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Abstract—We propose Bi-AGMI (Bidirectional Attention-
Gated Motion Injection), a lightweight and efficient framework
for keyframe interpolation based on diffusion models. Bi-AGMI
introduces a dual-path denoising process that sequentially con-
nects forward and backward sampling trajectories via latent
flipping, enabling temporally bounded generation from two
keyframes. To enhance consistency between these two trajecto-
ries, we design a novel attention-gated fusion mechanism that
dynamically injects and blends forward-path attention features
into the backward UNet using a learnable gating module. This
design improves temporal coherence, mitigates motion ambiguity,
and eliminates the need for repeated re-noising. Experiments on
DAVIS and Pexels datasets demonstrate that our method achieves
competitive visual quality and inference efficiency compared
to recent diffusion-based baselines, while requiring significantly
fewer sampling steps. By enabling stable interpolation over
large temporal gaps, Bi-AGMI expands the practical usability
of diffusion models for long-range video completion.

Index Terms—Diffusion models, frame interpolation.

I. INTRODUCTION

Frame interpolation aims to synthesize a sequence of in-
termediate frames between two input keyframes, enabling the
reconstruction of smooth and temporally consistent video. It
plays a vital role in applications such as frame rate upsam-
pling, slow-motion generation, and video restoration. Recently,
diffusion-based generative models have shown strong potential
for this task by leveraging rich motion priors learned from
large-scale datasets [2]–[4].

While these models produce high-fidelity frames, chal-
lenges remain in maintaining temporal coherence and effi-
ciency—particularly for long-range interpolation where the
input frames are far apart or contain ambiguous motion.
Several recent methods have extended image-to-video dif-
fusion models to support dual-keyframe conditioning [5]–
[7], typically by designing new sampling or feature fusion
strategies. However, these approaches either lack direct cross-
trajectory communication or rely on fine-tuning and multi-pass
inference, limiting their efficiency and robustness.

In this work, we propose Bi-AGMI (Bidirectional
Attention-Gated Motion Injection), a lightweight and training-
free framework for keyframe interpolation. Unlike prior bidi-
rectional methods that either lack interaction between forward
and backward paths [5], or rely on weight sharing and repeated
re denoising [6], Bi-AGMI introduces a gated attention fusion

mechanism that directly injects forward-path temporal features
into the backward UNet through learnable gates.

This design brings three key advantages: (1) Cross-path
interaction without model fine-tuning — attention features
are fused at inference-time via a parameter-efficient gate
without modifying pretrained weights; (2) Layer-wise control
and flexibility — our injection is configurable per attention
layer, allowing for minimal and effective intervention in the
backbone; (3) Efficient single-pass inference — the method
avoids iterative re-noising and completes generation in a single
forward-backward denoising cycle.

Extensive experiments on DAVIS and Pexels datasets
demonstrate that Bi-AGMI achieves competitive visual quality
and motion consistency with significantly reduced inference
cost. Notably, it performs robustly in long-interval interpola-
tion scenarios, enhancing the practical usability of diffusion
models for video completion tasks.

A. Related Work

Explorative Inbetweening. Feng et al. [1] first introduced
the concept of bounded generation, which frames keyframe
interpolation as generating a video sequence bounded by given
start and end frames. They propose Time Reversal Fusion
(TRF), a training-free sampling strategy that fuses forward
and backward denoising paths in Stable Video Diffusion to
synthesize smooth transitions. This work highlights the poten-
tial of leveraging pretrained diffusion models for controllable
video generation without fine-tuning, and has since inspired a
series of dual-path interpolation methods.

Dual-Path Diffusion for Interpolation. Several recent
approaches have extended this idea by exploring different
fusion strategies between forward and backward sampling
paths. ViBiDSampler [5] performs sequential denoising from
both directions with a single re-noising step in between, im-
proving consistency without modifying the model. Generative
Inbetweening [6] (SVD-Kframe) shares temporal self-attention
maps across dual UNets to encourage symmetry but requires
fine-tuning and multiple re-denoising passes. FCVG [7] fur-
ther introduces explicit visual conditions between frames to
guide the diffusion process, enhancing alignment but adding
structural complexity. While these methods improve motion
coherence, they still suffer from limitations such as lack of
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direct interaction between trajectories, high inference cost, or
reliance on additional supervision.

To address these issues, we propose Bi-AGMI, which en-
ables direct cross-path information flow by injecting forward-
path attention features into the backward UNet via a learnable
gating module.

