + λ2 ·M(x̂). (2)

In (2), R, mse, ŷ, ẑ, x, and x̂ have the same meaning
as those functions, variables in (1). M(x̂) is the loss to
improve recognition accuracy, and is calculated by inputting
the decoded image x̂ into the recognition model. λ1 and λ2
are constants to control the rate [10]. The roles of these
variables in the Task-Optimization-based ICM method are
shown in Fig. 1 (C). Optimizing the LIC model based on
recognition accuracy alone is challenging, making it difficult

to achieve effective learning. To address this, distortion loss
(mse(x, x̂)) is incorporated to simplify the learning process.
Additionally, in some cases, the following equation is used
as a loss function, leveraging the feature extractor to further
mitigate the learning difficulty:

L = R(ŷ) +R(ẑ) + λ1 · mse(x, x̂) + λ2 · mse(F(x),F(x̂)).

(3)

In (3), each variable or function has the same meaning as
in (1) and (2). F represents the feature extractor of the recog-
nition model. Generally, the backbone of the recognition
model is exploited as a feature extractor. Instead of directly
targeting recognition accuracy, the LIC model is optimized
using intermediate features extracted from the recognition
model [11], [20]. Leveraging features from the shallow layers
of the model significantly reduces the difficulty of training
the LIC model. The Task-Optimization-based ICM method
incorporates these advancements to optimize the LIC model
specifically for the recognition model. As a result, the ICM
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method delivers high compression performance as an image
compression technique tailored to the specific recognition
model employed during the optimization process.

The primary limitation of this ICM approach is that it
can only be applied to a specific recognition model. This
is because a specific recognition model is introduced to
optimize the compression model. If only a single recognition
model is intended for use, this ICM approach is an excellent
choice. However, in scenarios where multiple recognition
models are anticipated, a more robust ICM approach capable
of adapting to changes in recognition models is necessary.
In such cases, the Task-Optimization-based ICMmethod falls
short of meeting the required flexibility.

D. REGION-LEARNING-BASED ICM
The image data required by image recognition models
typically corresponds to specific regions within the image.
To leverage this characteristic, the Region-Learning-based
ICMmethod is employed to train the LIC model, focusing on
compressing only the regions of the image that are necessary
for the recognition model. [41], [42]. The training process of
this ICM method is shown in Fig. 1 (D). The loss function is
defined by the following equation:

L = R(ŷ) +R(ẑ) + λ · mse(x⊙ maskx , x̂⊙ maskx). (4)

In (4), maskx is the binary mask image corresponding to
image x. This method faithfully decodes only the mask
regions used during the training process. Regions outside the
mask are not learned, making them undecodable and thereby
reducing the bit rate. While this ICM method resembles
the ROI-based ICM method, it differs in that it does not
impose additional computational costs during testing. The
mask image is computed only during training and is not
required during testing. Therefore, the processing flow during
the inference stage of the LIC model is shown in Fig. 1
(A). Additionally, since the LIC model is not optimized
for a specific recognition model, it can serve as an image
compression method compatible with various recognition
models. A notable limitation of the Region-Learning-based
ICM method is the need for fine-tuning the recognition
model. Recognition accuracy can be enhanced by further
training pre-trained recognitionmodels with decoded images.

This limitation can be easily addressed in a cooperative
system between cloud AI and edge devices. Fine-tuned
recognition models are prepared in the cloud, allowing users
to freely select and utilize the desired recognitionmodels. The
Region-Learning-based ICM method can also be applied to
new recognition models, ensuring continuous usability and
adaptability.

III. PROPOSED METHOD
A. OVERVIEW OF THE PROPOSED METHOD
We propose an image compression model designed to
accurately decode the shape and position of objects within an
image. This proposal is based on the hypothesis that object
shape information is crucial for image recognition models.

In contrast, detailed object textures are deemed unnecessary
for recognition tasks. By discarding such details, the pro-
posed model aims to achieve a lower bit rate. To implement
the proposed compression model, we adopt the Region-
Learning-based ICM method, selected from the three ICM
approaches mentioned earlier, due to its strong suitability for
edge-cloud systems. A binary mask is generated to identify
background edges and object contours in the image, which
is then applied as defined in (4). By accurately preserving
the shape and position of objects while discarding extraneous
details, our proposed models achieve high recognition
accuracy at low bit rates. In addition, we also propose method
to further enhance image compression performance for real-
world applications.

We propose two ICM methods: SA-ICM and ST-ICM.
First, Section III-B outlines our previous work on SA-ICM.
Next, the extended version, ST-ICM, is introduced in
Section III-C, followed by its application in Section III-D.

