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Abstract—With the development of text-to-image model in the
field of image generation, it is possible to generate high fidelity
images using only short text. We investigate the ability to use
these pre-trained text-to-image models applying to image com-
pression tasks without any fine-tuning. We extract caption, spatial
structure sketch, and a special embedding information from the
image. The bit rate of these components can be reduced using
difference compression techniques. We can reconstruct them back
to the image using the pre-trained generative models at decoding
process. We show this compression algorithm outperforms the
learned image compression method in perceptual metrics FID
and KID at very low bit rate.

Index Terms—Diffusion model, Image compression

I. INTRODUCTION

Image compression is an important task in the field of image
processing. The most widely used compression algorithms
today are still hand-crafted. Recently, promising results have
been achieved using neural networks to learn end-to-end image
compression models. Neural network-based image compres-
sion model can obtain a compact latent representation for the
ground truth. It is shown that neural network-based image
compression outperforms traditional compression algorithms
in terms of rate-distortion (R-D) performance [1], [2], [3].
Generative model-based image compression algorithm solves
the artifacts and blurring problems associated with previous
image compression method. In particular, Mentzer et al. [4]
enhanced image compression performance by introducing ad-
versarial loss, thus improving the R-D characteristic compared
to previous methods. Yang et al. [5] utilized conditional
diffusion model as a decoder, the encoded image is treated
as conditional information into the diffusion model. This
approach achieves superior performance compared to previous
GAN-based models in lossy image compression tasks.

Although these image compression models can provide
high-fidelity image compression, they usually require end-to-
end training using R-D loss functions on datasets containing
a large number of images. In the field of text-to-image gen-
eration, diffusion models have been shown to generate photo
realistic images guided by text descriptions. A natural question
is that if these powerful image generation models can generate
a wide variety of high-quality images, then they should also
be able to apply to other image processing tasks. In Stable
Diffusion [6], as long as the conditional information such as

(a) PICS reconstruct (b) Ours reconstruct (c) Ground Truth

Fig. 1: Comparison of reconstructed images, (a) PICS, (b)
Ours, (c) Ground Truth.

prompt, seed, model version are kept the same, then only these
conditional information need to be transmitted. The decoder
can surely reconstruct back to the input image by utilizing
these conditional information. Therefore, we believe that this
property can be exploited to apply Stable Diffusion to image
compression task. Our approach is very close to the one of
PICS [7]. Both of them aim to compress images using pre-
trained text-to-image model. PICS demonstrates the capability
to compress images at very low bit rate. However, PICS cannot
faithfully recover the color and style information of the ground
truth, as shown in Fig. 1.

Inspired by previous works [7], [8], we propose a special
embedding process to recover faithful texture information and
use existing image compression models to compress this spe-
cial embedding. In this paper, we try to extract three different
components, prompt, sketch, embedding from images and
compress them with different encoding methods respectively.
At the decoding phase, the three expanded components are fed
into pre-trained text-to-image model to reconstruct the image.
In summary, our contributions are as follows.

1) We use a pre-trained text-to-image model for the image
compression task, preserving input image texture and
style by optimizing a special embedding. This compres-
sion method maintains the fidelity of the compressed
image even at very low bit rate.

2) We propose to use edge information as a constraint to
accelerate null text inversion optimization and improve
the generation quality.
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Fig. 2: The overall coding architecture that extracts prompt, edge, and optimized special embedding from ground truth.

II. RELATED WORK

A. Diffusion Models

The diffusion model was first successfully used in uncondi-
tional image generation by Ho et al. [9]. Later Dhariwal et al.
[10] propose a classifier guidance to enable diffusion model
to conditionally generate images. This scheme outperforms the
GAN [11] model in fidelity. Stable Diffusion is trained on a
dataset of millions of images [6], it can generate semantically
compatible images from the text. ControlNet [12] is a plug-
in for the Stable Diffusion that utilizes edge maps, key-point
maps, depth maps, etc., as conditional inputs. It ensures that
the structure of the image generated by Stable Diffusion is
consistent with the conditional inputs.

B. Null-text Inversion for Editing Real Images

Mokady et al. [8] propose a method to address the incon-
sistency caused by classifier-free guidance, which arises when
reconstructing images after DDIM inversion [10], [13]. They
suggest optimizing a special embedding to resolve this prob-
lem, which is then used for image editing tasks. We propose
to transfer this idea to the image compression task. The null
text optimization requires ground truth for the DDIM Inversion
process, which is not reasonable for the image compression
task. We investigate the use of an arbitrary image generated
by the text-to-image model as a starting point and leveraging
edge information to constrain the optimization process.

