
修 士 論 文 概 要 書 
Master’s Thesis Summary 

Date of submission: 07/22/2024 (MM/DD/YYYY) 

専攻名（専門分野） 

Department 

Computer Science 

and Communications 

Engineering 

氏 名 

Name 
Yenan Zhang 

指  導 

教  員 

Advisor 

Hiroshi Watanabe 

     印 

Seal 研究指導名 

Research guidance 

Research on 

Audiovisual 

Information Processing 

学籍番号 

Student ID 

number 

CD 

5122FG28-7 

研究題目 

Title 
Music Super-Resolution Using Deep Neural Networks 

 

1. Introduction 

Audio Super-Resolution (SR) is an important research 

topic because low-resolution recordings are ubiquitous in 

daily life. In this paper, we explore the music SR task through 

solo piano music, which is challenging due to the wide 

frequency response and dynamic range of music. In recent 

years, with the development of deep learning, audio SR 

methods based on it have become mainstream, but there are 

few SR methods focused on the field of music. Hence, it 

remains several challenges in the field of music SR, which 

require thorough investigation.  

In this thesis, we propose two methods: Time-Domain 

Phase Repair (TD-PR) and BigWavGAN, for exploring 

different challenges. In the discussion of TD-PR, we thorough 

investigate the common annoying artifacts in Time-Domain 

Convolution Neural Networks (TD-CNNs) and identify the 

cause of the annoying artifacts via a subjective experiment. 

We further propose TD-PR, which uses a neural vocoder 

pre-trained on the wide-band data to repair the phase 

components in the waveform outputs of TD-CNNs. In the 

discussion of BigWavGAN, we propose BigWavGAN, which 

incorporates Demucs, a large-scale wave-to-wave model, with 

the state-of-the-art discriminators and adversarial training 

strategies to unleash the potential of large Deep Neural 

Network (DNN) models in music SR and achieve the optimal 

perceptual quality. 

 

2. Related Work 

2.1 Time-Domain Convolutional Neural Network 

Approaches 

Various works have delved into the deep learning based 

approaches for audio SR. Some of them work in frequency 

domain. Frequency-domain approaches aim to directly 

recover the high-resolution components in the magnitude 

spectrogram, and generally require additional signal 

processing to estimate the corresponding phase information, 

such as Griffin-Lim algorithms [1] or neural vocoders [2]. 

Compared with frequency-domain approaches, TD-CNNs that 

directly learn a wave-to-wave mapping, are considered being 

able to avoid the phase problem in audio SR due to the direct 

waveform processing. AudioUNet is one of the pioneers of 

tackling audio SR by a TD-CNN [3]. Tagliasacchi et al. 

proposed SEANet [4], a GAN-based model for speech SR, of 

which the generator is a light-weight but effective TD-CNN. 

Defossez et al. proposed a TD-CNN model referred to as 

Demucs, which is a large model with over 130M parameters 

and is initially designed to address music source separation 

[5]. Considering the fact that Demucs has shown strong 

performance in tasks besides source separation [6], we utilize 

the Demucs model in the SR task as one of the TD-CNN 

baselines in this thesis. Although lots of efforts have been 

made to improve perceptual quality of TD-CNNs, none of 

them succeeds in removing the artifacts according to their  

 

open-available audio samples. Therefore, the cause of the 

annoying artifacts which TD-CNNs tend to produce in     

their waveform output, is yet to be identified. 

2.2 Generative Adversarial Network Approaches in Audio 

Super-Resolution 

Recent publications have delved into Generative 

Adversarial Network (GAN) based models in audio SR. 

Compared to models trained with standard mean square error 

losses, GAN-based models exhibit a superior capability to 

generate results with better perceptual quality. BEHMGAN is 

the state-of-the-art of GAN-based music SR model [7]. 

Notably, a state-of-the-art neural vocoder referred to as 

BigVGAN, which characterized by a large-size generator with 

an unprecedented scale of up to 112M parameters, is proposed 

by Lee et al. [8]. BigVGAN can synthesize high-fidelity audio 

and shows its superior zero-shot performance across various 

out-of-distribution scenarios. However, in the task of audio SR, 

there is no wave-to-wave GAN-based model in such a large 

model size. This inspired us to explore the large-scale 

wave-to-wave GAN model in music SR with high 

performance and superior generalization ability. 

 

3. Methodology 

3.1 TD-PR: Time-Domain Phase Repair  

In order to alleviate the artifacts caused by distorted 

phase components, we propose Time-Domain Phase Repair 

(TD-PR). The TD-PR framework consists of two separately 

pretrained DNN modules and a phase replacement operation. 

 
Fig. 1. Overview of the proposed method TD-PR. 

 

The overview of the proposed method is shown in Fig. 1. 

Specifically, TD-CNN is trained to perform super-resolution 

for various narrow-band inputs. The neural vocoder takes only 

the magnitude of the TD-CNN’s output as input, and 

re-synthesizes another waveform that contains repaired phase 

components. Then, the distorted phase components in 

TD-CNN’s output are replaced by that from the vocoder. 

3.2 BigWavGAN 

The overview of BigWavGAN’s architecture is shown in 

Fig. 2. The generator of BigWavGAN has the identical 

architecture with Demcus from [5]. It is a wave domain U-net 

model leveraging a Long Short-Term Memory (LSTM) 

recurrent neural network layer as the bottleneck. BigWavGAN 

benefits from the two types of discriminators: MSD and MRD, 

which works in the time domain and frequency domain 

separately.  



 
Fig. 2. Overview of architecture the proposed method 

BigWavGAN. 

4. Experiment 

We trained our model in this thesis by using the 

MAESTRO dataset [9]. It is composed of about 200 hours of 

high-quality classical piano recordings in waveform. Although 

these recordings have the sampling rate of 44.1 kHz or 48 kHz, 

we empirically found that 16 kHz is high enough for the piano 

solo. Hence, we performed music SR with the target 

bandwidth of 8 kHz. We used the official split of the 

MAESTRO dataset for training, validation and test. We cut all 

of the waveform into 30-second short clips for efficient 

training. 

5. Evaluation 

5.1 Evaluation on TD-PR 

In addition to objective evaluations, we conducted the 

listening tests by collecting Mean Opinion Score (MOS) for 

subjective evaluations. The box plot of the MOS test results 

and the corresponding average for each method are shown in 

Fig. 3.  

 
Fig. 3. Results of MOS listening test: The box plot of the 

MOS scores across input, TD-CNN, TD-PR and GT (Ground 

Truth). TD-PR is applied to 3 different TD-CNN baselines. 

 

TD-PR obtained better MOS scores than all three 

TD-CNN baselines by a large margin, which indicate that 

TD-PR significantly improved the perceptual quality of 

TD-CNN baselines. Since the proposed TD-PR only repairs 

the phase components of the waveforms, the improved 

perceptual quality in turn indicates that phase distortion has 

been the cause of the annoying artifacts in TD-CNNs. 

5.2 Evaluation on BigWavGAN 

Besides Objective evaluations, we conducted a set of 

subjective evaluations to identify the advantage of the 

proposed BigWavGAN. The subjective evaluations are in the 

style of A/B test, rather than MOS collection, because A/B test 

can better measure tiny differences between two models. 