B. SA-ICM
We utilize the Segment AnythingModel (SAM) [43] to create
mask images that accurately capture the shape and position
of objects and backgrounds within an image [44], [45],
[46]. SAM is a segmentation model capable of identifying
any region, regardless of the type of object, as its name
suggests. Its versatility and high accuracy across diverse
objects stem from extensive training on vast amounts of
image data using semi-supervised learning. Although SAM
does not perform classification tasks, meaning it cannot
explicitly label the segmented regions, its high segmentation
accuracy is a notable advantage.

Leveraging this strength, we use SAM to generate mask
images representing the shape and position of objects and
backgrounds, incorporating them into the training of the LIC
model. The process of mask creation and LIC training is
depicted on the left side (training stage) of Fig. 2. In the mask
creation process, the image is first fed into SAM to generate a
segmentation map. During this step, the confidence threshold
for segment is set to a constant value (α). The resulting
segmentation map is then processed using the Canny edge
detector to extract segment boundaries. In the created binary
mask, the boundary pixels are assigned a value of 1, and all
other regions are set to 0. This mask generation process can
be described using the following equation:

maskx = canny(sam(x, α)). (5)

In (5), the functions sam and canny represent region segmen-
tation using SAM and Canny edge detection, respectively.
An example of a generated mask is shown in Fig. 3 (d).
As demonstrated in this figure, the binary mask effectively
captures not only the objects but also the shape and position
of background elements, such as mountains. The LIC model
is trained by incorporating the generated mask image into the
loss function described in (4). The objective of this training
is to optimize the LIC model to faithfully decode only the
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FIGURE 3. Examples of mask images and their corresponding original images. (a): Original images. (b): Binary masks generated by Grounded-SAM.
(c): Edges obtained by applying the Canny edge detector to the mask (b). (d): Edges obtained by applying the Canny edge detector to the
segmentation map output by Segment Anything. These masks are used in the training process of SA-ICM. (e): Binary masks computed as the
Hadamard product of the expanded mask (b) and the edges in (d). These masks are utilized in the training process of ST-ICM.

boundaries of the regions identified in the segmentation map,
while discarding other textures.

C. ST-ICM
Masks generated by Segment Anything include the bound-
aries of every object in the image. As a result, the LIC
model optimized with these binary masks is capable of
accurately decoding all background edges and object shapes.
However, for object detection and instance segmentation
models, information about every segment boundary is not
always necessary. For instance, boundary information for
image elements such as oceans or mountains, which are
irrelevant for object detection tasks, becomes redundant.
To address this and enhance the compression performance of
SA-ICM, we propose a new ICM method, ST-ICM, which
focuses on compressing the boundaries of arbitrary target
objects. By limiting the information in the binary mask to the
boundaries of target objects, background information can be
discarded, leading to more efficient compression.

The process of creating a binary mask for ST-ICM
training flow is illustrated in Fig. 2. This process utilizes
Grounded-SAM [47], a model that performs segmentation
for objects belonging to arbitrary classes. Grounded-SAM
combines SAM with a detection model for arbitrary objects
(Grounding-DINO [48]) to generate segmentation maps
for any specified object. In the first half of the binary
mask creation process, we acquire segments of arbitrary
objects using Grounded-SAM, as detailed in steps a)-c)
below:

a) Text prompt and the original image are input into
Grounding-DINO, which detects the specified object
in the image based on the text. We utilize the ground
truth class label of the dataset as the text prompt.

b) The image region within the detected bounding box is
passed to SAM to obtain a segmentation result.

c) The similarity between the segments generated by
SAM and the text prompts is evaluated, and a
segmentation map (sm) is output for segments that
exceed the text similarity threshold.

The segmentation map (sm) resulting from this process is
shown in Fig. 3 (b), and its application to the Canny edge
detector is illustrated in Fig. 3 (c). The binary mask obtained
at this stage captures the object’s contour but excludes
background information and internal texture details.

In contrast, the mask used for SA-ICM training, shown in
Fig. 3 (d), contains a small amount of edge informationwithin
the object. To replicate the recognition accuracy achieved
with SA-ICM, the edge information inside the object is
incorporated into the binary mask shown in Fig. 3 (c). This
is achieved through the following additional steps d)-f):

d) The mask region of sm is slightly expanded using a
morphological transformation, producing an extended
mask image denoted as sm′.

e) A binary mask (mm), as shown in Fig. 3 (d),
is generated using (5). This mask (mm) is exactly the
same as the binary mask applied in the training stage of
SA-ICM.

f) The Hadamard product (element-wise multiplication)
of mm and sm′ is computed.

