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ABSTRACT 

 

Image coding for machines (ICM) aims to compress images 

for machine analysis using recognition models rather than 

human vision. Hence, in ICM, it is important for the encoder 

to recognize and compress the information necessary for the 

machine recognition task. There are two main approaches in 

learned ICM; optimization of the compression model based 

on task loss, and Region of Interest (ROI) based bit allocation. 

These approaches provide the encoder with the recognition 

capability. However, optimization with task loss becomes 

difficult when the recognition model is deep, and ROI-based 

methods often involve extra overhead during evaluation. In 

this study, we propose a novel training method for learned 

ICM models that applies auxiliary loss to the encoder to 

improve its recognition capability and rate-distortion 

performance. Our method achieves Bjøntegaard Delta rate 

improvements of 27.7% and 20.3% in object detection and 

semantic segmentation tasks, compared to the conventional 

training method. 

 

Index Terms— Image coding for machines, ICM, 

learned image compression, auxiliary loss, VCM 

 

1. INTRODUCTION 

 

In recent years, the performance of deep neural networks 

(DNNs) has seen remarkable improvements, leading to their 

widespread use in various machine analysis systems such as 

video surveillance systems and speech recognition systems. 

The scenarios in which machine analysis systems are utilized 

are generally classified into edge computing and cloud 

computing. In edge computing, machine analysis systems 

such as DNNs are mounted on edge devices. Therefore, there 

are no transmission costs and delays. However, edge devices 

generally have limited resources compared to the cloud, 

which limits the performance and number of models that can 

be deployed. On the other hand, in cloud computing, machine 

analysis systems are deployed on the cloud, enabling the use 

of high-precision and multiple models. However, to receive 

inputs for the cloud systems, data compression and 

transmission are necessary on the edge devices. In image 

recognition systems, such as video surveillance systems, the 

videos captured on edge devices are compressed and encoded 

using hand-crafted codecs such as HEVC [1], VVC [2], etc., 

and then transmitted to the cloud. These codecs are optimized 

assuming the decoded data will be viewed by humans, 

meaning the decoded data have to be similar to the original 

data and provide high visual quality. 

    However, in machine analysis scenarios, the decoded data 

is often input into a recognition model and analyzed without 

human viewing. In such cases, rather than similarity to the 

original data or visual quality, it is required to minimize the 

data size during compression while minimizing the 

degradation of recognition performance. Image coding for 

machines (ICM) is the answer to these requirements [3-9]. 

This research field has attracted much attention in recent 

years as its demand has increased with the development of 

automated machine analysis. Video Coding for Machines 

(VCM) [10] in MPEG is engaged in standardization activities 

close to this research field. In addition, learned image 

compression [16,17], which has been developing remarkably 

in recent years, has also accelerated ICM research (learned 

ICM) [3-5,8,9,11-13]. 

    In ICM, it is ideal to identify and extract only the 

information needed for the recognition task, and to compress 

it [6-9,11-13]. Therefore, the main approaches of learned 

ICM research can be categorized into the following two 

approaches. The first one is to optimize the compression 

model with the task loss of the recognition model [3-5]. By 

training with the task loss, the compression model can 

directly optimize the trade-off between the bitrate and the 

performance of the recognition model.  The second one is a 

Region of Interest (ROI) based bit allocation scheme [6-9]. 

This approach designs a task-oriented encoder by assigning 

bits with priority to the foreground in the image. However, 

each of these approaches has its own problems. In the task 

loss approach, sufficient optimization may be difficult 

depending on the complexity of the task and the depth of the 

recognition model [11-13]. In particular, when the network of 

recognition models is deep, optimization of compression 

models located in shallow layers becomes difficult due to the 

nature of backpropagation [14,15]. In the ROI-based 

approach, additional overhead is incurred on the encoder side 

during evaluation for getting the ROI maps [6-9]. 

Furthermore, defining the ROIs can be challenging for tasks 

that involve background classification, such as semantic and 

panoptic segmentation, and for image captioning tasks.    
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In this study, we propose a novel training method for 

learned ICM models using auxiliary loss. Our method 

imposes an auxiliary loss on the encoder via a lightweight 

recognition model during training.  

