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Abstract—Event cameras are vision sensors that detect asyn-
chronous changes in luminance for each pixel. They are effective
for 3D pose estimation in poorly illuminated environments
since they have a wider dynamic range than conventional RGB
cameras. Hence, they are expected to be used as surveillance
cameras for detecting suspicious persons, especially at night.
However, practical applications are hindered by the high cost
of event cameras and the difficulty of their synchronization. To
address the limited widespread use of event cameras, we ensure
practicality by implementing monocular pose estimation. Com-
mon methods for event-based pose estimation involve creating
a frame that combines a set number of asynchronous events.
With these methods, only changes in motion can be captured
due to the nature of event cameras. This makes estimation
unstable since information on joints that do not move is not
collected. Therefore, we propose a stable pose estimation method
that accumulates event information by incorporating past time
series data. In addition, datasets for event-based pose estimation,
especially those consisting of raw event data, are rare and lack
diversity. To overcome the lack of data, we use data augmentation
to create a robust event dataset for person localization and size
estimation. Incorporating past time series data along with data
augmentation enhances the versatility and accuracy of event-
based monocular pose estimation.

Index Terms—3D Human Pose Estimation, Event-based Vision,
Data Augmentation, Temporal Convolutions

I. INTRODUCTION

Event cameras [1], [2] are a dynamic vision sensor (DVS)
inspired by the retina of living organisms. Unlike conventional
RGB cameras, it detects changes in the luminance of each
pixel, outputting ±1 if the change exceeds a certain threshold
and 0 if it does not. [The output of an event camera is
generally referred to as an event.] Event cameras have a wider
dynamic range than conventional cameras, allowing them to
accurately capture the outlines of subjects at night. Hence,
event cameras effectively estimate a person’s posture even
in poorly illuminated environments. This capability makes
event cameras highly promising for the nighttime detection
of suspicious individuals and for maintaining public safety as
surveillance cameras. However, event cameras face several ob-
stacles in practical implementation. Their widespread adoption
is hindered by the high cost and the difficulty of precisely
synchronizing multiple units. Given these circumstances, we
aim to enhance the versatility of monocular pose estimation
and promote its widespread use.

Fig. 1: Framing of event data acquired from event cameras.

Common approaches to event-based pose estimation involve
the Frame-based method [3], [4]. This method divides events
at fixed intervals, accumulates each event, and transforms them
into an image, as shown in Figure 1. However, since the event
camera captures only the differences in motion, some joints
are unable to acquire enough events in scenes with unbalanced
motion, such as the T3 posture in Figure 1. This leads to a
decrease in the accuracy of whole-body pose estimation. In
contrast, some methods address this issue by incorporating
past and future information [5]. Joints that could not be
acquired in a single frame can be regarded as motionless, so
posture information detected in the frames immediately before
and after is used to supplement the whole-body posture and
stabilize accuracy.

In this paper, we propose a pose estimation method using
current and past information. This study does not introduce
the use of future information as it hinders real-time pose
estimation. By accumulating events from the past few frames,
we can supplement joint positions that cannot be detected in
the current single frame. We aim to improve the accuracy of
pose estimation by incorporating past information using the
Long Short-Term Memory (LSTM) module.

In addition to introducing LSTM into the pose estimation
model, we also address data augmentation. DHP19 dataset
is the first dataset consisting solely of event data with 3D
pose information and has been widely used in studies on
event-based pose estimation. However, DHP19 contains many
frames where a simply moving subject is centered in the
field of view, which is quite different from the frames in
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Fig. 2: The overall network structure of our proposed method.

Fig. 3: The detailed structure for generating heat maps.

actual use cases, such as surveillance videos. In fact, the pose
estimation model trained on this dataset is significantly less
accurate for frames where the subject is at the edge of the
angle of view. To address this issue, we propose a method
to augmented DHP19 to be more robust to such scenes by
creating data with randomly processed subject positions and
sizes. This data augmentation allows for training models that
are robust to changes in the position and size of the person.
Finally, by introducing past time series data into the augmented
dataset, we develop a model that is robust to various scenes
and addresses the shortcomings of frame-based estimation
methods.

In summary, our proposal consists of two major contribu-
tions:

• Improving accuracy by incorporating past information
and connecting time-series data.