Since A/B test cannot handle multiple models at once, we 

conduct multiple A/B tests (e.g., BigWavGAN vs Demucs, 

BigWavGAN vs BEHMGAN) for a more comprehensive 

analysis. 

The results of subjective evaluations are illustrated in  

Fig. 4. In all thress datasets, BigWavGAN significantly 

improved Demucs in terms of perceptual quality by a large 

margin. This also reveals that BigWavGAN achieved superior 

generalization to out-of-distribution data. Similar advantages 

of BigWavGAN are observed when it is compared with 

BEHMGAN, the state-of-the-art music SR model. 

 
Fig. 4. Results of A/B listening tests: (a) is tested on 

MAESTRO; (b) is tested on MusicNet; (c) is tested on 

denoised real historical recordings. 

 

6. Conclusion 

In this thesis, we explore music Super-Resolution (SR) 

through solo piano music. First, we investigated into 

Time-Domain Convolutional Neural Networks (TD-CNNs), 

trying to identify the cause of the annoying artifacts and 

improve TD-CNNs’ perceptual quality by alleviating the 

artifacts. To the best of our knowledge, this work is the first to 

demonstrate the artifacts in TD-CNNs are caused by the phase 

distortion via a subjective experiment. We further propose 

Time-Domain Phase Repair (TD-PR), which significantly 

improves the perceptual quality of TD-CNN baselines. Since 

the proposed TD-PR only repairs the phase components of 

waveform, the improved perceptual quality in turn indicates 

that phase distortion has been the cause of the annoying 

artifacts of TD-CNNs.  

Then, based on the discussion of our first proposed 

method TD-PR, we proposed a large-scale wave-to-wave 

model referred to as BigWavGAN for music SR. The results 

of a set of subjective evaluations demonstrate that 

BigWavGAN can achieve significantly better perceptual 

quality compared to the baseline model Demucs. Notably, 

BigWavGAN surpasses the state-of-the-art music SR model in 

both simulated and real-world scenarios. Moreover, 

BigWavGAN achieves superior generalization ability to 

address out-of-distribution data including real historical 

recordings. Therefore, BigWavGAN successfully unleashes 

the potential of the large-scale Demucs in music SR. 
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Abstract

Audio Super-Resolution (SR), involving the transformation of low-resolution

(i.e., narrow-band) input into high-resolution (i.e., wide-band) audio, which gives

the low-resolution audio more detail and brighter tone, is a vital research topic as

low-resolution recordings are ubiquitous in daily life. In this thesis, we explore

the music SR task through solo piano music, which is challenging due to the wide

frequency response and dynamic range of music. Many SR models exploit Time-

Domain Convolutional Neural Networks (TD-CNNs), which benefit from the joint

processing of magnitude and phase information of audio signals. However, prior

works indicate that TD-CNN approaches tend to produce annoying artifacts, and

the cause of the artifacts is yet to be identified. To this end, we demonstrate that the

artifacts in TD-CNNs are caused by the phase distortion via a subjective experiment

for the first time. We further propose Time-Domain Phase Repair (TD-PR), which

uses a neural vocoder pretrained on the wide-band data to repair the phase compo-

nents in the waveform outputs of TD-CNNs. The proposed TD-PR obtained better

mean opinion score than TD-CNN baselines, which demonstrates TD-PR signif-

icantly improves the perceptual quality of TD-CNNs. Since the proposed TD-PR

only repairs the phase components of the waveforms, the improved perceptual qual-

ity in turn indicates that phase distortion has been the cause of the annoying artifacts

of TD-CNNs. Moreover, the proposed TD-PR can be easy applied to arbitrary TD-

CNNs without additional adaptation. Audio samples of TD-PR are available on the

demo page1.

Based on the analysis of TD-PR, we further explore music SR, aiming to further

improve the performance of TD-PR to achieve the optimal perceptual quality. Gen-

1https://mannmaruko.github.io/demopage/tdpr.html
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erally, Deep Neural Networks (DNNs) are expected to have high performance when

their model size is large. However, large models failed to produce high-quality re-

sults commensurate with their scale in the music SR task in the experiments of

the proposed method TD-PR. We attribute this to that DNNs cannot learn infor-

mation commensurate with their size from standard mean square error losses. To

unleash the potential of large DNN models in music SR, we propose BigWavGAN,

which incorporates Demucs, a large-scale wave-to-wave model, with the state-of-

the-art discriminators and adversarial training strategies. Our discriminator consists

of Multi-Scale Discriminator (MSD) and Multi-Resolution Discriminator (MRD).

During inference, since only the generator is utilized, there are no additional param-

eters or computational resources required compared to the baseline model Demucs.

Objective evaluations affirm the effectiveness of BigWavGAN in music SR. Sub-

jective evaluations indicate that BigWavGAN can generate music with significantly

high perceptual quality over the baseline model. Notably, BigWavGAN surpasses

the state-of-the-art music SR model in both simulated and real-world scenarios. In

addition, BigWavGAN represents its superior generalization ability to address out-

of-distribution data. The conducted ablation study reveals the importance of our

discriminators and training strategies. Samples of BigWavGAN are available on

the demo page 2.

Keywords: Music super-resolution, Audio super-resolution, Convolutional neural

network, Large-scale wave-to-wave model, Generative adversarial network, Music

information retrieval

2https://mannmaruko.github.io/demopage/BigWavGAN/d.html
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Chapter 1

Introduction

1.1 Research Background

Audio Super-Resolution (SR), also known as bandwidth extension and bandwidth

expansion, aims to predict the high-resolution components from the low-resolution

input audio to give the low-resolution input more detail and brighter tone. Audio SR

is an important research topic as low-resolution audio is common in daily life, e.g.,

historical recordings or unprofessional-made modern recordings. In recent years,

deep learning based methods have become the mainstream in audio SR [1, 2, 3, 4, 5],

but only few works focus on the field of music [2, 5].

Music SR plays a crucial role in the field of audio restoration, for providing

high-fidelity listening experience of music production, enhancing streaming ser-

vices, restoring historical recordings. It aims to deliver superior sound quality that

brings out the full richness and detail of the music. Among existing prior works,

several challenges in music SR remain and require thorough discussion. In this

thesis, we explore the music SR task through solo piano music, which is challeng-

ing due to the wide frequency response and dynamic range of music. Among the

diverse applications of music SR, restoring historical music recordings stands out

as one of the most significant tasks. Historical music recordings are invaluable as

1
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cultural heritage for representing the artistic legacy of the golden age. A vast num-

ber of historical music recordings are preserved in archives, allowing contemporary

audiences to experience music as it was originally performed. They also provide

a window into the evolution of musical genres, styles, and performance practices

over time. However, historical music recordings suffer from severe and multiple

degradation due to the technological limitations of the era, such as multiple kinds

of surface noises, distortion, and a narrow frequency bandwidth [5, 6]. Therefore,

one of our goals in this thesis is the bandwidth extension of band-limited signals

of historical music recordings. Meanwhile, performing music SR in real world is

also one of our concerns, which is challenging due to a variety of bandwidths of

real-world low-resolution recordings.

