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Abstract—Recent advances in artificial intelligence and com-
puter vision have spurred growing interest in understanding
human behavior and emotional states from a third-person per-
spective. In real-world applications such as security, public guid-
ance, and Al-based scene understanding, it is often necessary to
infer emotional states without direct interaction, relying instead
on surrounding contextual and interpersonal cues. However,
many existing studies rely solely on facial expressions and fail
to capture emotions embedded in complex social or situational
contexts. Although prior research has attempted to incorporate
contextual information, the use of temporal dynamics remains
limited. To address this, we propose a method that dynami-
cally selects frames based on inter-frame visual dissimilarity.
Experimental results show that our approach effectively captures
temporal transitions and enhances the accuracy of continuous
emotion recognition in third-person scenarios. Evaluations on the
VEATIC dataset, which provides valence and arousal annotations
in realistic and socially grounded settings, demonstrate that our
method outperforms the baseline that uses uniformly sampled
frame sequences.

Index Terms—Continuous emotion recognition, frame selec-
tion, context modeling, valence-arousal estimation.

I. INTRODUCTION

Video-based continuous emotion recognition has gained
increasing attention in areas such as surveillance, public guid-
ance, and non-verbal human-computer interaction. In third-
person scenarios in particular, emotional state estimation must
be performed without relying on direct interaction or speech.
Instead, models must infer emotional cues from visual signals
embedded in the scene, such as facial expressions, body
posture, environmental context, and interpersonal dynamics.
To facilitate research in this direction, context-rich datasets
such as VEATIC [1] have been introduced. VEATIC provides
video clips drawn from real-world, socially grounded settings,
offering a valuable benchmark for emotion recognition from
a third-person perspective.

Despite these advances, most existing methods, including
those evaluated on VEATIC, continue to rely predominantly on
facial features and employ frame sampling strategies based on
fixed temporal intervals. These uniformly sampled frames are
typically fed into deep learning models without consideration
of their visual relevance or semantic diversity. Consequently,
the input sequences often exhibit high redundancy, making it

Taiga Hayami
Graduate School of FSE,
Waseda University
Tokyo, Japan
hayatail7 @fuji.waseda.jp

Hiroshi Watanabe
Graduate School of FSE,
Waseda University
Tokyo, Japan
hiroshi.watanabe @waseda.jp

GT

Loss
(MSE/CCC)

Valence
Arousal

1

— ViT

Feature
Extractor

Input Frames

Fig. 1. Overview of the proposed emotion recognition model. The model takes
five temporally and visually diverse frames as input and predicts continuous
valence and arousal.

difficult for models to capture meaningful emotional transi-
tions or subtle contextual shifts.

To overcome this limitation, we propose a novel frame
selection strategy based on inter-frame visual dissimilarity.
For each target frame, our method dynamically selects visu-
ally distinct frames from both the past and future temporal
windows. These frames are chosen based on either pixel-wise
differences or the structural similarity index (SSIM), and are
temporally ordered to form a five-frame input set. In contrast
to conventional approaches that emphasize uniform temporal
continuity, our method purposefully incorporates frames that
are complementary or contrasting in visual content, thereby
enriching contextual understanding. This enables the model
to better capture emotional dynamics and nuanced situational
changes, ultimately improving its generalizability and inter-
pretability in third-person emotion recognition tasks.

II. RELATED WORK

A. Emotion Recognition Methods

Early studies on continuous emotion recognition primarily
employed recurrent neural networks (RNNs) and convolutional
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neural networks (CNNs) to model temporal variations in
facial expressions [2]. For example, a combined CNN-LSTM
architecture [3] was proposed to capture the dynamic evo-
lution of emotional states over time. Additionally, 3D-CNN-
based approaches [4] have been utilized to simultaneously
extract spatial and temporal features for emotion prediction.
In recent years, Transformer-based architectures have gained
traction due to their strong capability to model long-range
dependencies. Vision Transformer (ViT)-based models [5], for
instance, have achieved competitive performance by learning
frame-level temporal transitions. Moreover, Transformers aug-
mented with attention mechanisms [6] have proven effective
in recognizing subtle affective patterns, further advancing the
field.

Another line of research has addressed frame selection
strategies to improve efficiency and reduce redundancy. Ap-
proaches based on information-theoretic saliency [7] and
multi-scale deep learning [8] have been applied to select
informative frames from facial videos. However, most of these
methods focus on discrete emotion classification and have not
been extensively adapted for continuous emotion estimation.

In contrast to prior work, our method introduces a dynamic
frame selection approach that selects visually dissimilar frames
around a target frame to better capture contextual transitions.
While the VEATIC baseline selects uniformly spaced frames,
our method deliberately constructs input sequences with visual
diversity. This strategy is particularly beneficial for third-
person scenarios, where facial cues may be limited or unavail-
able, and peripheral contextual information becomes essential
for affective inference.