Through these steps, a binary mask is generated, as shown
in Fig. 3 (e). This mask excludes background boundary
information but includes the contours of the target object and
a small amount of internal edge details. Finally, these masks
are incorporated into (4) to train the LIC model. The goal of
this training is to optimize the LIC model to decode only the
shape and limited details of the target object.

D. APPLICATIONS OF ST-ICM
By defining specific use cases for the ICM method,
it is possible to further enhance image compression
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performance through the application of ST-ICM.As described
in Section III-C, ST-ICM is designed to faithfully decode
the shape and position of various objects, and the binary
mask in its training process contains a great deal of object
shape information. However, in practical use cases of
the ICM method within edge-cloud systems, the focus is
often on detecting only specific objects. In such scenarios,
Grounding-DINO [48] can be utilized to develop ST-ICM
application models optimized for the targeted objects. For
example, farm management may require the detection of
sheep and cattle, while traffic monitoring may need to detect
vehicles and persons. In these cases, decoding the shapes of
irrelevant objects is unnecessary. By devising input prompts
to Grounding-DINO, decoding of unnecessary image parts
can be avoided. Specifically, in the image processing step
described in a), compression for person detection can
be achieved by setting ‘‘person’’ as a text prompt. This
approach discards information about other objects, enabling
image representation for person recognition at a lower bit
rate.

Grounding-DINO supports arbitrary text input by incorpo-
rating BERT [49] text encoder. It can also support arbitrary
images by using Swin-transformer [50] as an image encoder.
Leveraging this feature, binary masks specific to any target
object can be generated. By training LIC models with these
customized masks, it is possible to develop ICM methods
optimized for recognition tasks focused on specific objects.

IV. EXPERIMENT
A. IMPLEMENTATION OF THE PROPOSED COMPRESSION
MODELS
To evaluate the effectiveness of the proposed methods,
we verify their image compression performance through
experiments. This section provides a detailed explanation of
the training methods for SA-ICM and ST-ICM. We begin by
describing the training process for SA-ICM. During mask
creation, Segment Anything is used in combination with the
Canny edge detector, as formulated in (5). In this experiment,
the parameter α in (5) is set to 0.78. For training, we use
118,287 images from the COCO-train dataset [51]. The LIC
model employed is LIC-TCM [52], which is trained using the
loss function defined in (4). In this function, five constant
λ values are assigned to control the compression rate: 0.02,
0.03, 0.04, 0.05, and 0.06. Initially, λ is set to 0.05, and the
model is trained for 50 epochs to obtain the corresponding
LIC model. Subsequently, the other λ values are applied, and
the LIC models for these values are obtained by fine-tuning
the initial model for an additional 25 epochs per λ value.
Next, we describe the training process for ST-ICM. Binary

mask creation follows the mask generation steps a)–f)
outlined in Section III-C. In the first half of the process
(steps a)–c)), both the box threshold and the text threshold
are set to 0.2 when masks are generated using Grounded-
SAM. These thresholds correspond to the confidence level
for bounding box detection in Grounding-DINO and its
similarity to the text prompt, respectively. For the text

prompts in step a), we apply the ground truth class labels
from the COCO dataset. In step e), where SAM is used for
image segmentation, the parameter α is set to 0.78, consistent
with the SA-ICM implementation. As with SA-ICM training,
the COCO-train dataset is used for training, and LIC-TCM
is applied as the LIC model. The loss function follows (4),
where four values— 0.03, 0.04, 0.05, and 0.06—are assigned
to λ. Initially, λ is set to 0.05, and the model is trained. The
remaining λ values are then applied sequentially, with the
model fine-tuned to obtain versions corresponding to each
λ value.

B. IMPLEMENTATION OF IMAGE RECOGNITION MODELS
To assess the image recognition accuracy of the decoded
images, multiple recognition models are implemented.
To demonstrate the versatility of the proposed ICM method
across different recognition architectures, we employ several
types of models. Specifically, we adopt YOLOv5 [53] and
Mask R-CNN [54] for object detection and Mask R-CNN
[54] for instance segmentation. For training and testing
YOLOv5, we use the official implementation from the
Ultralytics repository, selecting YOLOv5m as the model size.
For Mask R-CNN, we utilize MMDetection [55]. We train
Mask R-CNN with FPN (Feature Pyramid Networks) based
on a prepared scheduler.

