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Abstract—Accurate diagnosis of anterior cruciate ligament
(ACL) and meniscal tears using magnetic resonance imaging
(MRI) is essential for timely and effective treatment. However,
existing deep learning approaches often aggregate features uni-
formly across MRI slices and sequences, failing to account for
their varying diagnostic relevance. To address these limitations,
we propose a clinically informed attention-based fusion model
that integrates coronal, sagittal, and axial MRI sequences using
learnable fusion weights and slice-level attention pooling. This ar-
chitecture better reflects the diagnostic workflow of radiologists,
who interpret multi-plane images in context, thereby enhancing
both classification accuracy and interpretability. Experimental re-
sults on the MRNet dataset demonstrate consistent performance
improvements across all diagnostic tasks.

Index Terms—Convolutional neural networks, deep neural net-
works, medical diagnostic imaging, magnetic resonance imaging.

I. INTRODUCTION

Knee injuries such as ACL and meniscal tears are prevalent
in sports and often require MRI for accurate diagnosis. Timely
and reliable assessment is critical for proper treatment and
return-to-play decisions. Deep learning has recently shown
significant promise in medical imaging, particularly for au-
tomating the detection of musculoskeletal injuries from MRI
scans [1]. One widely recognized baseline model in this do-
main is MRNet [2], developed at Stanford University. MRNet
performs binary classification of knee injuries by analyzing
three orthogonal MRI sequences: sagittal T2-weighted, coronal
T1-weighted, and axial proton density (PD)-weighted images.
Features are extracted from each sequence using separate con-
volutional neural networks (CNNs), and the final classification
is computed by averaging these features. However, this uni-
form averaging approach overlooks the fact that different MRI
sequences provide varying diagnostic insights. For example,
T1- and T2-weighted images are particularly informative for
detecting ACL and meniscal tears, whereas other sequences
may be less informative. Additionally, not all slices within
a sequence contribute equally to diagnosis — some slices
may contain critical pathological features, while others may
be irrelevant.

To address these limitations, we propose a multi-view MRI
classification model that incorporates clinical knowledge into
both spatial and sequence-level feature fusion. We introduce
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Fig. 1. The model architecture of MRNet [2], which processes sagittal,
coronal, and axial MRI sequences independently using 2D CNNs. Features
from each plane are pooled and averaged for classification, without modeling
slice-wise or sequence-level diagnostic variation.

a slice-level attention mechanism that weights diagnostically
salient slices, enabling the model to focus on relevant regions.
A learnable sequence fusion module is also used, with weights
initialized based on clinical priors to reflect the diagnostic
value of each MRI view. This dual-attention strategy allows
selective emphasis of meaningful features across both di-
mensions. Experiments on the MRNet dataset demonstrate
consistent performance gains over the MRNet baseline across
all diagnostic tasks.

A. Deep Learning Approaches for MRI Diagnosis

Deep learning—based methods are increasingly effective for
automating MRI interpretation. U-Net [3], an encoder—decoder
segmentation model, has shown strong performance in tasks
like brain tumor and musculoskeletal lesion detection. For
classification, MRNet [2], developed at Stanford, is a key
model for diagnosing knee injuries. It analyzes sagittal, coro-
nal, and axial MRI views separately and fuses their outputs to
predict conditions such as ACL and meniscal tears. It serves
as a strong baseline for multi-view MRI classification tasks.

Figure 1 shows the MRNet architecture. Each view is
processed by a 2D CNN to extract slice-level features, which
are pooled and passed through fully connected layers. The final
prediction is obtained by combining outputs from all views.
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(a) Sagittal T2

(b) Coronal T1 (b) Axial PD

Fig. 2. Three MRI sequences from the MRNet dataset: (a) sagittal T2-
weighted, (b) coronal T1-weighted, and (c) axial PD-weighted views. These
orthogonal planes are used as input for classification models in multi-view
knee MRI analysis.

B. Public Knee MRI Datasets

Some publicly available knee MRI datasets, such as those
based on functional MRI (fMRI), have been primarily devel-
oped for tasks in image reconstruction or signal modeling [4].
These datasets typically lack clinical annotations regarding
injury presence or type, limiting their utility for supervised
learning in diagnostic applications.

