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Abstract—Implicit neural representation (INR) embed various
signals into neural networks. They have gained attention in recent
years because of their versatility in handling diverse signal types.
In the context of video, INR achieves video compression by
embedding video signals directly into networks and compressing
them. Conventional methods use either frame timestamps or
features extracted from individual frames as network inputs.
The latter method provides greater expressive capability as the
input is specific to each video. However, the features extracted
from frames often contain redundancy, which contradicts the
purpose of video compression. Additionally, such redundancies
make it challenging to accurately reconstruct high-frequency
components in the frames. To address these problems, we focus
on separating the high-frequency and low-frequency components
of the reconstructed frame. We propose a video representa-
tion method that generates both the high-frequency and low-
frequency components of the frame, using features extracted
from the high-frequency components and temporal information,
respectively. This approach improves the reconstruction quality
of the high-frequency components and enhances the temporal
consistency of the frames. Experimental results demonstrate that
our method outperforms the existing HNeRV method, achieving
superior results in 96 percent of the videos.

Index Terms—Video compression, implicit neural representa-
tion, NeRV, HNeRV

I. INTRODUCTION

The demand for high-quality video has surged, driven by
the widespread availability of the internet and the proliferation
of video streaming services. Video compression technology
is essential for the efficient transmission and storage of such
large amounts of video data. While video compression re-
search has a long history, the Moving Picture Experts Group
(MPEG) has standardized many key compression techniques.
Traditional video coding standards, such as HEVC/H.265 [1]
and VVC/H.266 [2], rely on manually crafted, rule-based algo-
rithms. In recent years, with the development of deep learning,
neural network-based video compression methods have been
actively studied. Among these, approaches that embed video
signals directly into neural networks have garnered significant
attention.

Implicit neural representation (INR) overfits various signals
into neural networks. This method allows for the compact
representation of even complex signals. For instance, INR-
based methods such as Neural Radiance Fields (NeRF) [3],
along with its variants [4]–[7], have gained attention as novel
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Fig. 1. Visualization of reconstruction results in “soapbox” and “stroller”
videos. The red numbers indicate the PSNR values for each frame.

approaches for 3D scene representation. This signal represen-
tation approach extends to images [8]–[12], videos [13]–[19],
and 3D shapes [20]–[22]. Since the network that embeds the
signal can be regarded as the signal itself, compressing that
network equals to coding the signal. Specifically, in the case
of videos, INR enables video compression by embedding and
subsequently compressing the neural network.

Compared to conventional video compression methods,
which have complex pipelines, INRs reduce the computational
cost of decoding by utilizing a simpler network structure.
Neural Representations for Videos (NeRV) [13] encode videos
by using a network that takes frame time indices as inputs
and outputs the corresponding frames. These indexes are
independent of the video content. Therefore, the quality of the
reconstructed frames relies solely on the network’s ability to
represent the video. In contrast, HNeRV [15] uses features ex-
tracted from each frame of the video as inputs to the network.
Using inputs that capture the unique characteristics of each
video allows HNeRV to provide a generalized representation.
Consequently, the quality of the reconstructed frames depends
not only on the network’s representational capacity but also on
the content of the input features. The total information required
to represent a video is the sum of the network’s information
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Fig. 2. The architecture of proposed method. It consists of the HF-stream (blue arrow) and the LF-stream (green line). The area surrounded by purple is
treated as a video.

and the content of all input features.
However, the input features used by HNeRV introduce

redundancy, as the feature values between adjacent frames
are often nearly identical. In video compression, reducing
redundant information is essential to improving efficiency and
the quality of the reconstructed frames. To address this, the
input features must be carefully designed. Due to the spectral
bias problem in deep learning [23]–[26], where networks
tend to learn low-frequency components more easily than
high-frequency ones, it is also difficult to reconstruct high-
frequency details in frames with similar inputs. In addition,
since this method does not use temporal information as inputs,
it is unclear whether the network effectively understands the
relationship between frames in the video.