1.2 Research Objectives

Although deep learning methods for audio SR has been received increasing atten-

tion in recent years, only few works focus on music SR, which remains several

challenges in the field of music SR requiring thorough investigation.

First, we aim to develop music SR models that are capable of handling real-

world applications, which is challenging due to a variety of bandwidths of real-

world low-resolution recordings. In terms of up-sampling ratio, various models are

developed to perform audio SR on a fixed ratio (e.g., 2×) [1, 2], which would be

a limitation when apply these models to real world scenarios. To this end, we de-

velop our music SR models that handle input of various narrow-bandwidths within

a certain range. Note that our models can handle arbitrary narrow bandwidth within

the range.

Next, among previous works in audio SR, many models are developed in time

domain to jointly process magnitude and phase of audio signals. However, prior

works indicate that approaches using Time-Domain Convolutional Neural Network

(TD-CNN) tend to produce annoying artifacts in their waveform outputs. And the
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cause of the artifacts is yet to be identified. To this end, we investigate the artifacts

of TD-CNNs in the following ways:

• First, we train three TD-CNN models to handle low-resolution music with

various bandwidth, which is applicable to real world problems. The SR ca-

pability of three TD-CNN models as well as the artifacts are successfully

reproduced.

• Second, we conduct an AB listening test to demonstrate the artifacts in TD-

CNNs are caused by the phase distortion via a subjective experiment. To

the best of our knowledge, this is the first to demonstrate this problem via a

subjective experiment.

• Last but not least, we propose a method referred to as Time-Domain Phase

Repair (TD-PR), which utilizes a vocoder pretrained on wide-band music

signals to repair the distorted phase components in the waveform output of

the TD-CNN. Since the vocoder and TD-CNNs are trained independently,

a single pretrained vocoder can be directly applied to arbitrary TD-CNNs

without additional adaptation. Therefore, we apply TD-PR to the aforemen-

tioned three TD-CNNs. The proposed TD-PR consistently and significantly

improved the perceptual quality of all three TD-CNN baselines. Since TD-

PR only repair the phase components of waveform, the improved perceptual

quality in turn indicates that phase distortion has been the cause of the annoy-

ing artifacts of TD-CNNs.

Moreover, based on the investigation of TD-PR, we further explore music SR,

aiming to further improve the performance of TD-PR to achieve the optimal per-

ceptual quality. Deep Neural Networks (DNNs) are anticipated to achieve high

performance when their model size is large. However, large models failed to pro-

duce high-quality results commensurate with their scale in music SR according to

our investigation of TD-PR. We attribute this to that models cannot learn informa-

tion (e.g., correct phase information) commensurate with their size through standard
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Mean Square Error (MSE) losses. To unleash the potential of large DNN models

in music SR, we propose BigWavGAN, which incorporates Demucs, a large-scale

wave-to-wave model containing 134M parameters, with a state-of-the-art discrim-

inators and adversarial training strategies. Specifically, the combination of Multi-

Scale Discriminator (MSD) and Multi-Resolution Discriminator (MRD) constitutes

the discriminator of BigWavGAN. During inference, only the generator is utilized,

resulting in no additional parameters or computational requirements compared to

the baseline model Demucs. We evaluate BigWavGAN from both objective and

subjective perspectives:

• The objective evaluations affirm the effectiveness of BigWavGAN in music

SR.

• The subjective evaluations indicate that the proposed BigWavGAN is capa-

ble of producing high-resolution music with better perceptual quality than its

baseline.

• Moreover, BigWavGAN represents its strong ability to handle out-of-

distribution data.

• Notably, BigWavGAN surpasses the state-of-the-art music SR model in both

simulated and real-world scenarios (i.e., historical music recordings). The

results indicate that BigWavGAN successfully unleashes the potential of the

baseline model without additional computation or parameters.

• At last, the ablation study unveils the importance of our discriminators and

training strategies.

1.3 Thesis Outline

The outline of this thesis is as follows:
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Chapter 1: we first briefly introduce the task of music super-resolution, includ-

ing the applications and challenges in this task. Then, the research objectives and

the outline of this thesis are presented.

Chapter 2: In this chapter, we investigate the common annoying artifacts in

Time-Domain Neural Networks (TD-CNNs) and demonstrate the artifacts in TD-

CNNs are caused by the phase distortion via a subjective experiment. Then, we

further propose Time-Domain Phase Repair (TD-PR), which uses a neural vocoder

pre-trained on the wide-band data to repair the phase components in the waveform

outputs of TD-CNNs. Evaluation results indicate that TD-PR significantly improves

the perceptual quality of TD-CNN baselines.

Chapter 3: In this chapter, we propose BigWavGAN, which incorporates De-

mucs, a large-scale wave-to-wave model containing 134M parameters, with the

state-of-the-art discriminators and adversarial training strategies. BigWavGAN are

proposed to further improve the performance of TD-PR and to unleash the poten-

tial of large DNN models in music SR. The evaluations indicate that the proposed

BigWavGAN is capable of producing high-resolution music with better perceptual

quality than its baseline. Moreover, BigWavGAN represents its strong ability to

handle out-of-distribution data. Notably, BigWavGAN surpasses the state-of-the-art

music SR model in both simulated and real-world scenarios (i.e., historical music

recordings).

Chapter 4: In the concluding chapter, we summarize the contents in this thesis.

Chapter 5: In this chapter, we describe the future work that we are interested,

including generalizing the optimal performance in music super-resolution for other

types of music and exploring a task of automatic sound quality assessment.

Chapter 6: In this chapter, the list of publications are presented.



Chapter 2

Phase Repair for Time-Domain

Convolutional Neural Networks in

Music Super-Resolution

2.1 Time-Domain and Frequency-Domain Ap-

proaches for Super-Resolution

2.1.1 Frequency-Domain Approaches

Various works have delved into the deep learning based approaches for audio SR.

Some of them work in frequency domain. Frequency-domain approaches aim to

directly recover the high-resolution components in the magnitude spectrogram, and

generally require additional signal processing to estimate the corresponding phase

information, such as Griffin-Lim algorithms [2] or neural vocoders [4]. Li et al. pro-

posed an FD approach for speech SR, which consists of 2 steps [7]. The first step is

mapping the magnitude components from narrow-bandwidth to wide-bandwidth by

DNN. The second step is to estimate the corresponding phase by signal processing.

Following this work, Hu et al. introduced Generative Adversarial Network (GAN)

6
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into both steps and got the better performance [2]. However, training two GAN-

based models is difficult due to the instability of GAN training. Furthermore, this

SR system works on a fixed up-sampling ratio, which limits its application to real

world problems. Liu et al. used a GAN-based neural vocoder for the second step

without using GAN in the first step, which successfully performed speech SR with

the ability of handling various up-sampling ratios [4]. It is worth pointing out that

the FD approaches mentioned above requires strict matching of mel-spectrogram

settings between the FD-CNN model and the neural vocoder. Therefore, some FD-

CNN models trained with an unmatched mel-spectrogram settings cannot directly

work with the pretrained vocoder.