III. PROPOSED METHOD

A. Overall Coding Scheme

In this section, we introduce the overall framework and
strategies for coding the different components shown in Fig.
2. First, we use the Prompt Inversion (PI) [14] method to
extract the text corresponding to the image and apply lossless
compression. This method searches the CLIP latent space of
the image to find the text embedding with the highest cosine
similarity, and then projects the text embedding back into
the prompt, capturing semantic information better than human
captions.

Reconstructing the image using only the prompt fails to
restore the structural information of the ground truth. By
adding the ControlNet [12], Stable Diffusion can constrain the

structure of the generated image [7]. We extract Holistically-
nested Edge Detection (HED) map from the ground truth
and later compress the HED map using the VQ Compression
[15] method. VQ Compression uses a pre-trained VQGAN
[16] model, which compresses the image into a feature map
consisting of codebook vectors. Each vector can be indexed
to represent a particular vector in the codebook, then be
recovered by transmitting the index value of the codebook
and decoded to the image by the VQGAN decoder. For the
pre-trained VQGAN model with the codebook size of 1024,
the codebook is clustered to 255 using K-means algorithm so
that it can be represented by a value of type uint8 to reduce
bit-rate.

Although the semantic and structural information of the
generated image is controlled by prompt and HED map,
the MSE loss between the pixels of the generated image
and ground truth is still large that similar colors cannot be
generated. Specifying the color prompt or improving the bit
rate of the HED map will not solve the issue. To address
this problem, we propose to use the Null Text Inversion
method [8] to generate color-consistent images. For each
trajectory in the diffusion backward process, we use a special
null text embedding as an optimization object to make the
trajectory of the generated image as close as possible to
the one of the ground truth. A null text will be encoded
by CLIP text encoder into null text embedding in (N,D)
shape. In order to compress this embedding, we use the
existing learned image compression method [3] to reshape
the embedding into an RGB image format (3, H,W ) and
then compress it. Since the learned image compression model
cannot be applied to floating-point compression directly, we
optimize the compressed embedding combining compression
and optimization together. Moreover, to improve the quality of
the image, the compressed prompt and HED map are used as
a condition for further post-processing of the generated image
using ControlNet Tile method [12].

B. Null Text Inversion

For an image x0, it is first encoded into the latent vector
z0, then artificial noise ϵ is added to {z1, ..., zT }. The noise
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predictor ϵθ learns to remove the added artificial noise by
training with the following equation:

L = Eϵ∼N(0,I),t∼Uniform(1,T ) ||ϵ− ϵθ(zt, t, C)||. (1)

Using DDIM [17] sampling formula, the noise predictor
gradually remove the noise until z0. We have the sampling
formula:

zt−1 =

√
αt−1

αt
zt+

(√
1

αt−1
− 1−

√
1

αt
− 1

)
·ϵθ(zt, t, C).

(2)
Based on the assumptions of the ODE process, we can also
obtain the reversal formula for DDIM Inversion [10] get zt to
zt+1.

zt+1 =

√
αt+1

αt
zt+

(√
1

αt+1
− 1−

√
1

αt
− 1

)
·ϵθ(zt, t, C).

(3)
The noise predictor ϵθ(zt, t, C) is computed by the classifier-
free guidance [13], where the model predicts the unconditional
and conditional noise, after which it performs linear combina-
tion of the two predicted noises. Here ω is the hyper-parameter
of the computation.

ϵθ(zt, t, C) = ω · ϵθ(zt, t, C)− (1− ω) · ϵθ(zt, t, ∅), (4)

where the empty set ∅ = Eclip(“”) as the embedding of null
text is encoded by the pre-trained CLIP [18] encoder. The null
text embedding value will be influenced by the noise predictor
ϵθ(zt, t, C), which is noise prediction result through classifier-
free guidance formula [13]. According to the DDIM sampling
formulation, the value of zt−1 is calculated from the value of
zt with the ϵθ(zt, t, C) prediction noise [17]. Thus, the value
of zt−1 can be optimized by adjusting the prediction noise,
which is in turn optimized by modifying the value of the null
text embedding.

