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ABSTRACT

Research on computer-aided polyp detection in gastrointesti-
nal endoscopy has spanned the past few decades. Despite no-
table progress, the challenge of achieving automatic accurate
and real-time polyp detection remains unresolved. This is be-
cause of the large differences in polyp characteristics such as
shape, texture, size, and color, and the artifacts that are sim-
ilar to polyp during endoscopy procedure. In this paper, we
propose a novel Gaussian Enhanced Euclidean norm Ghost
attention (GEEG) module for reliable real-time polyp detec-
tion on endoscopic images and videos. The new attention
mechanism strengthens the features generated by Ghost con-
volution’s cheap operations by increasing the ability to ex-
tract inter-channel and spatial information inside the convo-
lution layer. This module is integrated into the backbone of
YOLOv8, creating a new model named GEEG-YOLOv8, to
overcome above obstacles in polyp detection. Experiment re-
sults on three public datasets show that our proposed method
outperforms existing state-of-the-art methods in both accu-
racy and speed.

Index Terms— Attention mechanism, yolov8, deep
learning, polyp detection, medical image analysis

1. INTRODUCTION

Colorectal cancer (CRC) stands as the third-leading cause of
cancer-related death. While colon cancer boasts a five-year
survival rate of around 68%, the corresponding rate for stom-
ach cancer is merely 44% [1]. Addressing CRC-related mor-
tality can be significantly advanced by identifying and elimi-
nating precancerous lesions like colon polyps, which carry the
potential to develop into CRC later on. Hence, early detection
of polyps is crucial for enhancing survival rates. Colonoscopy
is an invasive medical procedure which involves the use of a
flexible endoscope by an endoscopist to examine and treat the
colon. It is widely considered the optimal diagnostic tool for
early detection and treatment of polyps, making it the pre-
ferred choice for gastroenterologists in screening for colon-
related issues. However, about 25% of polyps are missed dur-
ing inspection due to endoscopist exhaustion [1]. Therefore,
computer-based detection methods come to the aid of physi-
cians for a more accurate diagnosis and reduce miss-detection

Fig. 1. Example of feature maps of an (a) original image
generated by cheap operations in (b) Gaussian Enhanced Eu-
clidean norm Ghost attention module and (c) Ghost convolu-
tion.

rate of polyps.

The emergence of deep learning approaches has made a
significant impact on the accuracy of automatic polyp detec-
tion on endoscopic images and videos. Nevertheless, there
are factors that hinder the performance of such deep learning
methods. The large differences in polyp characteristics such
as shape, texture, and size pose difficulty for deep learning
models in locating them. Polyps may be concealed by water
flow, artifacts such as bubbles, light scatters during endoscopy
procedure, and other bodily tissues. Under specific camera
view, polyps appear very similar to intestine wall. Addition-
ally, the endoscopy contains moving-camera, different from
common moving object detection with fixed camera circum-
stances. The complex camera motion generates inevitable
noises such as motion blur, occlusion, illuminance variations,
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Fig. 2. The overall architecture of the proposed GEEG-YOLOv8.

etc., disturbing the detection results of deep learning models.
This means that the model may miss the polyp in images or
videos.

In recent years, many studies have been proposed to im-
prove the performance of automatic polyp detection [2, 3, 4,
5, 6, 7, 8]. Most of them are video-based object detection
which uses features from extra dimension. RYCO [2] and
AIPDT [3] both incorporate temporal information by utiliz-
ing discriminate correlation filter-based trackers. Accurate
detection of the polyp in the initial frame is required in these
methods which is difficult to obtain due to noises in image.
Zheng et al. [4] employs optical flow to refine detection result.
However, high variation between consecutive video frames
caused by complex movements of the camera leads to sub-
optimal performance. STFT [5] proposes Spatial-Temporal
Feature Transformation to learn the alignment and mitigate
the feature inconsistency between multiple frames. Although
the detection accuracy of STFT increases, the heavy compu-
tational cost makes real-time running incapable. YONA [6]
extract information from two consecutive frames for accurate
and fast polyp detection by the presented foreground temporal
alignment, background dynamic alignment, and cross-frame
box-assisted contrastive learning module.

Regarding image-based object detection approaches, Shin
et al. [7] applies region-based deep convolutional neural net-
work and post-learning approaches to reduce the false posi-
tive rate of polyp detection. However, it also requires high
computational resources, making real-time running infeasi-
ble. Wan et al. [8] introduces an attention mechanism to
YOLOv5 model to achieve accurate and real-time polyp de-
tection, but the model is evaluated on a private dataset and a

small public dataset.