2.1.2 Time-Domain Convolutional Neural Network Approaches

Compared with frequency-domain approaches, Time-Domain Convolutional Neural

Networks (TD-CNNs) that directly learn a wave-to-wave mapping, are considered

being able to avoid the phase problem in audio SR due to the direct waveform

processing [2]. AudioUNet is one of the pioneers of tackling audio SR by

a TD-CNN [1]. Tagliasacchi et al. proposed SEANet [8], a GAN-based model for

speech SR. The generator of SEANet is a light-weight but effective TD-CNN. In this

chapter, we utilize the generator of SEANet to music SR as one of our baselines.

Defossez et al. proposed a TD-CNN model referred to as Demucs, which is a large

model with over 130M parameters and is initially designed to address music source

separation [9]. Considering the fact that Demucs has shown strong performance in

tasks besides source separation [10], we utilize the Demucs model in the SR task in

this chapter. To the best of our knowledge, this is the first time to apply Demucs to

the music SR task.

However, TD-CNNs tend to produce annoying artifacts in their waveform

output. To alleviate the artifacts, Lim et al. proposed a time-frequency hybrid
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model [11] based on AudioUNet. Wang et al. made efforts on objective function

that employing the frequency domain losses [12] during the TD-CNN’s training.

The data augmentation strategy was proposed in [13] to improve the robustness of

TD-CNNs.

Although the above efforts for TD-CNNs improved audio SR quality measured

by objective metrics, none of the above TD-CNN approaches succeeds in removing

the artifacts according to their open-available audio samples. We hypothesize that

the inconsistency between objective and subjective evaluation results could have

been caused by some signal components that cannot be measured by the objective

metrics. We observe that phase components are not explicitly measured by typical

objective metrics such as log-spectral distance. This observation encourages us to

explore the importance of phase in audio SR.

2.2 Proposed Method: TD-PR

2.2.1 TD-PR: Time-Domain Phase Repair

In order to alleviate the artifacts caused by distorted phase components, we pro-

pose Time-Domain Phase Repair (TD-PR). The TD-PR framework consists of two

separately pretrained DNN modules and a phase replacement operation.

The overview of the proposed method is shown in Fig. 3.1. Specifically, the

TD-PR pipeline involves the following steps. First, a TD-CNN is trained to per-

form music SR. To handle low-resolution music with various bandwidths which

is common in real world, we apply a simulation pipeline to high-resolution music

data to get the corresponding low-resolution version. With the simulated pseudo

paired data, the training of TD-CNN for music SR is made possible. Details of the

simulation pipeline and training objectives are explained in the succeeding section.

Second, we pretrain a neural vocoder on the unprocessed high-resolution music
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Input TD-CNN Intermediate Output

Neural 
vocoder

: phase replacement 

Proposed Method: TD-PR

Figure 2.1: Overview of the proposed TD-PR: The TD-CNN is trained to perform
super-resolution for various narrow-band inputs. The neural vocoder takes only the
magnitude of the TD-CNN’s output as input, and re-synthesizes another waveform
that contains repaired phase components. Then, the distorted phase components in
TD-CNN’s output are replaced by that from the vocoder.

data. Since a neural vocoder can generate realistic waveform signals with only

the magnitude input, it can be inferred that a vocoder can generate realistic phase

components that are coherent with the input magnitude components. This inspires

us to utilize a neural vocoder to repair distorted phase.

Last, we introduce TD-PR to repair the phase components of the output from the

TD-CNN. The intermediate waveform produced by the TD-CNN is decomposed

into magnitude and phase components by Short-Time Fourier Transform (STFT).

We empirically use an STFT of 1024-point hann window and 256 hop length for a

sampling rate of 16 kHz. The neural vocoder takes only the magnitude of the TD-

CNN’s output as input, and re-synthesizes another waveform that contains repaired

phase components. Then, the distorted phase components in TD-CNN’s output is

replaced by that from the vocoder, and a phase-repaired waveform output is pro-

duced by inverse STFT. Although the vocoder also outputs waveform, we decide

not to use it as the final results, because empirically we found that the vocoder

could introduce distortions in the lower frequency part.

According to the above description, the vocoder and TD-CNNs are trained in-

dependently, which indicates a single pretrained vocoder can be directly applied to
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arbitrary TD-CNNs without additional adaptation, making the method flexible. It is

worth noting that since TD-PR only repair the phase components of the waveforms,

the improved perceptual quality in turn indicates that phase distortion has been the

cause of the annoying artifacts of TD-CNNs.

2.2.2 Simulation Pipeline

The design of simulation pipeline has been shown to be critical to the perfor-

mance and robustness of audio SR models [12, 13]. The simulation pipeline we

utilize mainly follows the principles in [12, 13]. Specifically, we simulate each

low-resolution input by randomly choosing a low-pass filter from 7 low-pass fil-

ters, including Butterworth, Chebyshev type 1, Chebyshev type 2, Elliptic, Bessel,

subsampling (i.e., resample poly in scipy), STFT filter (i.e., replacing the high fre-

quency components with zero elements) with the filter order randomly selected from

6 to 10. We use the implementation of low-pass filters provided by Liu et al.1 [4].

Since 3 kHz has been analyzed to be the typical bandwidth of real historical

recordings [5], we sample an low-resolution bandwidth between 2.5 kHz and 4 kHz

via a uniform distribution. The low-pass filtering is conducted on-the-fly during

training.

2.2.3 Loss Function

Inspired by [12], we perform cross-domain loss to guide TD-CNNs to capture fea-

tures in both time and frequency domains. The loss function (denoted as L) is com-

prised of two parts, multi-resolution STFT loss (LMRSTFT) [14] and multi-resolution

wave loss (LMRwave) which is similar to LMRSTFT. The loss function is defined as

below:
1https://github.com/haoheliu/ssr eval
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L = LMRSTFT +λLMRwave, (2.1)

where λ denotes the hyperparameter balancing the two loss terms. In our case,

we empirically set λ = 1000 to balance the weights between two losses.

The definition of LMRSTFT and LMRwave are shown as follows:

LMRSTFT =
1
M

M

∑
m=1

L(m)
STFT(y, ŷ), (2.2)

LMRwave =
1
N

N

∑
n=1

L(n)
wave(y, ŷ), (2.3)

where y and ŷ denote the ground truth and generated sample respectively. M

denotes the number of STFT losses with different analysis parameters (i.e., FFT

size = [512, 1024, 2048]; hop size = [256, 512, 1024]; window size = [512, 1024,

2048]). We use the implementation of LMRSTFT from [15]. N denotes the number

of wave losses with different sampling rate (i.e., original sampling rate, 2× down

sampling rate, 4× down sampling rate).

Lwave is defined as follows:

Lwave(y, ŷ) =
1
P
∥y− ŷ∥1, (2.4)

where P denotes the number of wave samples and ∥ · ∥1 denotes the L1 norms.
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2.3 Experiments for TD-PR

2.3.1 Dataset and Implementation

We trained and evaluated our model on the MAESTRO dataset [16]. It is com-

posed of about 200 hours of high-quality classical piano recordings in waveform.

Although these recordings have the sampling rate of 44.1 kHz or 48 kHz, we em-

pirically found that 16 kHz is high enough for the piano solo. Hence, we performed

music SR with the target bandwidth of 8 kHz, i.e., a target sampling rate 16 kHz.