• Creating an augmented dataset that maintains stable pose
estimation accuracy regardless of the subject’s location
and size, thereby improving the versatility of event-based
monocular 3D pose estimation.

II. RELATED WORKS

A. Frame-based Pose Estimation

Event cameras output a sequence of event signals asyn-
chronously. Mainly, the event stream is segmented and framed
to treat like an image in event-based pose estimation. The
frame-based method can be adapted for conventional image
processing tasks and is capable of handling various models
[3], [7]. As a splitting method for the event stream, we

employ a method that divides it into a constant number of
events, as in [7]. In our study, 7500 events are aggregated in
each frame to construct a synchronous event representation.
However, in this method, scenarios where the subject exhibits
biased movements, such as moving only the arms, make it
difficult to detect non-moving joints. In addition, frames may
occur in which events from those joints are not sufficiently
accumulated. Consequently, there arises an issue of decreased
accuracy in whole-body pose estimation.

B. DHP19

DHP19 [6] is the first dataset for 3D pose estimation
consisting only of event data. 33 scenes of 17 subjects are
recorded. Each scene consists of 10 repetitions of a particular
action. All subjects are recorded using four event cameras
positioned at different orientations. The field of event-based
pose estimation is still in its early stages, and there are only
a few publicly available datasets. Thus, some datasets [8],
[12] have converted RGB images to look like event data.
DHP19 which records raw event data and includes 3D posture
information is highly valuable. However, as pointed out in
a conventional study [9], most of the movements recorded
in DHP19 are simple and lack significant motion. These
characteristics limit its versatility for real-world applications.

C. Margi pose Model

Margi pose model estimates the z-axis from a single frame
and generates Marginal Heatmaps [10], [11] in the xy, yz, and
xz planes. Only the first and second blocks of ResNet [13]
are used to extract features for heatmap creation. Creating xy,
yz, and zx heatmaps from the extracted features is considered
one stage. To improve accuracy, the features and the output
heatmaps are combined, and this stage is repeated three times.
When converting event streams into frames, the 3D posture is
transformed into the viewpoint coordinate system Pxyz , which
is then projected onto the image plane using a perspective
projection transformation. The depth zref of the image plane
is defined by the Pz coordinate of the subject’s head. The
projected image plane is then converted to the normalized cube
PNDC
xyz (Normalized Device Coordinates [14], [15]) to obtain

3D normalization information.
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(a) An input frame with subject
translated.

(b) Normalized posture infor-
mation.

Fig. 4: The input frame and normalized 3D posture informa-
tion with a parallel shift applied to the subject. (Red: before
translation, Blue: after translation)

(a) An input frame with subject
resized.

(b) Normalized posture infor-
mation.

Fig. 5: The input frame and normalized 3D posture informa-
tion with a reduction process applied to the subject. (Red:
before translation, Blue: after translation)

D. Feature Concatenated Model

Feature concatenated model incorporates time series infor-
mation, addressing the issues associated with frame-based pose
estimation described in the previous section [5]. By alternately
concatenating features from adjacent frames in the horizontal
direction, the model achieves both improved accuracy and
reduced computational complexity. However, this model faces
difficulty in adapting time series information to vertically
moving postures. Additionally, it suffers from low real-time
performance due to the incorporation of future information.

E. 2D event-based pose estimation model with LSTM modules

This model [9] improves the accuracy of event-based 2D
pose estimation by using an LSTM module. The LSTM em-
ploys two convolutional LSTM layers [16] without peephole
connections to store event information from a series of five
frames.

III. PROPOSED MODEL

A. LSTM Based Neural Network

We propose an event-based monocular 3D pose estimation
model that introduces LSTM as the connection of time series
data. The details are shown in Figure 2. The LSTM module
is inserted during the process of creating a heatmap from the
features of each frame. The heatmap up to the previous frame
and the feature of the current frame are used as input for
the LSTM. Since there is no previous heatmap to be input to

TABLE I: Pose estimation results for each model on the
augmentation dataset and DHP19

Method Stage Train Test
Aug Dataset DHP19

Scarpellini et al. [12] 1 DHP19 383.72 93.82
Scarpellini et al. [12] 3 DHP19 265.10 91.56

Proposed method 1 DHP19 232.78 90.15(LSTM)
Proposed method 1 Aug Dataset 106.97 90.88(Aug)
Proposed method 3 Aug Dataset 88.71 86.19(Aug)
Proposed method 1 Aug Dataset 87.03 84.69(Aug+LSTM)

the LSTM module for the first frame, an initial heatmap is
created without using the LSTM. Then, this heatmap and the
features of the first frame are used as input for the initial LSTM
module. In addition, as shown in Figure 3, an LSTM was
employed in the creation of each XY, YZ, and ZX heatmap
to enhance the accuracy of depth estimation in the direction.
The loss function is given in the following equation.

