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Abstract—Anomaly detection is critical in industrial visual
inspection, where undetected defects can lead to significant
disruptions. While substantial progress has been made in de-
tecting local anomalies such as scratches or dents, attention
has recently shifted toward the more complex task of detecting
logical anomalies, where visually normal components appear in
semantically inconsistent configurations. To address this emerg-
ing task, we propose a novel model that resolves a key dilemma in
Teacher-Student frameworks—namely, the risk of student over-
generalization to anomalous inputs. Our approach introduces
a reconstruction-based student network that learns to restore
object-level semantics, such as type and quantity, enabling a
more holistic understanding of normality beyond localized cues.
Experiments demonstrate that the proposed method achieves
balanced performance on both local and logical anomalies.

Index Terms—Anomaly Detection, image reconstruction, se-
mantic segmentation.

I. INTRODUCTION

Industrial visual inspection plays a crucial role in ensuring
product reliability and safety. Traditional methods[1,2] have
focused on local anomalies, including scratches, dents, and
surface contamination. These methods, typically based on
feature-space modeling or reconstruction-based learning, per-
form effectively under the assumption that anomalies appear
as low-level pixel irregularities. However, with the increasing
complexity and diversity of industrial environments, a new
class of anomalies referred to as logical anomalies, as illus-
trated in Fig. 1, has emerged as an important research focus.
Logical anomalies occur when visually normal components
are arranged in semantically inconsistent ways. Detecting such
inconsistencies requires an understanding of the object-level
context rather than relying solely on texture or appearance.

In both local and logical anomaly detection, the scarcity
of defective samples in real-world scenarios has made unsu-
pervised learning[3,4] approaches predominant. Among these,
Teacher—Student frameworks[5,6] have gained popularity be-
cause of their simplicity and effectiveness. In this setting, a
student network is trained to replicate the intermediate features
of a pretrained teacher network, and discrepancies between the
two are interpreted as anomalies.

However, several studies [7, 8] have pointed out that training
the student exclusively on normal data leads to overgen-
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Fig. 1. Example of a logical anomaly. Left: normal with two oranges and
one apple. Right: anomaly with three apples, violating expected count.

eralization, causing the network to produce representations
that are overly similar to the teacher’s, even for abnormal
inputs—thereby degrading detection performance. To address
this dilemma, the recent study [7] introduces denoising func-
tionality based on autoencoder architectures into the student
network. While such approaches have demonstrated effective-
ness in handling local defects such as scratches or contami-
nation, they remain limited in their ability to address logical
anomalies arising from misplaced components or inconsisten-
cies in object quantity.

To address the above limitations, we propose a novel
anomaly detection framework based on semantic reconstruc-
tion at the object level. Unlike conventional approaches, the
student network in our framework is not trained merely to
replicate the teacher’s features. Instead, it is supervised to
reconstruct the correct configuration of objects, including
their quantity, type, and spatial relationships. This is achieved
by generating synthetic logical anomalies using segmentation
and inpainting techniques. By training the model to restore
plausible object-level semantics, we encourage a deeper under-
standing of structural normality. Our approach enables unified
anomaly detection across both local and logical domains.
Experimental results on the MVTec AD[9] and MVTec LOCO
ADI[10] datasets demonstrate that our method outperforms
prior approaches in detecting local anomalies and achieves
competitive performance on logical anomaly benchmarks as
well.
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Fig. 2. Architecture of the proposed model, comprising a local anomaly removal module and an object-level reconstruction module. The student is trained

on synthetic logical anomalies generated via SAM and inpainting.

II. RELATED WORKS
A. Anomaly Detection Tasks

Traditional approaches to industrial anomaly detection have
primarily focused on identifying local anomalies, such as
surface scratches, dents, or contamination. These anomalies
are typically characterized as pixel-level visual deviations
from the normal distribution.Recently, methods that model the
statistical distribution of features[11], employ self-supervised
pretext tasks to learn normality representations[12], or perform
nearest-neighbor search in a learned feature space[13] have
been proposed. These methods detect anomalies based on
either outlier scores, similarity metrics, or reconstruction errors
from transformed inputs. However, recent research[14] has
identified a new category of anomalies, referred to as logical
anomalies, which involve components that appear visually
normal but are arranged in semantically inconsistent ways. For
example, an object may be present in the correct location but
in an incorrect quantity. This type of anomaly is particularly
relevant in industrial settings where spatial relationships and
object counts are strictly defined. To address these challenges,
To address these challenges, approaches that integrate both
local texture cues and global contextual information have
been proposed, with EfficientAD[8] serving as a representative
example.