We used the official split of the MAESTRO dataset for training, validation and test.

We cut all of the waveform into 30-second short clips for efficient training.

To implement the proposed TD-PR framework, we trained a TFGAN [17], a

light-weight vocoder, from scratch on MAESTRO training set by using an unofficial

implementation2. We followed the original settings, except resetting the sampling

rate to 16 kHz, and trained it for 1M iterations.

Since TD-PR is feasible for arbitrary TD-CNNs with a single pretrained neural

vocoder as mentioned in Sec. 2.2.1, we evaluated TD-PR with three representative

TD-CNN models as baselines: AudioUNet [1], Demucs [9] and SEANet genera-

tor [8]. We trained them from scratch with the loss function mentioned in Sec. 2.2.3

by applying the simulation pipeline in Sec. 2.2.2 to the dataset. We used the Py-

torch implementation of AudioUNet3 and Demucs4. We implemented the SEANet

generator by ourselves. We used an Adam optimizer and the initial learning rate

0.0001 to optimize each TD-CNN model for 200 epochs with the batch size of 12

and the input duration of 5s.

2https://github.com/rishikksh20/TFGAN
3https://github.com/serkansulun/deep-music-enhancer
4https://github.com/facebookresearch/demucs/tree/v2
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2.3.2 Investigation into Effectiveness of Ground Truth Phase

Components

Before delving into the evaluation of TD-PR, we present a preliminary study to

show the impact of phase on the artifacts issue of TD-CNN models. In this study, we

used SEANet a representative, and replaced the phase of the TD-CNN output with

the phase of the corresponding Ground Truth (GT) music, which denoted as TD-

CNN w/ GT-phase. Note that GT phase is not available in real world applications.

4.62%

95.38%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

TD-CNN

TD-CNN
w/ GT-phase

Figure 2.2: Results of the preliminary AB listening test: 95.38% of the TD-CNN
w/ GT-phase is voted to have fewer artifacts.

We then conducted an AB listening test, in which we asked participants to

choose the one containing fewer artifacts between the TD-CNN baseline and TD-

CNN w/ GT-phase. We selected eleven music pieces for the listening test which

cover different periods and styles of different musicians from the MAESTRO test

set. Eleven audio pairs are presented in the AB test, in which one pair is for practice

and the left ten pairs are for evaluation. Each clip is cut into the duration of 5s.

We also regularized the volume of all the samples by Audacity5. The input band-

width for this listening test is set to 3 kHz, as it has been analyzed to be the typical

bandwidth of historical recordings [5].

5https://www.audacityteam.org/
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2.3.3 Comparison Between TD-PR and TD-CNN Baselines

TD-PR is proposed to improve the perceptual quality of TD-CNN baselines via

phase repair. We evaluated the proposed TD-PR from both objective and subjective

aspects. In terms of the objective evaluation, we used the Log-Spectral Distance

(LSD) as the metric, which has been widely used in audio SR tasks [1, 2, 4]. LSD

is designed as:

LSD =
1
L

L

∑
l=1

√√√√ 1
F

F

∑
f=1

(
log|Yl, f |2 − log|Ŷl, f |2

)2
, (2.5)

where Yl, f and Ŷl, f are the ground truth and the estimated magnitude via STFT

at l-th time step (l = 1, ...,L) and f -th frequency bin (k = 1, ...,F), respectively.

The subjective evaluation aims at collecting Mean Opinion Score (MOS) from

participants to compare the perceptual quality across the input low-resolution music,

TD-CNN baseline, TD-CNN w/ TD-PR and ground truth high-resolution music.

MOS is commonly used in audio SR tasks to represent the perceptual quality [4, 10].

Participants are asked to rate audio samples according to the similarity with the

reference audio, i.e., the ground truth high-resolution music. The range of MOS in

our work is set from 1 to 5, where 5 denotes excellent quality (i.e., is the closest

to the reference) and 1 denotes bad quality. To avoid auditory fatigue caused by

giving too many samples to participants, we evaluated the three TD-CNN models

separately in three independent listening tests, which means the MOS values across

different tests cannot be directly compared. For each TD-CNN, eleven people with

no background in audio engineering participated the listening test. The same eleven

music pieces and pre-processing as in the preliminary AB test are used.



Chapter 2. Phase Repair for Time-Domain Convolutional Neural Networks in
Music Super-Resolution 15

0

1

2

3

4

5

1

2

3

4

5

TestII-1
(SEANet)

Input

TD-CNN

TD-CNN w/ TD-PR
(proposed) 

GT
Bad

Good

Excellent

Poor

Fair

TestII-2
(AudioUNet)

TestII-2
(Demucs)

2.61

2.00

3.12

2.64

2.18

3.52

4.70

2.672.55

3.33

4.674.53

TestII-3
(Demucs)

Figure 2.3: Results of MOS listening test: The box plot of the ratings across input,
TD-CNN, TD-PR and GT. TD-PR is applied to three different TD-CNN baselines.

2.4 Evaluations Results and Discussion

2.4.1 Impact of Ground Truth Phase Components

The preference of the AB listening test between TD-CNN baseline and TD-CNN

w/ GT-phase described in Sec. 2.3.2 is shown in Fig. 2.2. TD-CNN w/ GT-phase

is voted to have fewer artifacts with a large margin (95.38% vs 4.62%). Therefore,

we concluded that the artifacts in TD-CNN approaches for audio SR tasks is caused

by the phase distortion, and the distortion can be repaired by replacing the distorted

phase with a more realistic one.

2.4.2 Subjective and Objective Evaluations Results on TD-PR

We conducted the MOS listening test described in Sec. 2.3.3. The box plot of the

MOS test results and the corresponding average for each method are shown in

Fig. 2.3. First, the proposed TD-PR obtained better MOS scores than all three TD-

CNN baselines by a large margin, e.g., the proposed TD-PR has higher boxes, and
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higher average MOS scores of 1.12 (SEANet), 1.34 (AudioUNet), 0.78 (Demucs),

revealing that the TD-PR improved the perceptual quality of TD-CNN baselines sig-

nificantly. Successfully improving three different baselines with a single pretrained

vocoder indicates the flexibility of the proposed TD-PR method.

From the perspective of the average MOS scores between input low-resolution

music and TD-CNN baselines, it is obversed that TD-CNN baselines obtained lower

MOS than the low-resolution input by the deterioration of -0.61 (SEANet), -0.46

(AudioUNet), -0.12 (Demucs). This indicates that the artifacts in TD-CNNs severely

harmed the perceptual quality. However, we will show later that TD-CNN baselines

obtained better LSD scores (objective metric) than the low-resolution input, indi-

cating that LSD is not a reliable metric to evaluate audio SR and perceptual quality.

Table 2.1: LSD results with different input bandwidth and parameter amount.