Our experiments show that our method improves the 

encoder’s recognition capability and the ICM model's rate-

distortion (R-D) performance without any additional 

overhead during evaluation. 

 

2. RELATED WORK 

 

2.1.  Learned image compression 

 

Learned image compression has attracted much attention in 

recent years because its compression performance has been 

greatly improved and even exceeds the performance of 

conventional hand-crafted codecs such as HEVC and VVC 

[16,17]. The compression model typically consists of encoder, 

entropy model and decoder, and the model is optimized using 

the following loss function [16,17]: 

 

𝐿 = 𝑅 + 𝜆𝐷, (1) 

 

where 𝑅  represents the bitrate estimated by the entropy 

model after compression, and 𝐷  represents the distortion 

calculated from the reconstructed data. Additionally, 𝜆 is the 

Lagrange multiplier. Generally, image reconstruction error is 

used for the distortion 𝐷 in image coding for humans: 

 

𝐿 = 𝑅 + 𝜆𝐷(𝑥, �̂�), (2) 

 

where 𝑥 and �̂� denote the input and the decoded image. Mean 

square error (MSE) or structural similarity index measure 

(SSIM) is typically used as the error function 𝐷. By using the 

image reconstruction error for 𝐷, the similarity between the 

original and the decoded image is ensured. Learned ICM [3-

5,8,9,11-13] is based on this learning-based image 

compression and is the main subject of this study. 

 

2.2. Image coding for machines (ICM) 

 

ICM aims to compress images for machine analysis using 

recognition models rather than human vision. The success of 

learned image compression as described in Sec. 2.1 has 

accelerated ICM research (learned ICM) [3-5,8,9,11-13]. In 

ICM, it is considered ideal to extract and compress 

information necessary for recognition tasks to minimize 

performance degradation and bitrate. For this reason, the 

main approaches of learned ICM research are generally 

classified into two approaches. 

    The first approach is optimizing the ICM model based on 

the task loss of the recognition model [3-5], as illustrated in 

Fig. 1(a). In learned ICM research the feature reconstruction 

errors [4] or the task loss [3-5] of the recognition model are 

used as D in Eq. (1). When using the feature reconstruction 

error, the loss function can be represented as: 

 

𝐿 = 𝑅 + 𝜆 ∑ 𝐷(𝑓𝑖 , 𝑓𝑖)𝑖 , (3)  

 

where 𝑓𝑖  and 𝑓𝑖  represent the feature maps of the i-th layer 

generated from the original and decoded image, respectively. 

MSE is typically used as 𝐷. By training the ICM model using 

this distillation manner, the features from decoded images 

come to resemble those from the original images, which 

indirectly reduces the degradation of recognition 

performance. A more direct approach is to use the task loss 

of the recognition model: 

 

𝐿 = 𝑅 + 𝜆𝐸(𝑦, �̂�), (4) 

 

where 𝐸 represents the task loss function of the recognition 

model, 𝑦 represents the target label and �̂� is the output of the 

model when the decoded data is input. This approach can 

directly optimize the trade-off between bitrate and the 

recognition model performance. Harell et al. [4] analyzed the 

R-D theory in ICM domain. According to [4], when using 

feature distillation for ICM training, it is desirable to compute 

distillation errors in the deeper layers of the recognition 

model. Furthermore, they showed that optimization using the 

task loss is optimal from the perspective of the R-D theory. 

Yamazaki et al. [5] proposed using the model output of the 

original image as the label 𝑦 in Eq. (4) instead of the ground 

truth (GT) label. Since GT labels for training data are rarely 

available in the real world, this method makes it possible to 

optimize ICM models with task loss in the real world. In our 

experiments, we followed this training manner. Note that, as 

in these previous studies [3-5, 8], we fixed the parameters of 

the recognition model and only optimized the learned ICM 

model.  

Fig. 1 Two main approaches of learned ICM research. 

3772

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on November 04,2024 at 07:08:39 UTC from IEEE Xplore.  Restrictions apply. 



    The second approach is the ROI-based bit allocation [6-9]. 