In this paper, a novel Gaussian Enhanced Euclidean norm
Ghost attention (GEEG) module is presented for reliable
real-time polyp detection on endoscopic images and videos.
It does not require feature extraction from extra dimensions
to tackle the above issues. By modifying the backbone of
YOLOv8 model [9] to include Ghost convolution (Ghost-
Conv) [10], the number of model parameters and floats point
operations (FLOPs) can be greatly reduced. Despite that,
the use of GhostConv alone does not bring sufficient per-
formance gain in polyp detection. The cheap operations in
GhostConv, which is usually 3 × 3 depth-wise convolution,
only capture the spatial information from inherent feature
maps generated by 1 × 1 point-wise convolution, neglect-
ing global dependency. The depth-wise convolution also
does not consider the correlation between channel informa-
tion. Therefore, cheap operations repeatedly extract local
information produced from inherent feature maps, hindering
performance improvement. To enhance the ability to extract
inter-channel and spatial information of GhostConv, Gaus-
sian Enhanced Euclidean norm (GEE) attention mechanism
is added after cheap operations. This attention method is
inspired by Convolutional Block Attention Module (CBAM)
[11] and Gaussian Context Transformer (GCT) [12], and is
based on a hypothesis of the relationship between global con-
texts information and attention activations: Smaller attention
activations are linked to global contexts possessing larger ab-
solute values [12]. Euclidean norm measures the magnitude
of a vector or a matrix, larger Euclidean norm means more
deviation from the vector or matrix to its origin. Hence, we
use a Gaussian function which takes the Euclidean norm of
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Fig. 3. Gaussian Enhanced Euclidean norm Ghost attention module block details. ⊗ represents broadcast element-wise mul-
tiplication and ⊕ denotes element-wise addition. Ec and Es represents Channel Euclidean norm and Spatial Euclidean norm,
respectively.

channel or spatial dimension as input to refine features output
by the channel and spatial attention mechanism. As shown
in Fig. 1, the feature maps generated by cheap operations
in GEEG emphasize more important information, i.e. the
polyp features, denoted by red arrow, compared to the naive
GhostConv. GEEG’s feature maps contain more fine-grained
features, whereas one feature map generated by GhostConv
captures noise information, i.e. light scatter, distracting the
model.

Our main contributions are as follows:

• A novel Gaussian Enhanced Euclidean norm attention
mechanism is proposed to enhance the Ghost convolu-
tion’s ability to extract inter-channel and spatial infor-
mation.

• Gaussian Enhanced Euclidean norm Ghost attention
module is incorporated into the backbone of YOLOv8
model, reducing the number of parameters and FLOPs
while maintaining high detection accuracy. We call it
GEEG-YOLOv8, its architecture is shown in Fig. 2.

• Extensive experiments on three public datasets demon-
strate superior performance compared to previous state-
of-the-art methods.

2. PROPOSED METHOD

In this section, we will present the lightweight GEEG-
YOLOv8 for high polyp detection performance. Then we
will introduce the new GEEG module which mitigates the
weakness of GhostConv in capturing global channel and
spatial information.

2.1. GEEG-YOLOv8

The overall framework of GEEG-YOLOv8 is shown in Fig.
2a. Its architecture comprises a backbone, a neck, and a de-

tection head. The backbone network is composed of multi-
ple regular GhostConv and GEEG-C2f modules. Although
GEEG can enhance the information extraction capability, it
increases model complexity; therefore, GEEG is only incor-
porated in C2f to avoid introducing large number of param-
eters to the model. The GEEG-Bottleneck, as illustrated in
Fig. 2c, contains two GEEG modules. The first GEEG mod-
ule serves as a squeezing layer, reducing the number of in-
put channels with a ratio of 2. The second GEEG module
increases the number of channels to align with the shortcut
path. Then the inputs and outputs of these two GEEG mod-
ules are linked by a residual connection. The first GEEG
module is followed by Batch Normalization (BN) operation
and SiLU activation function while only BN is used after the
second GEEG module. The GEEG-C2f shown in Fig. 2b,
includes n GEEG-Bottleneck which has two parallel gradient
flow branches, thereby it can obtain richer gradient flow infor-
mation while reducing parameters. The neck is PANet, which
fuses feature maps from lower layers to deeper layers to boost
information flow. GEEG-YOLOv8 adopts an anchor-free ap-
proach with a decouple detection head. The first branch in
the detection head outputs object bounding box loss while the
second branch outputs object class loss.