2.5kHz 3kHz 3.5kHz 4kHz AVG Parameter

Input 2.43 2.19 1.97 1.78 2.09 -

SEANet 0.89 0.78 0.72 0.68 0.77 11M
SEANet w/ TD-PR(proposed) 0.94 0.86 0.82 0.80 0.86 11+6M

AudioUNet 0.83 0.74 0.69 0.66 0.73 56M
AudioUNet w/ TD-PR(proposed) 0.89 0.82 0.79 0.77 0.82 56+6M

Demucs 0.82 0.74 0.68 0.64 0.72 134M
Demucs w/ TD-PR(proposed) 0.89 0.83 0.79 0.77 0.82 134+6M

Ground truth 0 0 0 0 0 -

In terms of the gap of the average MOS between input and TD-CNN baselines,

Demucs shows the smallest gap to the input, which implies that Demucs is the

strongest among the three baselines. This observation is also in consistency with its

largest parameter amount.

The LSD scores on 4 representative low-resolution bandwidth (2.5 kHz, 3 kHz,

3.5 kHz, 4 kHz) is shown in Table 2.1. Note that the proposed method can deal
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with any bandwidth between 2.5 kHz and 4 kHz. The results show that both TD-

PR and their TD-CNN baselines got much lower LSD than low-resolution input,

indicating that music SR is successfully achieved. Although the proposed method

got sightly worse LSD scores than the baselines, we argue this is trivial, because the

aforementioned MOS listening test revealed a significant gap in perceptual quality

between TD-PR and baselines. Although LSD can well reflect how well the high

frequency magnitude is recovered in each model, it can’t reflect the degree of the

phase distortion and has been observed not highly correlated with perceptual audio

quality in previous literature [4].

P
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P
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Frame Frame Frame Frame

(a) (b) (c-1) (c-2)

(d-1) (d-2) (e-1) (e-2)

Figure 2.4: Visualization of a set of phase spectrograms: (a) low-resolution input;
(b) ground truth; (c-1) SEANet; (c-2) SEANet w/ TD-PR (proposed); (d-1) Au-
dioUNet; (d-2) AudioUNet w/ TD-PR (proposed); (e-2) Demcus; (e-2) Demucs w/
TD-PR (proposed).

2.4.3 Qualitative Evaluation of TD-PR

We visualize a part of phase spectrograms in Fig. 2.4 and their corresponding

magnitude spectrograms in Fig. 2.5 to qualitatively evaluate the proposed TD-

PR method. The visualizations include the spectrograms of low-resolution input,
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Figure 2.5: Visualization of a set of magnitude spectrograms: (a) low-resolution
input; (b) ground truth; (c-1) SEANet; (c-2) SEANet w/ TD-PR (proposed); (d-1)
AudioUNet: (d-2) AudioUNet w/ TD-PR (proposed); (e-2) Demcus; (e-2) Demucs
w/ TD-PR (proposed).

ground truth, three TD-CNN baselines and their corresponding TD-PR outputs. For

a clear view in Fig. 2.4, we plot only the phase of a single frequency bin for the first

40 time frames of an audio sample, as the phase spectrogram across multiple fre-

quency bins is difficult to understand. The visualizations reveal that the proposed

TD-PR successfully produced a phase distribution that is closer to ground truth’s

compared to TD-CNN baselines. Meanwhile, as TD-PR only repairs the phase

components, we cannot observe significant differences in magnitude spectrograms

shown in Fig. 2.5. Nevertheless, perceptual quality is improved significantly by

TD-PR. The visualizations again validate that phase distortion has been the cause

of the annoying artifacts in TD-CNNs.
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BigWavGAN: A Wave-To-Wave

Generative Adversarial Network for

Music Super-Resolution

3.1 Existing Challenges in Music Super-Resolution

3.1.1 Large-scale Time-Domain Neural Network Fails to

Achieve Optimal Performance Commensurate with Its

Model Size

DNNs are generally associated with high performance when the model size is large.

However, the discussion in Chapter 2 indicates that the large-scale model referred

to as Demusc, cannot generate music with the quality that is commensurate with its

model size in music SR, mainly due to phase distortion [18]. Demucs is a large-

scale model initially designed for music source separation [9] but also generated

fairly good results in other tasks, such as music SR [18] and music enhancement

[19]. Due to the large size of Demucs, it was anticipated to produce high-quality

results in music SR. However, Demucs still yielded results with annoying artifacts

19
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in music SR. We attribute this to that models cannot learn information (e.g., correct

phase information) commensurate with their size through standard Mean Square

Error (MSE) losses. In addition, we also investigated that besides Demucs, Au-

dioUNet [1] and SEANet [8] cannot generate high-quality audio due to phase prob-

lem when trained by standard MSE losses. To address the artifacts, we employed

a neural vocoder to rectify the distorted phase generated by Demucs. Neverthe-

less, the improvements brought by phase repair remain limited, which indicates that

introducing adversarial training into the model can lead the model to learn more

information.

3.1.2 Generative Adversarial Network Approaches in Audio

Super-Resolution

Recent publications have delved into GAN-based models in audio SR. Compared

to models trained with standard MSE losses, GAN-based models exhibit a supe-

rior capability to generate results with better perceptual quality [5]. BEHMGAN

is the state-of-the-art of GAN-based music SR model. It comprises a complex U-

net as the generator and the Multi-Scale Discriminator (MSD) from MelGAN [20].

MelGAN is the first work that successfully synthesizes realistic speeches by train-

ing GANs without additional distillation or perceptual loss functions. In recent

years, several works utilized neural vocoders to address audio SR tasks, mapping

mel-spectrogram to raw waveform [2, 4, 18]. TFGAN is a lightweight vocoder

for speech, which employs MSD and a single-resolution frequency discriminator

as its discriminator [17]. TFGAN has been used in audio SR [4, 18]. Jiang et al.

proposed an advanced neural vocoder named UnivNet, in which Multi-Resolution

Discriminator (MRD) was proposed and was proved to effectively improve the per-

formance of MelGAN [21]. Notably, a state-of-the-art neural vocoder referred to

as BigVGAN, which characterized by a large-size generator with an unprecedented

scale of up to 112M parameters is proposed by Lee et al. [22]. BigVGAN can

synthesize high-fidelity audio and shows its superior zero-shot performance across
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various out-of-distribution scenarios. However, in the task of audio SR, there is no

wave-to-wave GAN-based model in such a large model size. This inspired us to ex-

plore the large-scale wave-to-wave GAN model in music SR with high performance

and superior generalization ability.

3.2 Proposed Method: BigWavGAN

Although Demucs is a large-scale model with 134M parameters, it did not generate

high-quality waveforms commensurate with its large size in music SR [18]. To

unleash the potential of Demucs, we propose BigWavGAN for wave-to-wave music

SR, which incorporates Demucs with state-of-the-art discriminators and adversarial

training strategies.

3.2.1 Architecture of BigWavGAN

The overview of BigWavGAN’s architecture is shown in Fig. 3.1. The generator of

BigWavGAN has the identical architecture with Demcus from [9]. It is a wave do-

main U-net model leveraging a Long Short-Term Memory (LSTM) recurrent neural

network layer as the bottleneck.

BigWavGAN benefits from the two types of discriminators: MSD and MRD.