L =
∑
t

Lgeometrical

(
ptxyz, p̂

t
xyz

)
+ JSD

(
Ht

xy, Ĥ
t
xy

)
+

JSD
(
Hyz, Ĥ

t
yz

)
+ JSD

(
Hzx, Ĥ

t
zx

)
(1)

For each successive frame, the loss is calculated as the sum
of the squared errors between the ground truth 3D camera
coordinates ptxyz and the predicted 3D coordinates p̂txyz , along
with the sum of the Jensen-Shannon divergence JSD(H, Ĥ)
for each heatmap (HxyHyz, Hzx). Here, H is the ground truth
heatmap, and Ĥ is the predicted heatmap.

B. Data Augumentation

We propose a data augmentation method that involves trans-
lating and scaling the event data of input frames to enhance
the versatility of the dataset. When processing the dataset, as
illustrated in Figure 4(a), we randomly shift the subjects in
the input frames horizontally and vertically, ensuring that all
their joints remain within the frame. Additionally, as shown
in Figure 5(a), we randomly apply scaling with a certain
probability to accommodate subjects of various sizes. Along
with processing the input frames, as indicated in Figures 4(b),
5(b), we normalize the amount of pixel movement of the joints
and apply the same translation and scaling to the posture
information within the normalized cube, PNDC

xyz [14], [15].
As mentioned in the previous section (section II.C), the

normalization of information using the joint projection matrix
is based on the depth coordinate zref of the subject’s head. By
fixing zref during the translation and scaling transformations,
we ensure that no depth displacement occurs due to process-
ing.

IV. EXPERIMENTS

We experiment with three patterns of the method proposed
in the previous section. First, we compare the model using the
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(a) Conventional 2D pose estima-
tion result.

(b) Conventional 3D pose estima-
tion result.

(c) The pose estimation results using the LSTM module. (Left:
input frames, Right: 3D pose estimation results)

Fig. 6: Comparison of pose estimation results between conven-
tional methods and our method incorporating past information

LSTM module with the conventional method to confirm the
validity of the time series data. Second, we demonstrate the
improvement in versatility by using a dataset with subjects
extended to a variety of sizes and locations. Finally, we
conduct experiments using both methods simultaneously to
show the improvement in accuracy and generalizability. In
every experiment, we used Mean Per-Joint Position Error
(MPJPE) as the evaluation metric.

A. LSTM Based Neural Network

The proposed method incorporating the LSTM module is
compared with the conventional method, with the quantitative
results presented in Table I. Compared to the conventional
method in terms of pose estimation accuracy averaged over the
entire dataset, our method shows only a slight improvement.
However, for specific movements, such as ”Left leg abduction”
and ”Right leg knee lift” in Table II, there is a noticeable
improvement in accuracy. As shown in Figures 6(a), 6(b), the
conventional method cannot estimate the full-body 3D posture
for frames where only the right arm is detected. In contrast, our
method improves the accuracy of whole-body pose estimation
by incorporating past frames and accumulating events from
the left arm and left hip, as shown in Figure 6 (c).

B. Data Augumentaion

The table I shows the results of training and testing on
the DHP19 dataset and the augmented dataset, respectively,
using the model from the previous study. The extent of subject

(a) Conventional method. (b) Proposed method.

(c) Conventional method. (d) Proposed method.

Fig. 7: Comparison of 2D and 3D pose estimation results for
frames where the person is moved to the left (Red: ground
truth, Blue: estimated)

(a) Conventional method. (b) Proposed method.

(c) Conventional method. (d) Proposed method.