In contrast, the MRNet dataset [2] provides a large-scale,
clinically annotated collection of knee MRI exams labeled for
anterior cruciate ligament (ACL) tears, meniscal tears, and
general abnormalities. Each exam includes three orthogonal
MRI sequences—sagittal T2-weighted, coronal T1-weighted,
and axial proton density (PD)-weighted—capturing comple-
mentary diagnostic information across anatomical planes.

The dataset encompasses a diverse patient population and
imaging variations across sequences. Detailed statistics, in-
cluding the number of exams, patient demographics, and
sequence distribution, are provided in Table I. These character-
istics make MRNet a suitable and widely adopted benchmark
for multi-view knee MRI classification.

II. PROPOSED METHOD

We propose an enhanced model of MRNet by incorporating
two key components: slice-level attention pooling and clin-
ically guided sequence-level fusion. This design reflects the
way radiologists focus on diagnostically important slices and
MRI sequences depending on the task. The overall structure
is illustrated in Figure 3 .

TABLE I
THE DEMOGRAPHIC INFORMATION OF THE DATASET
Statistics Training Validation
Number of exams 1130 120
Number of patients 1088 111
Number of female patients (%) 480 (42.5%) 50 (41.7%)
Age, mean (SD) 38.3 (16.9) 36.3 (16.9)

A. Slice-Level Attention Pooling

In conventional 3D medical image classification frameworks
such as MRNet, a fixed aggregation method—typically max or
average pooling—is employed to compress slice-wise features
into a single sequence representation. This approach implicitly
assumes that all slices contribute equally to the final prediction.
However, in clinical practice, radiologists often pay particular
attention to diagnostically informative slices—for instance,
those capturing ligament tears or abnormal joint morphol-
ogy—while ignoring irrelevant or redundant views.

To better reflect this clinical reasoning process, we intro-
duce a slice-level attention pooling mechanism that adaptively
weights each slice based on its latent diagnostic relevance. For-
mally, given a sequence of slice features {f1, fo,..., fn} €
RN >4 where N is the number of slices and d is the feature di-
mension, we compute scalar attention scores {a1, az,...,an}
through a shallow feed-forward network with t anh activation:

a; = MLP(fz) = WQ . tanh(Wlfi + bl) + bg. (1)

These scores are then normalized across the slice dimension
via the softmax function:

0 = pl@) )

N
> j—1exp(a;)
The final feature representation for the entire sequence is
obtained as the weighted sum of slice features:

N
=1

This attention mechanism allows the model to selectively
emphasize slices containing pathology, such as torn ligaments
or displaced menisci, while suppressing irrelevant frames. Un-
like fixed pooling strategies, this learnable approach enhances
sensitivity to subtle abnormalities and improves interpretability
by explicitly revealing which slices contribute most to the
model’s prediction.

Empirically, we observe that attention weights often con-
centrate on clinically meaningful regions—for example, mid-
sagittal slices showing the intercondylar notch in ACL tear
detection—demonstrating that our model aligns well with
diagnostic behavior in real-world radiology.

B. Softmax-weighted Sequence Fusion with Diagnostic Priors

While MRNet simply averages features from the sagittal,
coronal, and axial MRI sequences, our model introduces learn-
able fusion weights that capture the task-specific diagnostic
relevance of each sequence. These weights are initialized based
on established clinical insights and are refined during training
to reflect the modality-specific contributions most beneficial
for each classification task.

Each MRI sequence provides complementary diagnostic
information. T1-weighted images offer high-resolution visu-
alization of bone and soft tissue anatomy, making them well
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Fig. 3. Architecture of the proposed attention-based fusion model. Unlike
MRNet, which uniformly averages features across slices and sequences, our
model applies slice-level attention and clinically guided sequence fusion to
selectively emphasize diagnostically relevant information across all views.

suited for evaluating osseous morphology and chronic struc-
tural abnormalities. T2-weighted images are sensitive to fluid
accumulation and pathological changes such as inflammation,
edema, or hematoma, which are often indicative of acute soft-
tissue injuries including ACL or meniscal tears. PD-weighted
images emphasize contrast at tissue interfaces, aiding in the
detection of subtle boundary abnormalities such as meniscal
fissures or cartilage delamination.