MSD works in the time domain, where each sub-discriminator receives down-

sampled 1-D waveform signals at downsampling ratios of 1, 2, and 4. MRD works

in the frequency domain, which also comprises several sub-discriminators operating

on multiple 2-D spectrograms with different Short-Time Fourier Transform (STFT)

resolutions. On top of standard MSE losses, applying different types of discrimi-

nators to cross domains (i.e., time and frequency domains) guides the generator to

restore high-resolution music that is realistic in multiple domains and resolutions,

minimizing annoying artifacts that are common for wave-to-wave models.
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Figure 3.1: Overview of the architecture of BigWavGAN.

Our choice of MRD with MSD is not common in related vocoder publications,

in which the Multi-Period Discriminator (MPD) is widely used [23, 21, 22]. How-

ever, since MPD reshapes the 1-D waveform into 2-D matrices at multiple periods,

it requires much more computational resources than MSD, making the training dif-

ficult for low-resource environments.

To improve training efficiency, we decided to replace MPD by MSD. Although

the design of MPD and MSD is different, they all work in the time domain, which

implies that MSD could be an alternative to MPD in order to similarly capture

details in the waveform. The evaluation results in section 3.4 reveal BigWavGAN’s

superior performance, validating the success of combining MSD and MRD as the

discriminator.

Adversarial training of large-scale models tend to be unstable. To stabilize the

training, we utilized the training strategies of BigVGAN. Lee et al. [22] made lots

of efforts on maintaining the stability of large-scale GAN training and the high-

speed practical usability. We believe that these training strategies are suitable for

training non-vocoder models with a similar scale, and introduced these strategies

into BigWavGAN’s training to ensure training stability.
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3.2.2 Training Objectives

In terms of training objectives, we applied LG for generator and LD for discrimina-

tor, respectively:

LG =
K

∑
k=1

[
Ladv (G;Dk)+λ f mL f m (G;Dk)

]
+λmelLmel (G) , (3.1)

LD =
K

∑
k=1

[
Ladv (Dk;G)

]
, (3.2)

where K = 3, Dk denotes the k-th MSD or MRD sub-modules. Ladv stands

for adversarial losses, L f m stands for feature matching losses, Lmel stands for mel

losses. We use the scalar weights λ f m = 2 and λmel = 45 identically as [22].

Ladv uses the least-square GAN as follows:

Ladv (G;Dk) = Es

[
(Dk(G(s))−1)2

]
, (3.3)

Ladv (Dk;G) = E(x,s)

[
(Dk(x)−1)2 +(Dk(G(s)))2

]
, (3.4)

where s is the input low-resolution waveform, x is the ground-truth waveform.

The feature matching loss L f m minimizes the l1 distance for every intermediate

features from the discriminator layers:

L f m(G;Dk) = E(x,s)

[ T

∑
i=1

1
N
||Di

k(x)−Di
k(G(s))||1

]
, (3.5)
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where T is the number of layers of the sub-discriminator Dk.

The generator loss LG also has the spectral l1 regression loss between the mel

spectrogram of the synthesized waveform and the corresponding ground-truth:

Lmel(G) = E(x,s)

[
||φ(x)−φ(G(s))||1

]
, (3.6)

where φ is the STFT with mel filter bank that converts the waveform into mel-

spectrogram.

3.3 Experiments for BigWavGAN

We used the MAESTRO dataset [16] for training. We simulated the low-resolution

music by means of following [4, 18]. To handle real-world low-resolution music

recordings which have various bandwidths, we simulated the input bandwidth rang-

ing from 2.0 kHz to 4.0 kHz on the fly during training. The models involved in our

evaluation all work at the sampling rate of 16 kHz with a target bandwidth of 8 kHz,

except BEHMGAN. The configurations of the low-pass filters used to simulate low-

resolution audio are identical to that in [18]. Hereby, the proposed BigWavGAN can

deal with any bandwidths between 2.0 kHz and 4.0 kHz.

The implementation of BigWavGAN’s generator (i.e., Demucs) is from [9]. We

implemented MSD and MRD by utilizing the open-source code from [22] and [23]

respectively. During training, the batch size is 10, each music segment is 2.56 sec-

onds long. We trained BigWavGAN for 1M iterations with the same training strate-

gies as BigVGAN [22]. As BigVGAN is similar to our BigWavGAN in model size,

keeping the same training strategy contributed to the stable training of BigWav-

GAN.

For the baseline Demucs, we used the checkpoint from [18]. We used the official

checkpoints of BEHMGAN [5] for comparison. Music generated by BEHMGAN

were resampled from 22.05 kHz to 16 kHz for a fair evaluation. Furthermore, in or-
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der to explore the effectiveness of the discriminator and training strategies, we also

trained a model denoted as BigWavGAN w/o MRD which is trained by discrim-

inators and strategies from TFGAN [17]. TFGAN combines MSD with a single-

resolution frequency discriminator instead of MRD. We implemented this training

by using an unofficial implementation1 and trained this model for 1M iterations.

3.4 Evaluations on BigWavGAN

We evaluated the proposed BigWavGAN from both objective and subjective per-

spectives.

3.4.1 Objective Evaluations

We used Log-Spectral Distance (LSD) as the objective metric, which is widely used

in audio SR tasks [4, 5]. We calculated the LSD scores at four representative band-

widths (i.e., 2.5 kHz, 3.0 kHz, 3.5 kHz, 4.0 kHz). The results of LSD are illustrated

in Tab. 3.1. Note that the proposed BigWavGAN can handle any bandwidth from

2.0 kHz to 4.0 kHz.

Table 3.1: LSD scores on the MAESTRO dataset. The bold represents the top two
LSD scores.

MSD MRD 2.5 kHz 3.0 kHz 3.5 kHz 4.0 kHz AVG LSD

Input - - 2.43 2.19 1.97 1.78 2.09

BEHMGAN [5] - 1.89 1.01 1.79 1.77 1.61

BigWavGAN (proposed) 0.83 0.79 0.76 0.73 0.78
- w/o MRD - 0.93 0.88 0.82 0.73 0.84

- w/o MSD (Demucs) - - 0.82 0.74 0.68 0.64 0.72

1https://github.com/rishikksh20/TFGAN
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In terms of LSD scores, the four models all successfully achieved music SR

since all the generated results received much better LSD scores than low-resolution

inputs. BEHMGAN was trained on inputs with bandwidths around 3.0 kHz, as

3.0 kHz was believed to be the typical bandwidth of real historical recordings [5].

Consequently, BEHMGAN performed well at 3.0 kHz. Nevertheless, the proposed

BigWavGAN still outperformed BEHMGAN at this bandwidth.

In order to explore the importance of the discriminator and training strategies,

we compared BigWavGAN with a variant that has only a single-resolution fre-

quency discriminator combined with the MSD, i.e., BigWavGAN w/o MRD. We

found that the proposed BigWavGAN, which utilizes MRD and MSD with the

training strategies from [23, 22], outperformed the “w/o MRD” variant overall.

Since LSD is a metric working on the frequency domain, compared with the single-

resolution frequency discriminator, the multi-resolution frequency discriminator

(MRD) seems to have improved the LSD score by forcing the model to concentrate

more on the fidelity of music in the frequency domain.