All recognition models are trained using compressed
images generated by the ICM method. Specifically, images
from the COCO-train dataset are compressed using both
SA-ICM and ST-ICM, and these decoded images are used
as training data for the recognition models. For training data
generation, we use SA-ICM and ST-ICM models with a
λ value of 0.05 in the loss function (4). By training the
recognition models on these datasets, we aim to improve
image recognition accuracy by developing models that are
well-suited for SA-ICM and ST-ICM, respectively.

C. IMAGE COMPRESSION PERFORMANCE
To evaluate compression performance, we use 5,000 images
from the COCO-val dataset. We apply the trained SA-ICM
and ST-ICM to the images of the COCO-val dataset to
obtain the coded images. Fig. 4 (B) and 4 (D) display
the images compressed by each ICM method, with the
corresponding bitrate indicated in the bottom right corner
of each figure. From these images, it is evident that many
textures have been discarded, while object contours remain
well-preserved. Notably, the background in the ST-ICM
decoded images appears more blurred compared to those
from SA-ICM, leading to a lower bitrate for ST-ICM.
By selectively discarding parts of the image, as seen in
these compressed versions, the image can be represented at
a reduced bitrate. Fig. 4 (C) and 4 (E) illustrate the results of
object detection using YOLOv5 on the SA-ICM and ST-ICM
compressed images, respectively. These results confirm that
the compressed images can still be effectively used for image
recognition tasks.
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FIGURE 4. Example of decoded images and the results of detection by yolov5 on those images.
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FIGURE 5. Compression performance in image recognition accuracy. (a): YOLOv5 as an object detection model. (b): Mask-RCNN as an object
detection model. (c): Mask-RCNN as an instances segmentation model.

Fig. 5 presents the image compression performance of the
proposed methods for image recognition models. The left
and center graphs in Fig. 5 show the Rate-mAP curves of
the compression methods when YOLOv5 and Mask R-CNN
are used as detection models, respectively. The light blue
dotted line in the figure represents the recognition accuracy
when uncompressed images are input to the recognition
model. The navy and light blue curves represent the image
compression performance of ST-ICM and SA-ICM. The red
and orange curves correspond to the performance of the
conventional ICM methods, while the blue curve represents
the compression performance of the LIC-TCM, designed
for human vision. The points represented by circles indicate
recognition accuracy when the detection models are applied
without fine-tuning, whereas the points represented by stars
show recognition accuracy when fine-tuning is performed
using compressed images. A comparison between the light
blue dotted line and the navy curve reveals a reduction in
recognition accuracy of 3.6 percentage points with YOLOv5
and 3.3 percentage points with Mask R-CNN. Nevertheless,
our compression method demonstrates that high recognition
accuracy can be maintained even at low bit rates. These
results confirm that the proposed ICM methods are effective
image compression methods for object detection models.

The right graph in Fig. 5 illustrates the image compression
performance of the proposed methods for the instance seg-
mentation model. Mask R-CNN is used as the segmentation
model. In the figure, the light blue dotted line indicates the
recognition accuracy achieved when uncompressed images
are fed into the recognition model. The navy and light
blue curves denote the compression performance of ST-ICM
and SA-ICM, respectively. The red-orange-magenta and blue
curves represent the performance of the conventional ICM
method and the image compression method for human
perception, respectively. This graph demonstrates that the
proposed ICMmethods outperform other ICM approaches in
compression performance for the segmentation model.

These Rate-mAP curves validate the effectiveness of the
proposed method for both object detection and instance
segmentation models. From these graphs, we can confirm

TABLE 1. BD-rate-mAP (%) comparison across tasks and recognition
models.

that the compression performance of ST-ICM outperforms
SA-ICM, especially at low bitrates. In addition, these exper-
imental results are summarized in Table 1. The numerical
values in the table represent the BD-rate-mAP [%]. The
BD-rate (Bjøntegaard delta rate) is an evaluation metric
used to compare the compression performance between two
RD-curves. While this metric is commonly used to compare
RD-curves defined defined in terms of bitrate and PSNR,
in this paper, we apply it to compare Rate-mAP curves,
which are defined defined in terms of bitrate and mAP.
To clearly distinguish this usage, we refer to the metric
as BD-rate-mAP throughout this paper. The BD-rate-mAP
values shown in Table 1 indicate the results of comparing
each compression method with the LIC model designed
for human perception (LIC-TCM [52]). From the results in
this table, it can be confirmed that the proposed method
outperforms the other compression methods. Furthermore,
its versatility is confirmed by its successful application to
multiple recognition models.