II. BIDIRECTIONAL ATTENTION-GATED MOTION
INJECTION

A. Dual-Path Inference with Latent Flip

The core of our framework is a bidirectional denoising
process that sequentially generates forward and backward
trajectories. Given a random initial latent zt ∼ N (0, I), we
first perform standard forward denoising conditioned on the
start frame Istart using the original UNet (Pre-trained stable
video diffusion). The noise prediction ϵ̂f is estimated and
passed into a diffusion scheduler (e.g., Euler method) to obtain
the partially denoised latent:

zt−1 = Step(zt, ϵ̂f ). (1)

To initiate backward sampling, we re-noise the intermediate
latent zt−1 using a newly sampled noise term ϵ ∼ N (0, I),
scaled by the variance gap between adjacent steps. Importantly,
a temporal flip operation is applied to reverse the latent
sequence:

z′t = Flip
(
zt−1 +

√
σ2
t − σ2

t−1 · ϵ
)
. (2)

The flipped latent z′t is then passed into a second UNet,
which is conditioned on the end frame Iend. A corresponding
noise prediction ϵ̂b is obtained and used to compute the
backward denoised latent:

z′t−1 = Step(z′t, ϵ̂b). (3)

This dual-path inference scheme enables a one-pass
forward-backward generation process bounded by keyframes,
and serves as the foundation for our cross-path attention fusion
mechanism introduced in the next section.

B. Bidirectional Attention-Gated Fusion

To facilitate information exchange between the forward
and backward denoising paths, we introduce a bidirectional
attention-gated fusion module that operates at the attention
level within the temporal self-attention layers, as illustrated
in Fig. 1. This mechanism serves as the core of Bi-AGMI,
enabling directional feature communication without modifying
the underlying UNet structure.

During the forward generation phase, we extract temporal
attention features (Qf ,Kf , Vf ) at selected layers and reverse
them along the temporal axis to align with the backward
sampling order, denoted as (Qfr,Kfr, Vfr). These features
are cached and reused during the backward pass.

In the backward generation phase, we compute two forms
of cross-attention using the reversed forward features and the

current backward features. The first attends to the backward
context using the forward query:

A1 = Attention(Qfr,Kb, Vb), (4)

while the second attends to the forward context using the
backward query:

A2 = Attention(Qb,Kfr, Vfr). (5)

The final output is a convex combination of these two
branches, controlled by a learnable sigmoid gate α:

Output = σ(α) ·A1 + (1− σ(α)) ·A2, (6)

where σ(·) denotes the Sigmoid activation function. This
gated fusion allows the model to adaptively balance contri-
butions from both directions based on motion ambiguity at
each layer, enhancing temporal coherence while preserving
the efficiency of single-pass inference.

C. Lightweight Training Strategy

To ensure training efficiency and compatibility with existing
diffusion models, we adopt a lightweight optimization strategy.
Specifically, we freeze all parameters of the forward and
backward UNets and train only the fusion gate parameters
α introduced in the attention-level injection module. This
selective fine-tuning scheme significantly reduces the number
of trainable parameters and avoids disrupting the pretrained
generative prior.

The training is performed under mixed-precision (fp16)
settings to further accelerate convergence and reduce memory
consumption. Since our method builds on top of pretrained
backbones and only introduces a small gating layer, it can
be trained with minimal computational cost and converges
rapidly, even on limited hardware.

III. EXPERIMENTS

A. Experimental Settings and Implementation Details

We evaluate Bi-AGMI on the DAVIS and a custom Pexels
dataset, covering diverse scenes and motion patterns. All ex-
periments are conducted using Stable Video Diffusion (SVD-
XT) as the backbone, generating 25 intermediate frames at a
resolution of 1024× 576, conditioned on the first keyframe.

The underlying UNet contains temporal attention blocks
across downsampling, mid, and upsampling stages. We in-
ject forward-path attention features into eight selected lay-
ers, choosing the first temporal transformer block (i.e.,
attentions.0) at each stage while skipping secondary
blocks to reduce redundancy. Attention dimensions are
matched to each stage (320, 640, 1280). Forward attention
(Qf ,Kf , Vf ) is cached via AttnProcessor hooks and reused
in the backward pass for gated fusion.

The injection mechanism is layer-wise configurable. We find
that using only the four symmetric layers in the downsampling
and upsampling paths offers the best trade-off between quality
and stability, and use this as the default in all experiments.
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Fig. 1. The Bi-AGMI pipeline, highlighting the iterative sampling loop (right), the inputs during training and inference (upper left), and the temporal attention
handling in the backward SVD (lower left).

We adopt an Euler scheduler with 25 denoising steps. Only
the gating parameters α are optimized, while all UNet weights
remain frozen.

B. Comparative Studies

We first present a challenging interpolation example for
comparison. As shown in Fig 2, both SVD-Kframe and
ViBiD methods exhibit structural collapse when the motor-
cycle passes in front of the background car. In contrast, our
method successfully maintains temporal coherence, with the
human subject smoothly traversing past the parked car without
introducing noticeable artifacts.

Table I compares generation time across methods. Bi-AGMI
achieves a substantial speed-up over SVD-Kframe and remains
competitive with ViBiD. This efficiency gain stems from our
one-pass sampling strategy, which avoids repeated noise injec-
tion and denoising cycles. In contrast, SVD-Kframe requires
multiple rounds of re-noising to reconcile inconsistencies
between forward and backward paths, significantly increasing
inference time.