The proposed BigWavGAN acquired a slightly worse LSD score than the base-

line model Demucs. We consider this difference in LSD score as the result of the

common phenomenon that objective metrics tend to give generative methods lower

scores than their non-generative counterparts [4, 18]. This can be explained as that

generative models tend to generate results similar rather than exactly identical to

ground truth. To show that BigWavGAN can restore music with better perceptual

quality, subjective evaluations were conducted.

3.4.2 Subjective Evaluations

Although LSD can well reflect how well the high frequency in the magnitude is

recovered, it cannot reflect the degree of the artifacts and has been observed not to

correlate with perceptual audio quality [4, 18]. To this end, we conducted a set of

subjective evaluations to identify the advantage of the proposed BigWavGAN. The
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subjective evaluation is in the style of A/B test, rather than mean opinion score test,

because A/B test can better measure tiny differences between two models. Since

A/B test cannot handle multiple models at once, we conduct multiple A/B tests (e.g.,

BigWavGAN vs Demucs, BigWavGAN vs BEHMGAN) for a more comprehensive

analysis.

We conducted A/B tests on 3 different datasets: (a) four tracks from MAE-

STRO [16], (b) four piano tracks from MusicNet [24], and (c) for real historical

piano recordings provided in [5]. We only trained our BigWavGAN on MAESTRO

dataset, then applied it to out-of-distribution data (i.e., MusicNet, and real-world

historical recordings) in the zero-shot condition to evaluate its generalization ability.

To avoid too many testing samples and the consequent auditory fatigue in partici-

pants, the input bandwidth is set to 3.0 kHz, except for the real-world recordings.

We selected the above 12 tracks to cover different musicians, periods, and styles.

The duration of each music clip has been standardized to 10 seconds, and all audio

clips have a normalized loudness for accurate evaluation. Twelve and eleven peo-

ple with no background in audio engineering participated our subjective tests for

BigWavGAN vs Demucs and BigWavGAN vs BEHMGAN respectively
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Figure 3.2: Results of A/B listening tests: (a) is tested on MAESTRO; (b) is tested
on MusicNet; (c) is tested on denoised real historical recordings.

The results of subjective evaluations are illustrated in Fig 3.2. In all three

datasets, BigWavGAN significantly improved Demucs in terms of perceptual qual-
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ity by a large margin. This also reveals that BigWavGAN achieved superior gen-

eralization to out-of-distribution data. Similar advantages of BigWavGAN are ob-

served when it is compared with BEHMGAN, the state-of-the-art music SR model.

We further analyze the trends in the preference of BigWavGAN and BEHMGAN.

First, in Fig. 3.2 we can see that BEHMGAN’s preference increased from MAE-

STRO (a-2) to MusicNet (b-2), i.e., the preferences changed from 7.50% vs 92.50%

to 12.50% vs 87.50%. This is because BEHMGAN was trained on MusicNet. Al-

though MusicNet is out-of-distribution data to our BigWavGAN, we outperformed

BEHMGAN by a large margin, validating the strong generalization of BigWavGAN

again.

Although in the real-world historical recordings, the preference of BEHMGAN

further increased to 30.00% vs 70.00%, BigWavGAN still outperformed BEHM-

GAN with a large margin. We think the less advantage of BigWavGAN in real-

world condition is due to our limited simulation in training data. In the future, we

would like to explore more realistic simulation techniques and further improve our

model’s performance in real-world historical recordings.
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Conclusion

In this thesis, we explore music Super-Resolution (SR) through solo piano music.

First, we delved into Time-Domain Convolutional Neural Networks (TD-

CNNs), trying to identify the cause of the annoying artifacts and improve TD-

CNNs’ perceptual quality by alleviating the artifacts. To the best of our knowl-

edge, this work is the first to demonstrate the artifacts in TD-CNNs are caused by

the phase distortion via a subjective experiment. We further propose Time-Domain

Phase Repair (TD-PR), which uses a neural vocoder pretrained on the wide-band

data to repair the phase components in the waveform output of TD-CNNs. The

proposed TD-PR achieved better mean opinion score, significantly improving the

perceptual quality of TD-CNN baselines. Moreover, a single pretrained vocoder

can be directly applied to arbitrary TD-CNNs without additional adaptation. Since

the proposed TD-PR only repairs the phase components of waveform, the improved

perceptual quality in turn indicates that phase distortion has been the cause of the

annoying artifacts of TD-CNNs. The findings and comprehensive evaluations pre-

sented in this work offer a new perspective for the future improvement of audio

super-resolution algorithms. This work inspires us to combine the advantages of

TD-CNNs and neural vocoders, to develop a model that can better address the chal-

lenges in music super-resolution.

29
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Then, based on the discussion of our first proposed method TD-PR, we pro-

posed a large-scale wave-to-wave model referred to as BigWavGAN for music SR.

The model integrates a large-size generator (i.e., Demucs with up to 134M parame-

ters), with the state-of-the-art discriminators and adversarial training strategies. The

discriminator of the proposed BigWavGAN consists of Multi-Scale Discriminator

(MSD) and Multi-Resolution Discriminator (MRD). During inference phase since

only the generator will be used, there are no additional parameters or computational

resources required during inference compared to the baseline model Demucs. We

evaluated BigWavGAN from both objective and subjective perspectives. The objec-

tive evaluation indicates the effectiveness of BigWavGAN in music SR. The results

of a set of subjective evaluations demonstrate that BigWavGAN can produce high-

resolution music in significantly better perceptual quality compared to the baseline

model Demucs. Notably, the subjective evaluations also indicate that BigWavGAN

surpasses the state-of-the-art music SR model in both simulated and real-world sce-

narios (i.e., historical music recordings). Moreover, it also implies that BigWav-

GAN achieves superior generalization ability to address out-of-distribution data in-

cluding real historical recordings. Therefore, BigWavGAN successfully unleashes

the potential of the large-scale Demucs in music SR.
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Future Work

5.1 Explore Music Super-Resolution for Various

Types of Music

Given the superior performance of the proposed method BigWavGAN, in the fu-

ture, we hope to extend the applications of BigWavGAN to other types of music

instead of solo piano music, e.g., violin music, flute music, symphony music, pop

music, etc. Moreover, we hope to explore more realistic simulation techniques to

further improve BigWavGAN in real-world scenarios as well as to further extend

BigWavGAN to more tasks.

5.2 Explore Automatic Sound Quality Assessment

In order to comprehensively evaluate the performance of music super-resolution

models, we conducted listening tests several times as subjective evaluations. Sub-

jective listening tests have been considered as the golden standard for sound quality

assessment. However, a subjective test is costly and not scalable to very huge test

data [25]. To automate the sound quality assessment process, various objective met-

31
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rics have been developed and have been widely utilized. However, prior works have

indicated that objective metrics poorly correlated with human perception. There-

fore, we are interested in developing a deep learning driven method for automatic

sound quality assessment by predicting the mean opinion score.
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• Yenan Zhang, Guilly Kolkman, and Hiroshi Watanabe. Phase repair for time-

domain convolutional neural networks in music super-resolution. 2024 Sound

and Music Computing (SMC), July, 2024.

• Yenan Zhang, and Hiroshi Watanabe. BigWavGAN: A Wave-To-Wave Gen-
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