2.2. Gaussian Enhanced Euclidean norm Ghost attention
module

2.2.1. Gaussian Enhanced Euclidean norm attention

Self-attention has been proven to be efficient in extracting
long-range global dependencies. However, the quadratic
complexity makes it impractical to implement in real time on
constrained hardware devices. We propose the lightweight
GEE attention to boost GhostConv performance with negligi-
ble number of additional parameters, based on a hypothesis:
Smaller attention activations are attached to global contexts
that have larger absolute values. GEE is composed of chan-
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nel attention and spatial attention module, each module has
two branches, as shown in Fig. 3b. The left branch differs
from GCT in two ways. First, we directly take the Euclidean
norm of the feature maps as input to a Gaussian function
rather than using the normalization operation of global aver-
age pooling (GAP). The intuition behind is that the Euclidean
norm quantifies the magnitude of a vector or matrix, with
larger Euclidean norm indicating greater deviation from the
vector or matrix to its origin, so constraining the Euclidean
norm with Gaussian function will improve model generaliz-
ability. Second, we argue that the above hypothesis is also
true in spatial dimension, hence we extend the idea to extract
global spatial information. The right branch is quite similar to
CBAM, except that in channel attention module, only GAP is
used, followed by a 1 × 1 convolution layer to reduce model
parameters.

Concretely, given a feature map F ∈ RC×H×W as input,
C denotes number of channel and H , W are spatial dimen-
sion, GEE computes attention as follows.

F′ = Mc(F)⊗ F⊕G(Ec)⊗ F

F′′ = Ms (F
′)⊗ F′ ⊕G(Es)⊗ F′,

(1)

where ⊗ represents broadcast element-wise multiplication
and ⊕ denotes element-wise addition. F′′ is the final output.
Ec ∈ RC×1×1 and Es ∈ R1×H×W represents Channel Eu-
clidean norm and Spatial Euclidean norm, respectively, and
is formulated as follows.

Ec =

{
eck =

√∑W
i=1

∑H
j=1 Fk(i, j)2 : k ∈ {1, . . . , C}

}
(2)

Es =

{
esij =

√∑C
k=1 F

′
ij(k)

2 : i ∈ {1, . . . ,W}, j ∈ {1, . . . ,H}
}
.

(3)
A Gaussian function G(x) = exp(− x2

2σ2 ) takes x as input
with maximum value 1, mean 0 and standard deviation σ, to
satisfy the hypothesis about the relationship between global
contexts and attention activations. Larger standard deviation
results in smaller difference between each attention activa-
tion. The impact of standard deviation on model performance
will be analyzed in the experiment part.

Mc ∈ RC×1×1 and Ms ∈ R1×H×W is channel attention
map and spatial attention map, respectively, and computed as

Mc(F) = Sigmoid(f1×1(GAP(F))), (4)

Ms(F) = Sigmoid(f7×7([MaxPool(F); AvgPool(F)])),
(5)

where fk×k represents a convolution operation with kernel
size of k × k.

The left branch refines the right branch’s output by putting
more attention to potential concealed polyp features that pos-
sess low activation values while suppressing the importance
of polyp-like noise features to the model.

Table 1. Detection result of GEEG-YOLOv8 on SUN dataset
with different standard deviation σ.

σ 1 2 4 6
P 84.86 86.09 87.23 87.12
R 69.26 69.83 71.56 67.27

mAP@50 80.51 81.21 82.49 80.26
mAP@50-95 44.06 45.04 45.41 44.28

2.2.2. Combine with Ghost Convolution

GEE attention is added after cheap operations in GhostConv
to create GEEG module, as shown in Fig. 3a. The con-
ventional GhostConv can reduce computation cost, but it has
limited information extraction ability due to cheap operations
only capturing local information from inherent feature maps
generated by 1×1 point-wise convolution. GEE attention can
elevate the capacity of GhostConv for extracting long-range
global channel and spatial information. Given an input fea-
ture map F ∈ RC×H×W , GEEG performs two steps. First,
the inherent feature map Y′ ∈ RC′×H×W is generated by

Y′ = f1×1(F). (6)

Then the output feature map Y ∈ RCout×H×W is computed
as follow.

Y = Concat([Y′,GEE(Φdp(Y
′))]), (7)

where Φdp denotes depth-wise convolution operation, and
C ′ < Cout.