TABLE I
GENERATION TIME COMPARISON

1024×576 Generation Method
25 Frames SVD-Kframe ViBiD Bi-AGMI
Time (s) 3049 417 452

C. Quantitative Evaluation

We compare Bi-AGMI with recent diffusion-based frame
interpolation methods, including SVD-Kframe [6] and ViBiD-
Sampler [5], on the DAVIS dataset. Following the evaluation
protocols used in both works, we construct 100 keyframe pairs
by sampling 25-frame video clips, where the first and last

Fig. 2. Example of 25-frame interval video interpolation.

frames serve as input and the remaining 23 frames are recon-
structed. All models generate 25-frame sequences conditioned
on the first frame, using the same SVD-XT backbone, spatial
resolution (1024× 576), and 25-step Euler sampler. We adopt
standard perceptual and distributional metrics—LPIPS, FID,
and FVD—to evaluate the fidelity and temporal consistency
of the generated results.

Table II reports the perceptual and distributional perfor-
mance on the DAVIS dataset. Bi-AGMI achieves the best
LPIPS score (0.2465), indicating improved perceptual simi-
larity to the ground truth. While SVD-Kframe slightly outper-
forms in FID and FVD, it requires nearly 7× longer inference
time than our method (3049 s vs. 452 s). Compared to
ViBiDSampler, Bi-AGMI delivers lower LPIPS, better FVD,
and significantly better FID, with only a marginal increase in
runtime (452 s vs. 417 s).

These results demonstrate that Bi-AGMI strikes an effective
balance between generation quality and efficiency, producing
perceptually sharper and temporally consistent results at a
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Fig. 3. Example of 25-frame interval video interpolation.

TABLE II
PERCEPTUAL AND DISTRIBUTIONAL METRICS ON DAVIS.

Method LPIPS ↓ FID ↓ FVD ↓ Time (s) ↓
SVD-Kframe 0.2493 32.68 424.69 3049
ViBiDSampler 0.2574 40.72 432.21 417
Bi-AGMI (ours) 0.2465 33.56 425.92 452

fraction of the computational cost required by fully fine-tuned
baselines like SVD-Kframe.

D. Ablation Study

To evaluate the effect of our attention injection strategy,
we conduct a controlled ablation by incrementally enabling
cross-path attention fusion at different spatial resolutions. All
experiments are conducted under the same settings as our
quantitative evaluation in Section C, but using the Pexels
dataset and report only the FVD score to directly measure
temporal consistency.

In our implementation, attention processors are inserted
at temporal transformer blocks within the UNet architecture.
These injection points correspond to four spatial resolutions,
each mapped to specific modules:

82 (mid block)

162 (down blocks.2 / up blocks.1)

322 (down blocks.1 / up blocks.2)

642 (down blocks.0 / up blocks.3)

We experiment with four configurations: (1) no injection; (2)
mid-only (82); (3) mid+162; and (4) full symmetric injection
across all levels. Table III presents the ablation results on
FVD when enabling attention injection at progressively more
spatial layers. We observe that injecting only at the mid-
block (82) already brings significant improvement over the

TABLE III
ABLATION ON ATTENTION INJECTION DEPTH. WE REPORT FVD ON

PEXELS; LOWER IS BETTER.

Injection Configuration FVD ↓
No injection 522.14
Only 82 (mid) 454.32
82 + 162 439.71
82 + 162 + 322 425.92
Full injection 428.46

baseline without injection. Further gains are achieved by
including the 162 and 322 levels, with the best FVD observed
when injecting at three levels (82–322). Interestingly, enabling
full-layer injection up to 642 slightly degrades performance,
suggesting that shallow layers may introduce noise or interfere
with deeper temporal modeling.

These results highlight that our method, despite relying on
only a few learnable gating parameters, is sensitive to the
choice of injection depth. Careful selection of fusion layers
is thus critical, and deeper is not always better when working
with lightweight controllers.

E. Limitations

Despite improving temporal smoothness and bidirectional
coherence, Bi-AGMI still inherits a fundamental limitation
from diffusion-based generation pipelines: the lack of explicit
directional supervision. When the input start and end frames
contain weak or ambiguous motion cues—such as a moving
object that appears nearly static or centered—the model may
struggle to determine a consistent motion direction.

Figure 3 illustrates a limitation of our method when in-
terpolating motion under ambiguous directional cues. In this
example, both the start and end frames exhibit only subtle
motion signals. Although Bi-AGMI successfully aligns the
generated sequence with both endpoints, the inferred motion
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trajectory varies across repeated sampling runs under identical
conditions.

As shown in Example 1 and Example 2, the upper-layer
clouds move in opposite horizontal directions, and the lower-
layer clouds also exhibit inconsistent drift. This variation
stems from the inherent stochasticity of the diffusion process
and the lack of explicit directional supervision, leading to
multiple plausible but inconsistent trajectories when motion
is underdetermined.

IV. CONCLUSION

We presented Bi-AGMI, a bidirectional attention-gated mo-
tion injection framework for keyframe interpolation, which
enhances temporal consistency by directly exchanging atten-
tion features across forward and backward denoising paths.
Our design enables lightweight and efficient generation while
maintaining high perceptual quality.

This work highlights the potential of guided bidirectional
diffusion with minimal parameter tuning, offering a scalable
solution for high-quality long-interval video interpolation.
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