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Abstract—3D Gaussian Splatting has recently emerged as a
promising method for real-time 3D reconstruction. However, it
does not leverage semantic information, limiting its utility in
tasks such as editing and segmentation. We propose an efficient
approach that incorporates semantic class labels directly into
each 3D Gaussian by learning from segmentation results. This
reduces memory and training time compared to prior methods
relying on high-dimensional feature maps. Experiments show that
our method maintains competitive rendering and segmentation
performance while greatly reducing computational complexity.

Index Terms—3D gaussian splatting, 3D scene representation,
distillation, semantic segmentation.

I. INTRODUCTION

Recently, 3D scene representation has advanced rapidly in
computer vision and graphics, supporting applications such as
AR and VR. Although NeRF [1], which implicitly represents
the 3D scene, achieves photorealistic results by optimizing a
neural radiance field, it requires dozens of hours of training. In
contrast, 3D Gaussian Splatting [2] represents scenes explicitly
with 3D Gaussians, enabling faster rendering. It provides a
good trade-off between quality and rendering speed, making it
suitable for real-time applications. Moreover, adding semantic
information is crucial for applications such as scene editing
and object-aware rendering, and also enables high-level un-
derstanding of 3D scenes for downstream tasks. Feature 3D
Gaussian Splatting [3] supports these tasks but stores large
feature maps per Gaussian, increasing memory consumption
and training time. To address this, we propose learning class
labels directly from segmentation results, offering an efficient
solution.

II. RELATED WORKS

A. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [2] initializes 3D Gaussian
positions based on point clouds obtained by Structure from
Motion (SfM) and renders 2D images using parameters such
as position p, rotation q, scaling s, opacity α, and spherical
harmonics h. To project the 3D Gaussians into images, the
pixel RGB values are calculated by volumetric rendering. The
parameters are optimized based on a loss between the rendered
image and the ground truth image. Adaptive Density Control is
used during training to clone or split Gaussians, improving de-
tail representation while maintaining computational efficiency.

B. Semantic Segmentation on 3D Scene

In Feature 3D Gaussian Splatting [3], each 3D Gaussian is
augmented with a feature map f to enable segmentation of the
reconstructed 3D scene. The feature maps are rendered into 2D
space through volumetric rendering, along with RGB images.
Ground-truth feature maps, extracted from the intermediate
layers of a segmentation model such as LSeg [4] or SAM [5],
are used to calculate a loss between rendered feature maps.
Although this method achieves rich semantic representations,
it suffers from increased memory usage and longer training
time due to storing high-dimensional feature maps for each
3D Gaussian.

III. PROPOSED METHOD

To reduce training time and memory usage, this study
proposes a more intuitive method that introduces a class label

Fig. 1. Training process of the proposed method. In the red box, the model learns class labels from segmentation results, allowing each 3D Gaussian to be
classified into a specific class.
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TABLE I
QUANTITATIVE EVALUATION OF RENDERED IMAGES

Deep Blending Tanks&Temples
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS 29.488 0.899 0.247 23.637 0.845 0.175
F-3DGS 29.282 0.892 0.247 23.587 0.844 0.180
Ours 29.345 0.893 0.248 23.559 0.843 0.180

Fig. 2. Reconstruction images. From left to right: 3DGS, Feature 3D Gaussian
Splatting, and ours.

l as a new parameter for each 3D Gaussian. These labels are
learned from the ground truth labels output by segmentation
models such as LSeg [4] or SAM [5], allowing each Gaussian
to be classified into a specific class.

The label Lj for each pixel is calculated as:

Lj =
∑
i∈N

liαi

i−1∏
j=1

(1− αj), (1)

where N is the set of 3D Gaussians within pixel j.
The loss function combines photorealistic reconstruction

loss and a label loss based on cross entropy, and is defined as:

L = Lrgb + λLlabel, (2)

where Lrgb and Llabel denote the reconstruction loss for ren-
dered RGB images and the cross entropy loss for class labels.
λ is the hyperparameter for balancing losses. In our experi-
ments, λ is set to 0.05. This formulation allows efficient op-
timization through backpropagation, enabling high-efficiency
learning with reduced computational cost. The structure of our
proposed method is shown in Fig. 1.

IV. EXPERIMENTS

The model is trained and evaluated using four scenes
from the Tanks&Temples [6] and Deep Blending datasets [7],
covering both indoor and outdoor environments. Ground truth
labels are obtained using the LSeg. The shape of the label is
n×H ×W (the number of classes n, height H , width W ).

Unlike conventional Feature 3D Gaussian Splatting, which
relies on different intermediate features from each segmenta-
tion model, the proposed method uses a generic class label
format, relaxing model dependency and enabling flexible and
efficient segmentation on 3DGS.

We show the quantitative results using PSNR, SSIM and
LPIPS in Table I and visual comparisons in Fig. 2. The results
indicate that the 3DGS achieves the highest quality across most
metrics on both datasets. However, our approach also produces
high-quality images comparable to those generated by 3DGS
and Feature 3D Gaussian Splatting.

The quantitative results of the segmentation performance
evaluated with mIoU and accuracy are shown in Table II, and
visual comparisons are shown in Fig. 3. Although our method

TABLE II
QUANTITATIVE EVALUATION OF SEGMENTATION AND TRAINING TIME

Deep Blending Tanks&Temples
Method mIoU↑ Accuracy↑ Time↓ mIoU↑ Accuracy↑ Time↓

F-3DGS 0.213 0.735 34:43:56 0.409 0.892 22:28:34
Ours 0.281 0.731 18:49:08 0.426 0.864 09:35:46

Fig. 3. Results of segmentation on reconstructed 3D scenes. From left to
right: Ground Truth image, Feature 3D Gaussian Splatting, and ours.

shows slightly lower accuracy than Feature 3D Gaussian
Splatting on both datasets, it achieves higher mIoU. Moreover,
our method reduces the training time by approximately half.
Since our method directly learns class labels as parameters
for each 3D Gaussian, it can sometimes assign different
labels to the same object when the object belongs to multiple
possible classes, and the segmentation model cannot resolve
the ambiguity. These label inconsistencies inherited from the
segmentation model degrade the accuracy of the learned
semantics.

V. CONCLUSION

This paper proposes a lightweight method for incorporating
semantic information into 3DGS by directly learning class
labels from segmentation results. The experimental results
demonstrated that the proposed method maintains reconstruc-
tion and segmentation performances comparable to conven-
tional methods while achieving approximately half the training
time. These results indicate that the proposed method enhances
the editability and scene understanding capabilities of 3DGS,
making it a promising approach for real-time 3D scene repre-
sentation.
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