In many computer vision tasks, the impact of background 

region on task accuracy is smaller compared to foreground 

region [6-9]. Therefore, several methods have been proposed 

to allocate more bits to the foreground region as the ROI and 

reduce the number of bits in the background outside the ROI 

as shown in Fig. 1 (b). In [6,7], the ROI-based approach is 

applied to traditional hand-crafted codecs, while [8,9] applied 

it to learned image compression models. Ahonen et al. [8] 

have proposed an ad hoc method to apply the ROI-based 

approach to a pretrained compression model. Specifically, the 

ROI mask 𝑀𝑟𝑜𝑖  generated by the additional recognition 

model is binarized and the pixel values outside the ROI in the 

latent representation 𝑧 are divided by the quantization factor 

(QF) which is greater than 1. This operation suppresses the 

variance of the pixel values outside the ROI, thereby reducing 

the number of bits allocated outside the ROI. 

 

2.3. Auxiliary loss 

 

It is well known that as the depth of a network increases, 

optimizing the shallower layers, which means the layers near 

the input layer, becomes more difficult [14,15]. Auxiliary 

loss is one way to solve such a problem and is a loss function 

that is added to the main loss to help train the model [14,15]. 

Auxiliary loss is computed on the output of an auxiliary 

branch (also called auxiliary head), which is a branch from 

the middle layer of the model, so that errors about the target 

task can be propagated properly before that middle layer. As 

a result, the training process becomes more stable even if the 

model is deep, which is expected to speed up training 

convergence and improve the final performance. In this study, 

we focus on auxiliary loss for the first time in ICM training 

and propose its application. 

 

3. PROPOSED METHOD 

  

In ICM, it is ideal to identify and extract only the information 

needed for the recognition task, and to compress it. For this 

reason, many studies take task loss-based optimization [3-5] 

or ROI-based bit allocation approaches [8,9]. However, it has 

been reported that training using task loss can make it 

difficult to optimize the ICM model when the recognition 

model is deep [11-13]. As mentioned in Sec. 2.3, when the 

depth of a network increases, optimizing the shallower layers 

becomes more difficult. In training ICM models, such 

problems arise because the ICM model to be optimized is 

located before the input layer or shallow layer of the fixed 

recognition model. As a result, the encoder may not acquire 

sufficient recognition ability. Furthermore, many ROI-based 

approaches require an additional network on the encoder side 

to obtain the ROI mask [6-9]. However, the resources on the 

encoder side (usually edge devices) are generally much 

smaller than those on the decoder side (usually the cloud), so 

it is undesirable to increase the overhead on the encoder side 

during evaluation. In general, most ROI-based approach 

treats the foreground as ROI, but it is not obvious which 

region or what information in the image is important on the 

recognition task and model [18]. In particular, it is difficult to 

determine the ROI itself in semantic and panoptic 

segmentation tasks, which also classify several background 

classes, and in image captioning tasks, which provide 

explanations for images. 

    In this study, we propose to apply auxiliary loss when 

training ICM models to solve the above problems. As 

described in Sec. 2.3, auxiliary loss can help the training 

process in shallow layers. Therefore, the use of auxiliary loss 

is considered effective in ICM model training because the 

learnable ICM model is located before the input layer or 

shallow layer of the fixed recognition model. In the proposed 

method, we impose the auxiliary loss only on the encoder of 

the ICM model. This approach supports the encoder to 

acquire ROI-based-like recognition capabilities without any 

additional overhead during evaluation. 

    An overview of the proposed method is shown in Fig. 2. In 

the proposed method, an auxiliary branch, which is a 

lightweight model based on the recognition model, is set 

before the decoder and is jointly optimized with the ICM 

model. The loss function is defined as follows:  
  

𝐿 = 𝑅 + 𝜆{𝐸(𝑦, �̂�) + 𝛼𝐸(𝑦, �̂�𝑎𝑢𝑥)}, (5) 

 

Fig. 2. The overview of the proposed ICM training method using auxiliary loss. 
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where �̂�𝑎𝑢𝑥 is the output of the auxiliary branch and 𝛼 is the 

weight factor that balances the main task loss 𝐸(𝑦, �̂�) and the 

auxiliary loss 𝐸(𝑦, �̂�𝑎𝑢𝑥). Since the auxiliary branch is placed 

just before the decoder, the auxiliary loss is backpropagated 

directly to the encoder which includes the entropy model. 