In this paper, we propose a method that separates the
high-frequency and low-frequency components of each frame,
leveraging both frame-specific and temporal information. The
high-frequency components of the video have little tempo-
ral consistency, and the features extracted from them show
different characteristics from each other. This approach effec-
tively reduces input redundancy. Meanwhile, the temporally
consistent low-frequency components are reconstructed using
temporal information. By combining these two approaches,
our method improves video representation and compression
performance (as illustrated in Fig. 1).

II. RELATED WORKS

Recent developments in implicit neural representation (INR)
and video compression techniques have paved the way for
advancements in video processing and storage efficiency. This
section provides an overview of key works in these areas,
highlighting methods and approaches relevant to our proposed
method.

A. Implicit Neural Representation for Videos

In recent years, implicit neural representation (INR) have
been applied to a wide range of tasks. Most tasks, such
as image and scene representation, employ coordinate-based
INR [3]–[12]. For instance, the INR-based method COIN [9]
estimates pixel color based on its position (x, y). In the context
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Fig. 3. Visualization results of features extracted by the encoder.

of video, this approach extends to use both pixel position
and frame time (x, y, t). However, as the size and number of
frames increase, the corresponding rise in input pairs results in
longer training and inference times. Due to these limitations,
frame-based approaches like NeRV [13] have gained more
attention compared to coordinate-based methods.

Frame-based methods map frames from specific inputs.
NeRV introduced an index-based structure where the input
is a frame’s time index, and the output is the corresponding
frame. Since this input type is independent of frame size, the
training time is relatively short compared to coordinate-based
approaches. ENeRV [14] enhances performance by incorporat-
ing spatial coordinates in addition to frame indices. DS-NeRV
[17] further enhances reconstruction quality by separating the
dynamic and static components of the video. In contrast,
HNeRV [15] employs a hybrid-based structure that uses the
features extracted from each frame as inputs to the network.
This method captures video-specific patterns more effectively
than index-based approaches, which are agnostic to individual
video content. DNeRV [16] extends the hybrid-based approach
by integrating difference images from neighboring frames,
resulting in a more robust video representation.



Fig. 4. Comparison of PSNR between the proposed method and HNeRV for reconstructed videos. The horizontal axis represents the video sequences from
the DAVIS dataset. The vertical axis represents the PSNR difference between the proposed method and HNeRV. Positive values on the vertical axis indicate
that the proposed method outperforms HNeRV. Video sequences where HNeRV did not perform well are highlighted in red, while those using the proposed
method are highlighted in orange. The proposed method ensures a minimum level of quality even when training does not fully converge.

B. Video Compression

Conventional video coding standards, such as HEVC/H.265
[1] and VVC/H.266 [2], operate based on predefined rules and
algorithms to achieve efficient and fast compression. In re-
cent years, neural network-based video compression methods
have been actively studied [27], [28]. While these learning-
based methods offer improved compression efficiency over
traditional rule-based methods, they come with higher training
costs and slower decoding speeds due to their more complex
structures.

INR-based methods primarily focus on efficiently embed-
ding video data into a neural network. These approaches
achieve video compression by applying techniques such as
branch pruning, quantization, and entropy coding to the net-
work weights where the video is embedded. The simplicity
of this structure allows for fast decoding and optimized com-
pression tailored to each specific video. However, this method
lack versatility, as embedding and compression must be trained
separately for each video. NVRC [19] focused on improving
compression methods in INR-based video compression. They
proposed a framework that integrates entropy coding and
quantization models, achieving performance that surpasses
VVC.