3. EXPERIMENTS

3.1. Datasets

Following datasets are used to conduct our experiments:
Kvasir-SEG [17], NeoPolyp-Small [18], PolypsSet [19], LD-
PolypVideo [20], CVC-ClinicDB [21], ETIS-LaribPolypDB
[21], and SUN [22]. Considering the generalization capabil-
ity of our proposed method, we combine the first four datasets
as training set and test our model on the last three datasets.
We manually delete images that have identical viewpoint and
distance of the same polyp and images that are too blurry and
contain too many artifacts in the training set since these im-
ages do not contribute meaningful information to the learning
process. Totally, there are 24,734 training images. About
the test datasets, CVC-ClinicDB and ETIS-LaribPolypDB
has 612 and 196 polyp images, respectively. SUN database
contains 49,136 polyp frames taken from different 100 polyp
video sequences.

3.2. Experimental Setup

All experiments were conducted on one NVIDIA RTX 4070
GPU with 12GB VRAM. The models are deployed in Py-
Torch framework. SGD optimizer is utilized with an initial
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Table 2. Detection performance comparisons with other models. The best score is denoted as red, while the runner-up score is
denoted as blue.

SUN CVC-ClinicDB ETIS-LaribPolypDBMethod P R mAP@50 mAP@50-95 P R mAP@50 mAP@50-95 P R mAP@50 mAP@50-95
STFT [5] 81.50 71.45 80.69 40.12 - - - - - - - -

AIDPT [3] 80.37 69.78 79.21 38.55 - - - - - - - -
YONA [6] 83.30 71.52 81.43 41.89 - - - - - - - -

Wan et al [8] 82.81 70.39 80.11 40.07 82.83 73.22 76.93 49.80 73.95 76.70 80.34 60.88
EfficientDet-D0 [13] 74.86 58.23 63.02 27.57 77.19 73.15 75.70 47.33 70.10 73.78 75.51 50.26
YOLOv3-tiny [14] 74.70 57.01 62.69 26.96 76.04 72.62 74.68 46.80 71.29 75.00 74.72 48.68

YOLOv6s [15] 84.58 68.25 74.94 37.50 85.42 74.12 79.12 51.48 89.94 77.55 82.66 61.69
YOLOv7-tiny [16] 84.21 71.52 81.78 41.95 79.59 74.10 78.84 48.82 86.66 75.53 81.17 59.40

YOLOv8s [9] 83.76 63.95 76.14 40.71 82.48 71.24 81.03 55.24 85.13 73.01 81.77 60.92
GEEG-YOLOv8 (ours) 87.23 71.56 82.49 45.41 85.48 74.67 81.54 55.29 87.59 76.02 84.19 63.56

Table 3. Model complexity and frames per second rate com-
parisons.

Method Params GFLOPs FPS
STFT [5] - - 12.5

AIDPT [3] - - 72
YONA [6] - - 46.3

Wan et al. [8] - - 45
EfficientDet-D0 [13] 3.9M 2.4 209
YOLOv3-tiny [14] 8.6M 12.9 370

YOLOv6s [15] 18.5M 45.2 275
YOLOv7-tiny [16] 6.0M 13.0 208

YOLOv8s [9] 11.1M 28.4 300
GEEG-YOLOv8 (ours) 8.5M 21.2 303

learning rate of 0.01 and momentum of 0.937, weight decay
rate is 0.0005. All images are resized to 640×640, batch size
is set to 32. The models were trained for 400 epochs. The de-
tection performance is evaluated by precision (P), recall (R),
mean average precision (IoU = 0.5) (mAP@50), and mean
average precision (IoU ranging from 0.5 to 0.95) (mAP@50-
95) metric. Models complexity and speed are measured by
the number of parameters, GFLOPs, and frames per second
(FPS) rate.

3.3. Experimental Results

3.3.1. Impact of Standard Deviation on Model Performance

In this section, the effect of standard deviation σ in Gaussian
function G(x) = exp(− x2

2σ2 ) on GEEG-YOLOv8’s detection
performance is examined. The results are illustrated in Table
1. We can see that as σ increases, the network performance
initially improves before subsequently declining. The best
score is obtained when σ is set to 4. This pattern is logical be-
cause too large variance diminishes the difference in attention
activations among channel and spatial dimension, hindering
the effective suppression of global noise contexts, while too
small variance may overly restrain the importance of other
meaningful features as well as wrongly highlight noise con-
texts.