B. Emotion Recognition Datasets

To support continuous emotion estimation, various bench-
mark datasets have been developed. AFEW-VA [9] provides
valence and arousal labels for video clips from movies, but
the dataset focuses primarily on facial regions and lacks
diverse contextual information. Likewise, Aff-Wild and Aff-
Wild2 [10] offer emotion annotations in naturalistic settings
but are also centered on facial expressions.

In contrast, VEATIC provides continuous valence and
arousal annotations for full-body videos derived from films
and documentaries. Beyond facial expressions, it includes rich
contextual elements such as body posture, background scenery,
and interpersonal interactions. These features make VEATIC
particularly suitable for third-person affective understanding,
enabling the development and evaluation of models that rely
on non-verbal cues beyond facial features. This aspect is often
underrepresented in datasets that focus primarily on facial
information.

III. PROPOSED METHOD

We propose a model for continuous emotion recognition
that processes temporally and visually diverse frame sets to
enhance affect estimation from third-person perspective video
data. As illustrated in Fig. 1, the proposed model consists of
two main components: a ResNet-50 backbone that extracts
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Fig. 2. Dissimilarity-based frame selection process. For each target frame,
two past and two future frames are selected based on pixel-wise dissimilarity.

spatial features from each input frame, and a Vision Trans-
former (ViT) that models temporal dependencies and outputs
continuous valence and arousal values.

To construct the input for this model, we introduce a
dynamic frame selection strategy based on inter-frame vi-
sual dissimilarity. Instead of uniformly sampling consecutive
frames, our method selects frames that are visually distinct
from a given target frame, as illustrated in Fig. 2. This enables
the model to capture contextual cues and dynamic scene
transitions that may be overlooked by traditional sampling
approaches.

For each target frame, we perform directional searches into
both the past and the future to locate frames whose similarity
to the target is below a predefined threshold. Each discovered
frame becomes an anchor for an additional recursive search
in the same direction. The final five-frame set includes the
target frame, two visually dissimilar frames from the past,
and two from the future, arranged in chronological order. This
configuration not only captures temporal transitions but also
reflects visual contrasts surrounding the emotional moment.
Moreover, we adopt this five-frame input setting to ensure
consistency with the VEATIC benchmark protocol, which also
evaluates models based on sequences of five frames.

The similarity between two RGB frames I; and Iy is
computed as:

1
5(117-72):1—ﬁ'mean(|fl—fz|)a (D

where the pixel-wise absolute difference is averaged across all
spatial and color channels, and normalized by 255.

To optimize the model, we adopt a composite loss function
that accounts for both frame-wise accuracy and sequence-
level consistency. Following the benchmark formulation in the
VEATIC dataset, the total loss is defined as:

L= (ﬁvalence =+ ﬁarousal) , (2)

[N
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where each dimension-specific loss £*) is a weighted sum
of the concordance correlation coefficient (CCC) loss and the
mean squared error (MSE):

£H = ﬁ(gc)c +A- EI(\ZS)Ev 3)

where * € {valence, arousal}, and A is a balancing parameter
(set to A = 0.1 in our experiments).

The CCC loss is based on the concordance correlation
coefficient p., and is defined as:

Lcce =1 - pe, “)
with p. computed as:
2p0 50y
02+ 0%+ (e — py)?’
where: - fiz, 11,: the means of predictions and ground truth,

- 04, 0y: the standard deviations, - p: the Pearson correlation
coefficient between predicted values x and ground truth values

)

®)

Pc =

The MSE component is defined as:

T

1
Lyvse = T Z(xt - yt)2, (6)

t=1
where T is the number of frames in a sequence, and x,
y¢ are the predicted and ground truth values at time step t,
respectively.

This formulation encourages the model to make accurate
predictions at each frame while maintaining overall temporal
consistency across the video.

IV. EXPERIMENT

We evaluate the effectiveness of the proposed method using
the VEATIC dataset, which also serves as the baseline method.
The following evaluation metrics are used: Concordance Cor-
relation Coefficient (CCC), Pearson Correlation Coefficient
(PCC), Root Mean Squared Error (RMSE), and Sign Agree-
ment Metric (SAGR). All models share the same architecture,
and the weighting parameter A in the loss function is fixed to
0.1.

SAGR is defined as follows:

1
SAGR = N ; o (sign(g;), sign(y;)), @)
where 3j; and y; denote the predicted and ground truth labels
of the i-th sample, respectively, and § is the Kronecker delta
function, which equals 1 when the predicted and ground truth
signs agree and O otherwise.