B. Unsupervised Teacher—Student Methods

Unsupervised Teacher—Student frameworks have become a
dominant paradigm in visual anomaly detection due to their
ability to operate without labeled anomalous data. In this
setup, a student network is trained to replicate the intermediate
feature representations of a fixed, pretrained teacher network

using only normal samples. Anomalies are then inferred from
discrepancies between the teacher and student outputs. How-
ever, one key limitation of this approach lies in the student’s
tendency to overfit or generalize excessively to the training dis-
tribution, which can result in reduced sensitivity to anomalies.
To mitigate this issue, several enhancements have been pro-
posed. Some approaches[15,16] restrict the learning capacity
of the student network to prevent overfitting to the teacher’s
features. This is typically achieved by reducing the number
of trainable parameters or introducing bottleneck layers in the
student architecture, thereby encouraging sensitivity to out-of-
distribution features. Others, such as DeSTSeg[7], incorporate
an encoder—decoder structure that explicitly removes synthetic
anomalies during training, allowing the student to focus on
reconstructing clean representations and improving robustness
to local anomalies.

III. PROPOSED METHOD

We propose a student model that reconstructs normal images
from synthetically generated logical anomalies with object-
level defects and local anomalies with additive noise. This de-
sign mitigates the optimization dilemma frequently observed in
conventional Teacher—Student frameworks, where the student
tends to overgeneralize to anomalous inputs. Unlike prior ap-
proaches, our method explicitly trains the student not merely to
mimic the teacher’s features, but to actively correct both local
and logical anomalies. As a result, the student’s reconstruction
capability contributes directly to improved anomaly detection
performance.

The overall architecture of the proposed model is illustrated
in Fig. 2. It consists of two autoencoder-based subnetworks: a
local anomaly removal module inspired by DeSTSeg, and an
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TABLE 1
QUANTITATIVE COMPARISON OF IAP (%) / IAP@90 (%) ON THE MVTEC
LOCO AD DATASET (BEST IS IN BOLD, SECOND IS UNDERLINED)

TABLE II
QUANTITATIVE COMPARISON OF IAP (%) / IAP@90 (%) ON THE MVTEC
AD DATASET (BEST IS IN BOLD, SECOND IS UNDERLINED)

| Method
Category
| DeSTSeg EfficientAD Ours

Breakfast Box 66.3 /252 63.0/113 67.2/19.0
Juice Bottle 70.0 /8.2 74.6 1 29.6 74.8 / 36.0
Pushpins 139/1.2 161/ 1.0 14.0 /2.0
Screw Bag 8.6/7.0 15.6 / 4.0 12.0/7.4
Splicing Connectors 24.7/8.7 38.7 /104 22717738
Average 36.7 / 10.1 41.6 / 11.3 38.1/14.4

object-level reconstruction module designed to restore seman-
tic consistency. To enhance the student’s ability to reconstruct
object-level structures, we adopt a U-Net[17] architecture in
the reconstruction branch.

To detect anomalies, we compute the cosine similarity
between the decoder features of the two subnetworks and
the encoder features of a pretrained ResNet-18 teacher model.
Specifically, the local anomaly removal branch and the object-
level reconstruction branch produce independent feature maps,
which are respectively compared with the teacher’s features
to generate a local anomaly map and a logical anomaly map.
These maps capture deviations at different semantic levels. The
final anomaly map is obtained by summing the two, allowing
for unified detection of both pixel-level and structure-level
inconsistencies.

For training data generation, we begin with normal images
and extract object regions using a combination of the Segment
Anything Model (SAM) [18] and a foreground segmentation
model, U2-Net[19]. Specifically, U2-Net generates a foreground
mask, which is used as a spatial prior for SAM to extract
semantically meaningful object candidates. One candidate is
then randomly selected, and its corresponding region is mod-
ified using Inpainting Anything [20] to generate contextually
coherent but semantically inconsistent object arrangements,
simulating realistic logical anomalies.

IV. EXPERIMENTS
A. Set up

To validate the effectiveness and generalizability of the
proposed method, we conduct experiments on two widely used
benchmark datasets: MVTec AD, which contains 15 categories
of industrial objects and textures primarily featuring local
anomalies such as scratches, dents, and contaminations; and
MVTec LOCO AD, which includes 5 categories specifically
designed to evaluate logical anomalies, such as object mis-
counts, misplacements, and configuration inconsistencies.

