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Abstract: Diffusion model has made remarkable results in the text-to-image field in recent years. In this work, we propose
a post-processing and pre-trained diffusion model based image coding method to compress 512x512 size images to 3.4KB
data size without any fine-tuning by VAE[10] encoder and quantized latent vector method, and by DDIM Inversion[9]
post-processing, the images improve in LPIPS[7] metrics and outperform JPEG and WEBP compression methods with
similar data size.

1 Introduction
Diffusion models have made state-of-the-art achievements

in the field of generative models, and more and more researches
have been using diffusion models to compress images in the
field of image compression. Existing studies typically use a
prior neural network to encode an image into a vector in the
latent space, and then use a conditional diffusion model to
generate image using the vector or reconstruction image x̂
as a condition, which usually requires optimal training on a
specific datasets[11, 5, 2]. Since Stable Diffusion[8] has been
trained on millions of images, we believe that it has the gener-
alisation ability to generate the majority of images and has the
ability to zero-shot compress images without fine-tuning. In
this work we use the VAE[10] module of the pre-trained Sta-
ble Diffusion model to encode the image x into vectors in the
latent space, which are then quantised and transmitted with
lossless encoding. The reconstructed images x̂ from the VAE
are usually artifacts and noisy, we use the DDIM Inversion
method to regenerate the image x̂. This results in a regen-
eration image that approximates the ground truth at the time
of sampling, Additionally, regenerated image able to removes
noise and artefacts from the decode image x̂.

2 Related Work

2.1 Stable Diffusion
In Stable Diffusion model, through the VAE encoder Eθ(X)

image x0 will be z0 = Eθ(x0) encoded to the latent space.
The forward process of z0 randomly adds Gaussian noise ϵ to
the distribution zt, after which the model learns the denois-
ing process by predicting the noise using ϵ = ϵθ(zt, t). The
inference starts from zT to the z0 distribution using the de-
noising model ϵθ(zt, t). And it will be decoded back again by
the VAE decoder Dθ(Z) through x̂0 = Dθ(z0).

2.2 Denoising Diffusion Implicit Models
DDIM is a deterministic sampling method, which removes

random resampling compared to the DDPM[3] sampling method.
By given a random Gaussian noise distribution zT and condi-
tional input c, it will be progressively denoised for T steps
until z0 using denoise model ϵθ(zt, t, c), and this process is
reproducible deterministically.

3 Method
Taking an (3,512,512) RGB image with format (C, H, W )

as an example, the downsampling factor of Stable Diffusion’s
VAE module is 8, which means that a (3,512,512) image will
be compressed to (4,64,64) latent vector, which are usually
stored in float16 format, and the amount of data is 64*64*4*16
= 32KB. With the quantization of the latent vecotr by palet-
tizing and dithering[1], the latent vector will be compressed
to 64*64*8 + 64*4*8 = 3.4KB.

Figure 1: Overview of compression method.

Despite the fact that the image is compressed at a very
low bit rate, the quality of the reconstructed image is very
poor. We propose to regenerate the image using the DDIM
Inversion method:
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Specifically, we will renoise [Equation 1] the image back

to Gaussian noise distribution zT , and in order to reduce the
effect of classifier-free guidance[4], we set the hyper-parameter
w to 1 as follow:

ϵθ(zt, t, c) = w · ϵθ(zt, t, c) + (1 − w) · ϵθ(zt, t)

Similarly, we keep the same parameter settings when us-
ing DDIM sampling to regenerate the image. In order to re-
duce the perceptual loss of the generated image, The canny
edge is extracted from the quantised decoded image x and is
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used as the Controlnet[6] plug-in conditional bootstrap image
generation, noting that the coefficient of the conditional input
canny is set to a small value.

4 Experiment
We test the performance on several images and evaluate

their SSIM metrics and LPIPS metrics. From the experimen-
tal results, It could be observed that JPEG images have many
artefacts in the case of quality of 1 and low bit rate, but WEBP
and ours propose images still have relatively great subjective
perception. This subjective perception is also reflected in the
LPIPS metric.

Figure 2: Example of Pepper Generation

Figure 3: Example of Tiffany Generation

We use bold font to mark the best results and the second
best results are underlined. From the results in the table, it
can be seen that the LPIPS metrics are improved after post-
processing the images using the DDIM inversion method and
the LPIPS metrics are better than the JPEG and WEBP com-
pression methods and the SSIM metrics are better than the
JPEG compression method.

SSIM ↑ LPIPS ↓ Size

Pepper-JPEG 0.482 0.644 3.4kb
Pepper-WEBP 0.645 0.428 4.1kb

Pepper-w/o Inversion 0.562 0.338 3.4kb
Pepper-w/ Inversion 0.606 0.27 3.4kb

Tiffany-JPEG 0.635 0.668 3.6kb
Tiffany-WEBP 0.744 0.45 3.6kb

Tiffany-w/o Inversion 0.652 0.343 3.4kb
Tiffany-w/ Inversion 0.668 0.276 3.4kb

Table 1: Testing performance metrics on sample images

5 Conclusion
In this study, we tried to use Pre-trained Stable Diffusion to

compress images, and used a post-processing method based
on DDIM Inversion to improve the quality of compressed
low-bitrate images. It is true that Diffusion has powerful de-
coding capabilities, but the decompression speed is relatively
slow due to the characteristics of the diffusion model. In
future research, improving decoding speed and smaller bpp
metric is a promising research topic.
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