These distinct yet complementary roles are summarized in
Table II. By incorporating this modality-specific understanding
into the fusion process, our model selectively emphasizes
diagnostically salient features across imaging planes, thereby
aligning more closely with radiological interpretation strate-
gies.

Based on these clinical characteristics, we initialize the
fusion weights to prioritize sagittal and coronal sequences
(T2- and T1-weighted) for tasks such as ACL and meniscal
tear detection, where soft tissue integrity and joint structure
are critical. For general abnormality detection—where diverse
pathologies may appear across all planes—we adopt a uniform
initialization to reflect the balanced diagnostic relevance of
each sequence [5]-[7].

Let f,, £, f3 € R? denote the feature vectors obtained from
the three MRI sequences, and let o = softmax(w) € R? be
the learned fusion weights (normalized such that ), a; = 1).
The final fused feature vector fjq is computed as:

frused = a1 -1 + o - f5 + a3 - f5. €]

In practice, the initial values of w were set to reflect clinical
preferences:

o For ACL and meniscal tear detection: The initial weights
were set to (0.45,0.45, 0.10), reflecting the dominance of
coronal and sagittal views.

o For abnormality detection: A uniform initialization of
(0.33,0.33,0.33) was used to reflect equal importance
across all sequences.

TABLE II
DIAGNOSTIC CHARACTERISTICS OF DIFFERENT MRI SEQUENCES

MRI Diagnostic Strengths

Sequence

T1-weighted  Clearly shows anatomical structures of bones and
soft tissues. Useful for identifying bone morphology
and structural abnormalities.

T2-weighted  Highlights tissues with high water content (e.g.,

inflammation, swelling, hematoma). Effective for de-
tecting abnormalities in soft tissues.

Emphasizes contrast between bones and soft tissues.
Suitable for detecting subtle boundary abnormalities.

PD-weighted

III. EXPERIMENT

To validate the effectiveness of our proposed method,
we conducted a rigorous comparative evaluation by re-
implementing the original MRNet [2] under identical training
conditions, including optimizer settings, batch size, data aug-
mentation, and cross-validation splits. This ensured a fair and
controlled comparison, isolating the impact of architectural
differences.

Table 2 presents the AUC (Area Under the ROC Curve)
scores for both models across three binary classification tasks:
ACL tear, meniscal tear, and general abnormality detection.
AUC is a widely accepted metric in medical imaging that
reflects the model’s ability to discriminate between positive
and negative cases across varying thresholds.

Across all tasks, our model consistently outperformed the
MRNet baseline. This performance gain is attributed to two
key design components. First, the slice-level attention mod-
ule explicitly weights each slice based on its task-specific
importance, allowing the model to focus on diagnostically
relevant regions and ignore irrelevant information. Second, the
sequence-level fusion module integrates anatomical planes us-
ing learnable weights initialized from clinical priors, capturing
the differing diagnostic value of each sequence in a structured
and interpretable manner.

The most significant improvement was observed in ACL
tear detection, where our model achieved an AUC of 0.910
compared to 0.852 with the baseline. This task requires the
detection of subtle discontinuities in ligament structure, which
are often visible only in a few key sagittal slices. The slice
attention module effectively emphasized frames such as the
intercondylar notch and ligament attachment regions, enabling
robust classification even in the presence of noisy or redundant
slices.

In the meniscal tear and abnormality detection tasks, our
model also demonstrated notable gains in AUC. These results
confirm that combining spatial attention with clinically guided
fusion improves robustness and generalizability across diverse
structural and pathological contexts.