III. PROPOSED METHOD

A. Overview

In video compression, the efficient use of a limited amount
of information to represent the video is crucial. Similarly,
efficient video embedding is critical for INR for videos.
However, the spectral bias problem [23]–[26] makes it difficult
for networks to accurately reconstruct the high-frequency
components of frames. To address this, we propose a video
representation method that leverages both the high-frequency
components of frames and temporal information, as shown in
Figure 2. The proposed method is divided into two streams:

a high-frequency component stream (HF-stream) and a low-
frequency component stream (LF-stream), each responsible for
reconstructing their respective components of the frame. The
two streams are linked in a manner that serves the same role
as residual connections [29], [30].

B. HF-stream

The network responsible for reconstructing the high-
frequency component (HFD) uses a hybrid-based structure
and takes frame-specific information as input. The feature
size in this structure is very small (e.g., 16× 2× 4), making
efficient feature extraction essential. In HNeRV, features are
extracted from the entire frame, which introduces redundancy,
as adjacent frames tend to be similar and therefore produce
similar features. As shown in Fig 3, the 16 × 2 × 4 features
extracted from adjacent frames are reshaped to 8 × 16 and
visualized, respectively. This reveals that HNeRV generates
similar features for adjacent frames. Consequently, when a
frame is reconstructed from these similar features, the high-
frequency components, which differ between adjacent frames,
are likely to be lost.

To address this issue, we extract features specifically from
the high-frequency components of the frames. High-frequency
components exhibit low temporal consistency, leading to min-
imal similarity between adjacent features. This helps reduce
feature redundancy and emphasizes finer details of each frame.
The high-frequency components are obtained via a high-pass
filter, and their corresponding features are extracted by an
encoder. Similar to HNeRV, the encoder responsible for feature
extraction utilizes ConvNeXt blocks [31], while the HFD is
composed of multiple HNeRV blocks [15].

C. LF-stream

The network responsible for reconstructing the low-
frequency components employs an index-based structure, com-
posed of a Multi-layer perceptron (MLP) and several NeRV
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Fig. 5. Visualization of consecutive frames from “hockey” video. The red numbers indicate the PSNR values for the entire frame.

TABLE I
COMPARISON OF THE EVALUATION RESULT AVERAGES OF THE

RECONSTRUCTED VIDEO FOR EACH METHOD

Method PSNR ↑ MS-SSIM ↑ LPIPS ↓
NeRV(All) [13] 28.91 0.8865 0.3663

HNeRV(All) [15] 30.94 0.9160 0.2955
Ours(All) 31.81 0.9284 0.2780

HNeRV(Suc) [15] 31.19 0.9261 0.2873
Ours(Suc) 31.91 0.9361 0.2674

blocks [13]. To reduce the number of network parameters, the
network is divided into two parts, LFD1 and LFD2. Low-
frequency components are reconstructed using a frame-time
index due to their high temporal relevance. This indexing
approach is more efficient than using frame-specific infor-
mation, as it does not increase the overall size of the video
representation.

The index t is normalized between (0, 1] and extended
dimensionally using Position Encoding [3], [13], [32]. The
Positional Encoding γ is defined as follows,

γ0,n(t) = (sin(b0πt), cos(b0πt), · · · , sin(bnπt), cos(bnπt)),
(1)

where b and n are hyper-parameters. Each element of γ0,n(t)
has a different sensitivity range depending on the value of bx.
Smaller values of bx are more sensitive to long-term changes
in the video, while larger values are more responsive to short-
term changes. When γ0,n(t) with large n is used as input to
the MLP, the network has large parameters. To mitigate this,
γ0,n(t) is divided into two parts, γ0,m and γm+1,n, using the
hyper-parameter m (0 < m < n), which serve as inputs to
LFD1 and LFD2, respectively. The number of MLP parameters
is determined by its input and output dimensions, and dividing
the network reduces the total parameter count. For instance,
if m is set to half of n, the number of MLP parameters is
reduced by half. Since γ plays different roles depending on

the value of bx, this division has minimal impact on overall
performance.