The overall embedding optimization process is shown in
Fig. 3. First we use a compressed version of prompt and
edge to generate an image via Stable Diffusion, and then

Fig. 3: DDIM Inversion obtains z∗T and then optimizes the
target trajectory {z0, ..., zT } with z∗T . ControlNet is leveraged
with an edge component to enhance the optimized results.

use DDIM Inversion [10] to add deterministic noise to get
{z∗1 , ..., z∗T } trajectories. We record the added noise and copy
it to the ground truth to get the {z1, ..., zT } trajectory as
well. Taking the trajectory {z0, z1, ..., zT } as the optimization
target, starting from z∗T given the timestamp t = T, ..., 1 our
optimization formula is shown as follows:

LRD = R(y) + λ ·D(zt−1, z
∗
t−1(ϵθ(z

∗
t , t, ∅̂, C))). (5)

We optimize zt−1 and z∗t−1 feature map using MSE and
Kullback–Leibler divergence as a loss function.

D = DKL(zt−1||z∗t−1) +DMSE(zt−1, z
∗
t−1), (6)

where ∅̂ represents the null text embedding of the compressed
version by the LIC model [3] and C denotes the conditions
prompt and edge, while R(y) represents the bit rate required
by the LIC model to compress the null text embedding [3],
hyper-parameter λ is used to control the bit rate. For each z∗t
to z∗t−1 denoising process, we combine additional ControlNet
to predict the next feature map z∗t−1 as shown in Fig. 3.

IV. EXPERIMENT

A. Experiment Settings

1) Implementation details: We use the open-source Stable
Diffusion version 1.5 [6] as the pre-trained model, and the
official HED checkpoint by ControlNet [12]. For training, we
use Adam with a learning rate of 0.01 as the optimizer and set
the DDIM sampling step to 25. It takes 1 hour and 30 minutes
to optimize an image on an RTX A5000 graphics card.

2) Datasets and Evaluation: We use the Kodak [19] and
the CLIC2021 [20] test set for evaluation. We evaluate the
compression performance using five metrics, PSNR, SSIM,
LPIPS [21], FID [22], and KID [23] at 0.05∼0.06bpp.

B. Experimental Results

1) Qualitative results: We give the visualization examples
of reconstructed images with different compression algorithms
shown in Fig. 4. Cheng et al. [3] brings blur at low bit rate
and the sharp details of the image are lost. PICS [7] is capable
of reconstructing sharp image details and keeping the high-
level spatial information unchanged. However, the texture and

Fig. 4: Qualitative results for the Kodak dataset using different
compression algorithms.
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TABLE I: Evaluation Result of Kodak Images

Bpp MS-SSIM↑ PSNR↑ LPIPS↓ FID↓ KID↓

Ours 0.061 0.618 18.85 0.468 118 0.148
Cheng [3] 0.062 0.881 26.58 0.502 180 0.150
PICS [7] 0.028 0.307 11.54 0.644 143 0.158

TABLE II: Evaluation Result of CLIC Images

Bpp MS-SSIM↑ PSNR↑ LPIPS↓ FID↓ KID↓

Ours 0.058 0.639 17.96 0.442 136 0.167
Cheng [3] 0.058 0.904 26.34 0.435 179 0.190
PICS [7] 0.026 0.296 10.07 0.654 181 0.177

(a) PSNR (b) LPIPS

Fig. 5: Ablation experiments demonstrate learning conver-
gence with and without the use of edges as constraints.

color information of the image are completely modified. Our
method generates images with sharp details and maintains the
texture and color information of the ground truth at low bit
rate. Another property of this compression method is that due
to random sampling, each generated image may have slight
differences in details. This property allows us to generate
images with different details based on the ground truth.

2) Quantitative Results: We first compare the performance
of the PICS as baseline model. The experimental results are
shown in Table I and Table II, the bold results show the best
and the underline one show the second. From Table I and
Table II, we observe that our method improves on all metrics
by introducing an optimized embedding of 0.03 bits per pixel
(bpp) compared to PICS. Further our method outperforms
existing neural network image compression model by Cheng
at the same bit rate in terms of the image fidelity metrics FID
and KID.

3) Ablation Study: We used the PSNR and LPIPS metrics
to evaluate ablation study experiment, as shown in Fig. 5.
Experiments demonstrate that using edges as a constraint
significantly improves the results.

V. CONCLUSION

In this paper, we propose a novel perceptual image com-
pression method. We use a pre-trained text-to-image model for
the image compression task and optimize a special embedding
to control texture and color. Experimental results show this
perceptual compression model maintains good fidelity score
even in the case of less than 0.1 bpp. However, the image
encoding process is time-consuming, which limits its practi-
cality in scenarios with constrained computational power. Con-

sequently, it is more suitable for environments with sufficient
computational resources and limited bandwidth.
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