This approach helps the encoder understand the information 

necessary for the recognition task like the ROI-based method, 

even when the recognition model is deep. By limiting the 

effect of auxiliary loss to only the encoder rather than the 

entire ICM model, the negative impact on the main task can 

be reduced, this topic is discussed in Sec. 4.2. The proposed 

method does not require the definition of ROI, so this method 

can be applied to a variety of tasks. Furthermore, since the 

auxiliary branch is used only during training and not during 

evaluation, it does not incur the overhead like conventional 

ROI-based methods. 

 

4. EXPERIMENTS 

 

We evaluated the proposed method on the object detection 

and semantic segmentation tasks. As a baseline model, we 

used a compression model trained without auxiliary loss, and 

for object detection, we also used the compression model 

with the ROI-based method [8] applied to the baseline.  

 

4.1 Main experiments 

 

Experimental setup: For the object detection task, we used 

the pre-trained learned image compression model [17] 

(cheng2020attn in compressai [19]) as the ICM model and the 

pre-trained Fater-RCNN (ResNeXt101-FPN) [20] from the 

DetectronV2 [21] as the recognition model. We followed the 

training manner [5] and used the output of the Faster-RCNN 

from the original image as the target label 𝑦 in Eq. (5). As the 

dataset, we used COCO2017 [25], with 118287 images for 

training and 5000 for evaluation. During training, we used 

256×256 cropped images. During evaluation, we resized the 

images to have a shorter edge of 800 and padded them to a 

multiple of 64 so that they could be input into the ICM model. 

We used Adam optimizer and trained the compression model 

in 80 epochs with a batch size of 16. As the initial learning 

rate, we set it to 0.0001, with a decay according to a 

polynomial decay schedule for the last 40 epochs. The overall 

structure of the auxiliary branch was based on Faster-RCNN, 

and we reduced the depth and width of the backbone model 

significantly. The details of each backbone model are shown 

in Table 1. In Eq. (5), we set 𝛼 to 0.5 and 𝜆 to {0.4, 0.8, 1.6, 

3.2}. For the ROI-based method [8], we used the GT mask 

provided in the COCO dataset as the ROI mask and set QF to 

1.4.  

For the semantic segmentation task, we used the same 

compression model as in the object detection task and used 

DeepLabv3+ (ResNet101) [23] from the MMSegmentation 

[26] as the recognition model. As in the object detection task, 

we followed the training manner [5]. Since training with the 

loss function in Eq. (5) could not reduce the validation loss of 

the baseline model, we added the image reconstruction error 

to stabilize the training:  
 

𝐿 = 𝑅 + 𝜆{𝐸(𝑦, �̂�) + 𝛼𝐸(𝑦, �̂�𝑎𝑢𝑥) + 𝑀𝑆𝐸(𝑥, �̂�)}. (6) 

 

As the dataset, we used Pascal-Context59 [27], with 4998 

images for training and 5105 images for evaluation. During 

training and evaluation, we resized the input images to 

520×520 and padded them to multiples of 64. We used Adam 

optimizer and trained 80 epochs with a batch size of 8. As for 

the initial learning rate, we set it to 0.00005 and employed 

polynomial decay in each epoch. We designed the auxiliary 

branch based on the recognition model DeepLabv3+ and 

changed it to a tiny backbone model like the object detection 

task. The details of each backbone model are shown in the 

table. 2. In Eq. (6), we set 𝛼 to 0.5 and 𝜆 to {1, 2, 4, 8}. 