IV. EXPERIMENT

We use videos from the DAVIS dataset [33], which includes
50 videos with a resolution of 1080× 1920 and frame counts
ranging from 25 to 104. The frames are cropped to a size
of 640 × 1280. To extract high-frequency components, we
apply a high-pass filter that removes 80% of the frequency
bandwidth. The training process is conducted over 300 epochs.
We adjust the total number of features and decoder parameters
to approximate 1.5 million parameters as closely as possible,
with the model sizes of HFD, LFD1, and LFD2 set in a ratio of
20 : 1 : 5. The hyper-parameters b, m, and n in the Positional
Encoding are set to 1.25, 10, and 30, respectively. The loss
function is based on the L2 loss between the reconstructed
and ground truth frames. For video compression, we apply
quantization to the feature and decoder parameters (HFD,
LFD1, LFD2) and use Huffman coding to compress the
quantized weights, similar to HNeRV. The quantization factors
are set to 6 and 8, respectively. We evaluate our method using
Peak Signal-to-Noise Ratio (PSNR), Multi-Scale Structural
Similarity (MS-SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS).

A comparison of PSNR between HNeRV and the proposed
method for each video sequence is shown in Fig. 4. As
discussed in PNeRV [18], with the hybrid-base structure,
HNeRV and the proposed method did not converge in learning
for several videos. In Fig. 4, video sequences where HNeRV
did not achieve adequate learning are highlighted in red, while
those for the proposed method are shown in orange. For the
”m-jump” video, HNeRV yielded a PSNR of 14.36 dB, indi-
cating that learning did not converge. In contrast, the proposed
method, which utilizes three decoders, efficiently learns LFD1
and LFD2 with a small model size. This strategy ensures a
minimum quality even when learning in the HFD pathway



Fig. 6. Video compression result on DAVIS dataset.

does not converge. Except for these specific sequences, the
proposed method outperforms HNeRV. The evaluation results
of the video reconstruction are shown in Table I. This table
shows the evaluation average of the reconstructed videos for
each evaluation metric. In addition, the hybrid-base structure
of HNeRV and the proposed method show the evaluation
averages only for the videos that were successfully learned
(except for “m-jump”, “m-fly”, and “p-launch” video).

An example of consecutive frame visualizations from
the“hockey” video is shown in Fig. 5. The red numbers
denote the PSNR for each entire frame. NeRV exhibits low
overall quality, while HNeRV suffers from missing objects,
such as sticks and balls, in several frames, failing to consis-
tently reconstruct the video. In contrast, the proposed method
consistently reconstructs detailed objects across the entire
video, maintaining high-quality results. Additional visualiza-
tion examples are provided in Fig. 1, further demonstrating
the effectiveness of the proposed method in generating more
intricate representations. For instance, fine details such as the
board patterns in the “soapbox” video and the delicate lines
in the “stroller” video are faithfully rendered. By extracting
features from high-frequency components, as shown in Fig.
3, the proposed method yields features with greater variation,
contributing to its ability to capture fine details.

The video compression results on the DAVIS dataset are
shown in Fig. 6. Feature and model compression are applied
across six model sizes (0.3M, 0.5M, 0.8M, 1.0M, 1.5M,
2.0M). The proposed method demonstrates superior compres-
sion performance compared to HEVC and conventional INR-
based methods.

V. CONCLUSION

In this paper, we proposed an INR-based video represen-
tation method that utilizes two streams to incorporate both
frame and temporal information. This method enables the re-
construction of detailed frame representations. The first stream
focuses on reconstructing the high-frequency components of
the frame, while the second stream handles the low-frequency
components. The frame information specifically leverages
high-frequency components to minimize redundancy. Addi-
tionally, the network responsible for processing low-frequency
components is divided to reduce the number of parameters.

These approaches demonstrates strong performance in both
video representation and compression. Future work will focus
on optimizing hyper-parameter settings that are sensitive to
individual video sequences. Additionally, it is essential to
investigate the underlying causes of learning collapse in certain
video sequences.
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