Overall, our model not only improves classification accuracy
over the MRNet baseline but also closely mimics the diagnos-
tic strategies employed by radiologists. In clinical workflows,
physicians systematically scroll through sequences to identify
pathological patterns and dynamically prioritize specific views
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TABLE III
AUC SCORES OF EACH MODEL ACROSS DIAGNOSTIC TASKS

Model ACL Tear Meniscus Tear  Abnormality
MRNet (Baseline) 0.852 0.856 0.847
Ours (Proposed) 0.910 0.899 0.877

depending on the suspected condition. By modeling both slice-
level and sequence-level relevance in an end-to-end manner,
our architecture bridges algorithmic prediction with domain-
expert reasoning.

A. Ablation Study

To further assess the contribution of each MRI sequence to
model performance, we conducted a targeted ablation study
focusing on the ACL tear classification task. Specifically, we
compared the proposed learnable fusion strategy with three
fixed-weight configurations, each constructed by omitting one
sequence through an assigned weight of zero. Table IV reports
the AUC results for each configuration.

Among the fixed settings, the configuration with equal
weighting of T1- and T2-weighted sequences, while excluding
PD, produced the best AUC (0.878). Nevertheless, this con-
figuration remained inferior to the proposed adaptive fusion
method, which achieved an AUC of 0.910. This performance
gap underscores the limitations of manually fixed fusion
weights and highlights the importance of data-driven adjust-
ment mechanisms in capturing diagnostic synergies across
sequences.

Performance consistently deteriorated when any sin-
gle modality was excluded, indicating that all three se-
quences—T1, T2, and PD—contribute complementary and
non-redundant diagnostic information. T1- and T2-weighted
images provide critical anatomical and pathological detail,
particularly concerning ligament integrity, edema, and joint
effusion, which are highly relevant for ACL tear detection.
Although PD-weighted images typically receive lower clinical
emphasis, their ability to enhance soft tissue-bone interface
contrast appears to support the discrimination of subtle abnor-
malities.

The reduced performance of the (0.5, 0.5, 0.0) configuration
suggests that even minimally weighted sequences can supply
auxiliary cues that aid the model in decision-making. These
results validate our design choice to employ an attention-based
fusion strategy that dynamically learns task-specific weighting,
enabling optimal integration of multi-sequence inputs. Such
adaptivity is particularly beneficial for complex diagnostic
tasks where subtle patterns may span across multiple anatom-
ical planes and contrast mechanisms.

IV. CONCLUSION

We proposed an MRI classification model that integrates
slice-level attention and clinically guided sequence fusion to
enhance the diagnostic accuracy of knee injury detection.
By incorporating clinical insights—such as prioritizing T1-
and T2-weighted images for ACL and meniscal tear diagno-
sis—our model effectively focuses on relevant features across

TABLE IV
ABLATION STUDY ON ACL TEAR DETECTION (AUC)
Fusion Weights (T1, T2, PD) AUC A vs. Ours
(0.5, 0.5, 0.0) 0.878 —0.032
(0.0, 0.5, 0.5) 0.864 —0.046
(0.5, 0.0, 0.5) 0.867 —0.043
Learnable (Ours) 0.910 —

both spatial and anatomical dimensions. Experiments on the
MRNet dataset demonstrated consistent improvements over
the baseline across all classification tasks.

The architecture reflects radiological reasoning by dynam-
ically weighting slices based on diagnostic contribution and
learning task-specific fusion weights that capture the varying
clinical importance of each sequence. This design aligns
more closely with expert-level interpretation, improving both
performance and transparency.

For future work, we aim to enhance the interpretability
of our model by generating spatially resolved attention vi-
sualizations, such as slice-wise heatmaps and modality-wise
saliency maps, to provide clinicians with intuitive insights
into model decisions. We also plan to address a current
limitation—namely, the absence of inter-slice contextual mod-
eling—by incorporating sequence-aware modules that capture
anatomical continuity across adjacent slices, which is impor-
tant for identifying spatially distributed pathologies.

In addition, we intend to validate the robustness of our
approach using external datasets acquired under diverse imag-
ing protocols, and to extend its applicability to other muscu-
loskeletal regions, such as the shoulder or spine. Ultimately,
we aim to build a clinically deployable and interpretable
diagnostic support system adaptable to real-world medical
imaging settings.
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