Fig. 8: Comparison of 2D and 3D pose estimation results for
frames with reduced subject size. (Red: ground truth Blue:
estimated)

movement in each frame is random, following a uniform
probability distribution. Additionally, 20% of the total data
underwent a reduction process before being shifted in parallel.
As shown in Figures 7, 8, the conventional study’s model is
unable to estimate posture for frames where the subject is at
the edge of the input image or when the subject is small. In
contrast, the model trained on our augmented dataset is able to
estimate posture with sufficient accuracy. The model trained on
the augmented dataset also achieves higher accuracy than the
model from the conventional study for DHP19. Particularly,
this method is effective in scenes where the subject is at the
edge of the frame, such as in “Multiple Jumps Up Down” and
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(a) Conventional method. (b) Proposed method.

(c) Conventional method. (d) Proposed Method.

Fig. 9: Comparison of pose estimation results for DHP19
between the conventional method and the model trained on the
our augmented dataset (Red: ground truth, Blue: estimated)

TABLE II: Comparison of the accuracy of each model in
scenes recorded in DHP19

Scene Conv [12] LSTM Aug Aug+LSTM
Left arm abduction 73.93 73.09 74.20 73.65

Right arm abduction 79.35 79.17 79.16 76.59
Left leg abduction 108.41 104.22 105.72 102.81

Right leg abduction 96.00 95.08 92.69 90.58
Left arm bicep curl 77.39 75.15 76.35 75.51

Right arm bicep curl 85.01 81.11 86.33 84.42
Left leg knee lift 82.08 82.51 79.39 76.97

Right leg knee lift 79.71 74.62 79.57 77.87
Walking 3.5km/h 87.61 86.27 78.14 75.80

Single jump up-down 76.34 77.45 72.30 71.26
Single jump forwards 83.70 84.55 79.38 78.23

Multiple jumps up-down 106.31 102.44 82.65 82.16
Hop right foot 93.34 93.81 90.58 89.55
Hop left foot 98.49 94.76 91.30 89.92

Punch straight forward left 92.31 89.18 88.48 86.32
Punch straight forward right 80.91 83.27 80.20 78.70

Punch up forwards left 97.77 98.01 94.41 92.54
Punch up forwards right 92.25 90.09 86.85 86.30

Punch down forwards left 86.23 85.08 87.23 85.84
Punch down forwards right 78.99 77.42 82.18 80.68

Slow jogging 7km/h 86.32 85.07 84.33 84.29
Star jumps 107.31 105.42 94.93 93.11

Kick forwards left 99.88 96.64 93.79 91.91
Kick Forwards right 106.52 102.2 102.44 101.00

Slide kick forwards left 127.68 127.65 124.05 122.65
Slide kick forwards right 115.59 115.30 109.64 107.90

Wave hello left hand 87.59 84.50 89.40 87.66
Wave hello right hand 71.05 70.69 74.59 73.80

Circle left hand 82.24 80.40 79.50 79.47
Circle right hand 79.79 78.99 79.71 78.80
Figure-8 left hand 81.01 79.62 81.33 79.56

Figure-8 right hand 76.11 73.9 75.79 73.81
Clap 78.72 74.63 75.07 74.58

average 91.56 90.15 86.19 84.91

”Star Jumps” in Table II, demonstrating higher accuracy than
the conventional method.Qualitatively, as shown in Figure 9,
our model can accurately estimate posture for frames recorded
in DHP19.

C. Combined Method

Finally, we present the estimation results for the model
combining the two methods mentioned above. As shown in
Table I, our method, trained on the augmented dataset and
incorporating LSTM modules, achieves better accuracy than

the conventional method. Additionally, this model achieves the
best accuracy compared to models adapted from each of the
two proposed methods on both the Aug Dataset and DHP19.

V. CONCLUSION

In this paper, we propose an event-based monocular 3D
pose estimation model. Our model incorporates past informa-
tion and is robust to variations in subject position and size.
Compared to conventional methods, our approach improves
the accuracy of pose estimation, particularly for subjects with
minimal motion and across a wide range of positions and sizes.
However, our model does not fully exploit the features of event
data in its use of time-series information. The current model
outputs all joints regardless of the collected events, making
it unable to identify joints for which no events have been
detected. To address this, we are considering enhancing the
model by introducing a confidence level, similar to those used
in RGB-based pose estimation.
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