D. PERFORMANCE OF ST-ICM APPLICATION
As discussed in Section III-D, applying ST-ICM as an
image compression method for specific object recognition
can further enhance compression performance. To evaluate
this approach, we develop an image compression model
specifically for person recognition by restricting the target
object to ‘‘person.’’ During the creation of the binary mask
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FIGURE 6. Examples of decoded images by each compression model. (a):
original image, (b): decoded image with SA-ICM, (c): decoded image with
ST-ICM, (d): decoded image with ST-ICM_person.

FIGURE 7. Image compression performance for person detection models.

used in training, the prompt ‘‘person’’ is fed into the
Grounding-DINO text encoder. The generated mask is then
incorporated into the loss function (4) to train the LIC model.
For the λ parameter in equation (4), four values—0.03, 0.04,
0.05, and 0.06—are substituted. As with the training of other
proposed compression models, the model is initially trained
with λ = 0.05. Subsequently, it is fine-tuned for the other λ
values to optimize compression model.

The performance of the image compression models (ST-
ICM_person) for person detection is evaluated as follows.
First, an example of a decoded image is presented in Fig. 6.
Compared to the original ST-ICM, the images encoded by ST-
ICM_person contain fewer non-person textures. This enables
the image to be represented with less information while
preserving essential details for person recognition. In the
evaluation process, YOLOv5 is used as the recognition model
and COCO-val dataset is utilized as the dataset, as in the
ST-ICM compression performance measurement. To eval-
uate the person recognition accuracy of images decoded
by ST-ICM_person, the recognition model is fine-tuned
specifically for person detection. Fig. 7 illustrates the
relationship between bitrate and person detection accuracy
(AP). In this figure, the magenta and blue curves represent the

TABLE 2. Compression performance comparison between ST-ICM applied
for specific object recognition and the original ST-ICM.

compression performance of ST-ICM_person and ST-ICM
for yolov5 tuned toward person detection, respectively. The
navy curve and the light blue curve represent the compression
performance of ST-ICM and SA-ICM, and these person
recognition accuracies are measured by applying the COCO
80 class detection model. The graph in Fig. 7 demonstrates
that ST-ICM_person outperforms both ST-ICM and SA-ICM
as an image compression method for person recognition.
Limiting the detection target to ‘‘person’’ facilitates training
of the detection model and improves detection accuracy.

In addition, the comparison results of these methods are
summarized in Table 2. As in Table 1, BD-rate-mAP is used
as the evaluation metric for the comparison. In Table 2,
SA-ICM serves as the baseline for evaluating the compression
performance of each method. From this table, it can
be observed that ST-ICM_person achieves superior image
compression performance for person detection compared to
the other methods. These results confirm that ST-ICM can be
effectively applied as an image compression method tailored
for specific object recognition.

V. CONCLUSION
We propose two novel ICM methods: SA-ICM and ST-ICM.
Building on the hypothesis that object contour information
is crucial for image recognition models, we developed a
compression method that accurately preserves these contours
during compression process. By incorporating Segment
Anything into SA-ICM and Grounded-SAM into ST-ICM
during training, both methods can generate decoded images
with high versatility across various recognition models.
Moreover, experiments have shown that ST-ICM further
enhances compression performance by selectively focusing
on objects to be recognized. We believe these proposed ICM
methods can be effectively utilized in edge-cloud systems,
as they are not tailored to a specific recognition model and
do not increase the encoder’s computational load.

On the other hand, there are still some challenges. Com-
pressed images from both SA-ICM and ST-ICM tend to retain
unnecessary information for object detection tasks. Since
object detection involves estimating the position and size
of target objects, excessive shape details may be redundant.
Therefore, future research should explore more efficient
image representation methods for object detection models,
aiming to achieve lower bit rates without compromising
detection performance. In such exploration, it is necessary
to reconsider the method for generating mask images used
in the training process. The mask images applied during the
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training of ST-ICM are created by a segmentation model and
capture the shapes of objects. However, capturing precise
object shapes is not a requirement for object detection
tasks. Therefore, for training LIC models tailored to object
detection, it is considered effective to generate mask images
using a detection model. For example, a mask image can be
created by setting the detected bounding box regions to white
and the rest to black, and apply it to the calculation of the
loss function (4). This design of the loss function enables
the construction of an LIC model that reconstructs regions
containing objects and discards the rest. Moreover, since
the compression method designed for the detection model
shares similar characteristics with ST-ICM, these methods
can be integrated to develop a scalable image compression
framework. These future research directions are valuable for
designing image compression methods that do not degrade
recognition accuracy, by facilitating a better understanding
of the image information required for each recognition task.
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