3.3.2. Comparisons with State-of-the-arts Methods

Table 2 shows the quantitative comparison results of the pro-
posed GEEG-YOLOv8 with other detection models. Over-
all, our model outperforms other methods in all metrics on
SUN and CVC-ClinicDB dataset. On ETIS-LabribPolypDB
dataset, GEEG-YOLOv8 obtains the best mAP@50 and
mAP@50-95, and second best P and R. Compared with
runner-up models, GEEG-YOLOv8 achieves great perfor-
mance gains of 3% in P and mAP@50-95 metric on SUN,
0.5% in R and mAP@50 score on CVC-ClinicDB, and 2% on
mAP@50 and mAP@50-95 metric on ETIS-LaribPolypDB.
The proposed GEEG-YOLOv8 outperforms other mod-
els specialized in polyp detection. Model complexity and
FPS rate are illustrated in Table 3. With the efficient and
lightweight design of GEEG, the number of parameters and
GFLOPs of our model are reduced compared to the origi-
nal YOLOv8 model. Despite not having the lowest number
of parameters and GFLOPs, GEEG-YOLOv8 attains the
second-best FPS of 303. Our proposed method achieves
new state-of-the-art polyp detection accuracy with low model
complexity, showing its potential in real-life applications
where real-time running is crucial.

Fig. 4 shows the qualitative results of GEEG-YOLOv8
with other models on three datasets. Our proposed method
can correctly detect polyps under various conditions, such as
blurring effect in SUN dataset. It is also capable of iden-
tifying flat and small polyps in CVC-ClinicDB and ETIS-
LaribPolypDB. Moreover, GEEG-YOLOv8 shows a robust
performance for polyps that look similar to intestine wall.

3.3.3. Ablation Study

To investigate the contribution of different components in the
proposed method, ablation experiments were conducted on
SUN dataset. The results are shown in Table 4. In method
(a), only GhostConv is used in the backbone of the original
YOLOv8. Although method (a) has the highest FPS, the de-
tection performance is sub-optimal due to the limitation in ex-
tracting global information ability of GhostConv. Method (b)
adds the channel and spatial attention mechanism (the right
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Fig. 4. Qualitative comparisons of polyp detection on three datasets. Green and red denotes the groundtruth and model
prediction, respectively.

Table 4. Ablation results on SUN dataset of the proposed method.
Method GhostConv M(x) G(x) P R mAP@50 mAP@50-95 Params GFLOPs FPS

(a) ✓ 85.05 64.51 77.25 41.95 8.4M 21.2 322
(b) ✓ ✓ 85.29 67.22 80.10 44.21 8.5M 21.2 310
(c) ✓ ✓ 86.09 69.32 81.11 44.85 8.4M 21.2 312
(d) ✓ ✓ ✓ 87.23 71.56 82.49 45.41 8.5M 21.2 303

branch in Fig. 3a) after cheap operations in GhostConv, ob-
taining 3% gains in R, mAP@50, and mAP@50-95 metric
with only 0.1M more parameters. Method (c) applies only
GEE (the left branch in Fig. 3a) to GhostConv, and com-
pared to method (b), about 1% increase in all four detection
metrics is attained without additional parameters. By incor-
porating all three improvements in method (d), the best polyp
detection score is achieved with no additional parameters and
GFLOPs compared to method (b), and only a small reduction
in FPS rate is shown. The P, R, mAP@50, and mAP@50-95
score of method (c) is 87.23%, 71.56%, 82.49%, and 45.41%,
respectively.

4. CONCLUSION

In this paper, we propose a novel Gaussian Enhanced Eu-
clidean norm Ghost attention module to improve the perfor-
mance of polyp detection on endoscopic images and videos
in both accuracy and speed. It applies a Gaussian function
on the Euclidean norm of channel and spatial dimension to
refine features output by the channel and spatial attention
mechanism, improving the ability of Ghost convolution in
extracting global long-range context information. This mod-
ule is integrated into the backbone of YOLOv8 to form a
new model named GEEG-YOLOv8. Extensive experimen-
tal results demonstrate that our proposed method shows a
strong generalization capability without the need to extract
information from extra dimension. With a small gain in num-
ber of model parameters and GFLOPs, GEEG-YOLOv8
achieves state-of-the-art polyp detection performance on

three datasets. In the future, we will work on modifying
the neck and detection head to further improve the detection
result of our model.
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