Both the reconstruction and denoising branches are su-
pervised using only normal images. The overall model is
optimized to minimize the cosine similarity loss between
the decoder features of the student network and the encoder

Category \ Method
‘ DeSTSeg EfficientAD ‘ Ours

Bottle 52.6 /327 85.6 / 72.0 91.5 / 86.4
Cable 92.5/83.9 61.9 /30.6 58.7/29.8
Capsule 77.1 / 40.0 57.9/36.7 553/ 36.0
Carpet 59.0 /25.6 71.2 /255 76.1 / 31.9
Grid 82.4 /56.8 49.0/27.6 62.0/45.2
Hazelnut 86.4 / 77.1 65.4 /53.0 89.2 / 81.8
Leather 81.4/57.2 6337454 80.4 / 66.0
Metal nut 41.87120.6 84.6 / 80.2 94.3 / 88.2
Pill 91.6 / 83.7 734/ 65.1 78.5 /1 34.9
Screw 57.5 / 40.6 442/ 15.0 50.3/10.3
Tile 87.7/785 76.6 / 60.8 97.1/91.3
Toothbrush 733/ 60.6 53.6 /383 60.9 / 40.6
Transistor 94.2 / 82.9 89.3/81.3 81.8/61.2
Wood 86.6 / 69.4 63.7 / 443 90.8 / 84.6
Zipper 52.1/64 67.5/51.7 85.3/70.1
Average | 744/543 | 67.1/484 | 768/572

features of the pretrained teacher model. We train with Adam
optimizer, using a learning rate of le-4, batch size of 16,
input resolution of 256x256, and up to 10000 steps with early
stopping. All experiments are conducted on a single NVIDIA
A4500 GPU.

As benchmark baselines, we use DeSTSeg [1] and Efficien-
tAD [4]. Evaluation metrics are Image-level Average Precision
(IAP) and TAP@90, where IAP measures general detection
performance and IAP@90 focuses on high-confidence anoma-
lies.

B. Results

The anomaly detection results on logical anomalies using
the MVTec LOCO AD dataset are presented in Table 1.
While our method slightly underperforms EfficientAD, which
is specifically designed for logical anomaly detection, it sur-
passes DeSTSeg, one of the benchmark methods, in terms of
average performance. Notably, in categories such as Breakfast
Box and Juice Bottle, which are characterized by clear object-
type and quantity features, our method achieves performance
comparable to or even exceeding both baselines, demonstrating
its effectiveness in capturing semantic consistency.

The results on local anomaly detection, evaluated on the
MVTec AD dataset, are summarized in Table 2. Our method
achieves the highest average IAP and TAP@90 across the
dataset, outperforming both EfficientAD and DeSTSeg. In the
category-wise comparison, it achieves the best IAP in 7 out
of 15 categories, and the highest IAP@90 in 8 categories,
showing strong and consistent performance across diverse
types of local anomalies.

In contrast, for categories such as Capsule and Pill, which
exhibit relatively simple structures, the proportion of the
inpainted region tends to be large relative to the object
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Fig. 4. Image-level IAP@90 (%) on the MVTec AD and LOCO AD datasets.

area extracted by SAM. This often leads to synthetic logical
anomalies that deviate significantly from realistic distributions,
potentially contributing to reduced detection performance.

Taken together, these quantitative results indicate that
the proposed method offers well-balanced and competitive
anomaly detection performance across both logical and lo-
cal domains, often outperforming or matching state-of-the-art
baselines depending on the anomaly type.

V. CONCLUSION

In this paper, we presented a novel anomaly detection
framework that explicitly reconstructs object-level semantics
to address both local and logical anomalies in industrial visual
inspection. Unlike conventional Teacher—Student models, our
method is designed to directly restore spatial and semantic
consistency, thereby overcoming overgeneralization issues as-
sociated with anomalous inputs.

Through extensive experiments on the MVTec AD and
MVTec LOCO AD datasets, our approach demonstrated su-
perior or comparable performance across a wide range of
categories. In particular, it showed remarkable effectiveness in
scenarios that require understanding of structural relationships,
such as object count or alignment. These results highlight
the strength of incorporating semantic reconstruction into
unsupervised anomaly detection. As future work, we plan to
further improve detection robustness by synthesizing a wider
variety of logical anomalies with higher fidelity.
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