Table 1. The backbone architectures of Faster-RCNN [20] 

and auxiliary branch in the experiment of object detection 

task. The architecture of ResNext is from [22]. RB denotes 

the residual block proposed in [16] and ↑  denotes 

upsampling. 
layer 

name 
ResNext-101(32×8d) Auxiliary branch 

conv1 7 × 7, 64, ↓ 2 

RB, 128, ↑ 2 

RB, 128 

RB, 128, ↑ 2 

 

conv2 

3 × 3, 𝑀𝑃, ↓ 2 

[
1 × 1, 256,
3 × 3, 256,  𝐶 = 32
1 × 1, 256

] × 3 
[

1 × 1, 128
3 × 3, 128,  𝐶 = 32
1 × 1, 128

] × 1 

conv3 [
1 × 1, 512
3 × 3, 512,  𝐶 = 32
1 × 1, 512

] × 4 [
1 × 1, 256
3 × 3, 256,  𝐶 = 32
1 × 1, 256

] × 1 

conv4 [
1 × 1, 1024
3 × 3, 1024,  𝐶 = 32
1 × 1, 1024

] × 23 [
1 × 1, 256
3 × 3, 256,  𝐶 = 32
1 × 1, 256

] × 1 

conv5 [
1 × 1, 2048
3 × 3, 2048,  𝐶 = 32
1 × 1, 2048

] × 3 [
1 × 1, 512
3 × 3, 512,  𝐶 = 32
1 × 1, 512

] × 1 

 
Table 2. The backbone architectures of DeepLabv3+ [23] 

and auxiliary branch in the experiment of semantic 

segmentation task. The architecture of ResNet is from [24]. 
layer 

name 
ResNet-101 Auxiliary branch 

conv1 7 × 7, 64, ↓ 2 

RB, 128, ↑ 2 

RB, 128 

RB, 128, ↑ 2 

conv2 

3 × 3, 𝑀𝑃, ↓ 2 

[
1 × 1, 64
3 × 3, 64

1 × 1, 256
] × 3 

[
3 × 3, 128
3 × 3, 128

] × 1 

conv3 [
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 [
3 × 3, 256
3 × 3, 256

] × 1 

conv4 [
1 × 1, 256
3 × 3, 256

1 × 1, 1024
] × 23 [

3 × 3, 256
3 × 3, 256

] × 1 

conv5 [
1 × 1, 512
3 × 3, 512

1 × 1, 2048
] × 3 [

3 × 3, 512
3 × 3, 512

] × 1 
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Pascal-Context59 assigns classes to all of the image regions 

under evaluation, so it is not possible to define ROI; therefore, 

we did not use the ROI-based approach in the segmentation 

experiment.  

     

    Experimental result: The comparison results of R-D 

performance in object detection and semantic segmentation 

tasks are shown in Fig. 3 and 4. The figures demonstrate that 

the R-D performance improves with the addition of auxiliary 

loss. The Bjøntegaard Delta rate (BD-rate) improves by an 

average of 27.7% for object detection and by an average of 

20.3% for semantic segmentation. In object detection, the 

proposed method shows higher R-D performance than the 

ROI-based approach.  

To investigate the effectiveness of the proposed method, 

we compared the bit assignment maps, as shown in Figures 5 

and 6. In the bit allocation map, brighter regions are allocated 

more bits. Comparing cheng2020attn [17] with w/o or w/ 

auxiliary loss, we can see that by training with task loss, more 

bits are allocated to regions that are important for the task, 

such as object regions or around class edges. The right side 

of the figures shows comparisons of the spatial tendency of 

bit allocation between the models of w/o and w/ auxiliary loss. 

The red regions indicate where the w/ aux model allocates 

more bits for the given image, while the blue regions show 

where fewer bits are allocated. We can see that the w/ aux 

model concentrates bits in important regions for the task and 

reduces the number of bits in other regions. This result shows 

that auxiliary loss has the effect of improving the encoder's 

recognition ability. 

 

4.2 The position of the auxiliary branch 

 

In the proposed method, the auxiliary branch is inserted just 

before the decoder. In this experiment, we changed the 

position of the auxiliary branch and compared the validation 

loss. The loss value to be compared is the main loss, 

equivalent to Eq. (4), which removes the auxiliary loss from 

Eq. (5).  

 

Experimental setup: The basic experimental setup was the 

same as in Sec. 4.1. In this experiment, we compared 

validation loss with 𝜆 = 0.016 for object detection and 𝜆 =
2 for semantic segmentation. There are three types of 

auxiliary branch insertion positions, as shown in Fig. 6; just 

before the decoder (aux-enc: proposed), just before the final 

layer of the decoder (aux-dec), and in the middle layer of the 

recognition model (aux-task). In addition to these three types, 

we also compare the case without the auxiliary branch. The 

reason the aux-dec is placed before, rather than after, the final 

Fig. 3. R-D performance comparison in object 

detection task by Faster-RCNN. 