As baselines, we implement VEATIC’s uniform downsam-
pling method that samples five consecutive frames at fixed
temporal intervals (k = 5, 25, 50). In contrast, our proposed
method selects five contextually diverse frames based on visual
dissimilarity with respect to a target frame. We evaluate two
types of similarity metrics: (1) pixel-wise difference with a
threshold of 0.80, and (2) SSIM (Structural Similarity Index

TABLE 1
QUANTITATIVE PERFORMANCE COMPARISON OF BASELINE AND
PROPOSED METHODS ON THE VEATIC BENCHMARK

Dimension | Method [ CCC PCC RMSE SAGR
VEATIC (k=5) 0.609 0.644  0.303 0.789

VEATIC (k=25) 0.624 0.670  0.293 0.798

VEATIC (k=50) 0.609 0.655 0.301 0.785

Valence Ours (Diff@0.80) 0.687 0.750  0.258 0.797
Ours (SSIM@0.75) | 0.606 0.688  0.285 0.769

Ours (SSIM@0.80) | 0.612 0.691  0.282 0.771

Ours (SSIM@0.85) | 0.599 0.679  0.288 0.766

VEATIC (k=5) 0.630 0.668  0.210 0.779

VEATIC (k=25) 0.641 0.684  0.202 0.768

VEATIC (k=50) 0.622 0.653 0214 0.764

Arousal Ours (Diff@0.80) 0.685 0.746  0.182 0.804
Ours (SSIM@0.75) | 0.622 0.693  0.206 0.785

Ours (SSIM@0.80) | 0.608 0.692  0.205 0.772

Ours (SSIM@0.85) | 0.607 0.691  0.200 0.780

Measure) with thresholds 0.75, 0.80, and 0.85. SSIM is a per-
ceptual metric that quantifies image quality degradation based
on changes in luminance, contrast, and structural information.
While it is useful for assessing visual similarity, it may not
effectively capture the subtle temporal variations essential for
emotion estimation.

Table I shows the quantitative comparison. Our method
using pixel difference with a threshold of 0.80 outperforms
all baselines and SSIM-based variants across all metrics.
Although SSIM variants show moderate improvements over
the VEATIC baselines, they fail to match the performance
of the pixel-difference-based method. We attribute this to the
sensitivity of SSIM-based frame selection to threshold settings
and its limited ability to capture dynamic emotional cues.
In particular, visual comparisons in Fig. 3 demonstrate that
SSIM-selected frames tend to have minimal changes compared
to the target frame, resulting in suboptimal temporal diversity.
We also observed that in the case of SSIM-based frame
selection, the threshold setting had a significant impact on
model performance, indicating a need for more fine-grained
optimization. Furthermore, to achieve more semantically and
perceptually effective frame selection, it would be promising
to incorporate similarity measures based on deep features or to
explore selection strategies within feature embedding spaces
derived from CNNs.

To further assess the learning setup, we compare joint
and separate training of valence and arousal. Table II shows
that joint training consistently outperforms separate models
across all metrics. This implies that modeling shared temporal
dynamics between valence and arousal fosters richer and more
robust emotional representations.

These findings indicate that selecting visually diverse frames
enhances emotional context modeling more effectively than
uniformly sampled frames. Additionally, joint training of va-
lence and arousal promotes capturing shared temporal patterns,
yielding superior performance across all evaluation metrics.
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Fig. 3. Visual comparison of input frames selected by different methods for sample 0499. Each row represents a different method: from top to bottom:
Diff@0.80, SSIM@0.75, SSIM@0.80, and SSIM@0.85. Each column corresponds to a different time step: from left to right: B2, B1, Target Frame, F1, F2.
Diff@0.80 selects more diverse frames with greater temporal change, while SSIM-selected frames show high similarity with the target, indicating suboptimal

diversity. The frame indices are overlaid in each image for reference.

TABLE 11
PERFORMANCE COMPARISON BETWEEN SEPARATE AND JOINT TRAINING
(DIFF@0.80)

Dimension | Training Type [ CCC PCC RMSE  SAGR
Valence Separate 0.367 0485 0.351 0.697
Joint 0.687 0.750  0.258 0.797

Arousal Separate 0.403  0.558 0.254 0.729
Joint 0.685 0.746  0.182 0.804

V. CONCLUSION

In this study, we proposed a novel method for continu-
ous emotion recognition that dynamically selects five frames
around a target frame based on visual dissimilarity. By in-
corporating temporally and contextually diverse frames, our
approach enhances the model’s ability to capture dynamic
emotional changes. Experimental results on the VEATIC
benchmark demonstrate that our frame selection strategy out-
performs conventional uniform sampling methods in predict-
ing both valence and arousal. In particular, frame selection
based on pixel-wise differences effectively captures rapid
scene changes and helps reflect subtle emotional transitions.
On the other hand, the SSIM-based approach failed to ensure
sufficient diversity due to suboptimal threshold settings, often
selecting frames too similar to the target frame. Furthermore,
our results show that jointly learning valence and arousal
in a multi-task setting consistently improves performance,
suggesting the utility of modeling their latent correlation.

For future work, we plan to explore more semantically rich
similarity metrics such as LPIPS (Learned Perceptual Image
Patch Similarity) to better capture human-perceived differ-
ences. Additionally, we aim to model higher-level social cues,
such as the presence of others and inter-person interactions,
to improve third-person emotion understanding in real-world

scenarios.
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