 

Fig. 4. R-D performance comparison in semantic 

segmentation task by DeepLabv3+. 

 

Fig. 5. Comparison of bit allocation. From left to right: 

input image from COCO2017 [25], pretrained 

cheng2020attn [17], w/o aux model, w/ aux model and 

comparision between w/o and w/ aux model. 

 

Fig. 6. Comparison of bit allocation. From left to right: 

input image from Pascal-Context59 [27], pretrained 

cheng2020attn [17], w/o aux model, w/ aux model and 

comparision between w/o and w/ aux model. 
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layer of the decoder is due to the role of the layer in the 

compression model. This layer reduces the dimensions to 

produce three RGB channels and consequently reduces the 

amount of information. We therefore placed it before that 

layer to give the effect of auxiliary loss more properly. We 

determined the insertion position of aux-task as follows. For 

Faster-RCNN, we inserted the auxiliary branch between 

conv2 and 3 of the backbone in consideration of the feature 

map size since there is no general configuration for setting 

auxiliary loss in Faster-RCNN training. For DeepLabv3+, we 

inserted the auxiliary branch between conv3 and conv4 of the 

backbone according to the MMSegmentation setting. With 

the change of the insertion position, we partially changed the 

model structure of the auxiliary branch as below. For aux-dec, 

we changed conv1 of the backbone as shown in the table. 3. 

For aux-task, we used the model after conv1 of the auxiliary 

branch in the table. 1 for the object detection task. In the 

semantic segmentation task, according to the 

MMSegmentation settings, we only used the head model for 

aux-task.  
 

Experimental result: The comparison results of validation 

loss in object detection and semantic segmentation tasks are 

shown in Fig. 7 and 8. The figures demonstrate that it is best 

to insert the auxiliary branch just before the decoder (aux-

enc: proposed). It can be considered that imposing the 

auxiliary loss on the encoder concentratedly improves the 

encoder's recognition ability for the task. When inserted 

before the final layer of the decoder (aux-dec) or in the middle 

layer of the recognition model (aux-task), the auxiliary loss 

affects the decoder as well as the encoder. Especially in the 

case of aux-dec, the influence of auxiliary loss is stronger 

than that of aux-task, since the distance from the output layer 

of the auxiliary branch to the decoder is shorter. As auxiliary 

losses do not always help minimize main losses [28], 

imposing it only on the encoder could suppress the negative 

effect. We can also confirm that the use of auxiliary loss in 

both tasks has a positive effect on optimization. This provides 

sufficient motivation to use auxiliary losses during training of 

the ICM model.  
 

5. CONCLUSION 

 

In this study, we propose a novel training method for ICM 

models using auxiliary loss. Our proposed method imposes 

the auxiliary loss on the encoder of a compression model via 

a lightweight recognition model during training. This 

approach improves the encoder's recognition capability and 

R-D performance without any additional overhead during 

inference. We evaluated the proposed method by conducting 

experiments on object detection and semantic segmentation 

tasks. Compared to the conventional method without 

auxiliary loss, the proposed method improves the BD-rate by 

an average of 27.7% for object detection and 20.3% for 

semantic segmentation. In this study, we set the weight factor 

for the auxiliary loss to a fixed value for simplicity, but 

further performance improvement can be expected by using 

adaptive weight factors, such as those proposed in studies of 

auxiliary loss.  

Fig. 7. Three types of auxiliary branch insertion 

positions. 

 
Table 3. The difference in backbone architecture between 

aux-enc and aux-dec.↑ denotes upsampling. 

layer 

name 

Auxiliary branch   

aux-enc 

Auxiliary branch   

aux-dec 

conv1 

RB, 128, ↑ 2 

RB, 128 

RB, 128, ↑ 2 

RB, 128, ↓ 2 

RB, 128 

RB, 128, 

 

Fig. 8. Validation loss comparison in object detection 

task by Faster-RCNN. 

 

Fig. 9. Validation loss comparison in semantic 

segmentation task by DeepLabv3+. 
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