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1. Introduction

The concern of this thesis is object detection in 

the context of high-resolution inputs for edge-cloud 

artificial intelligence systems. The bottlenecks and 

challenges faced by this topic are high-resolution 

images or videos leading to increased computational 

complexity, insufficient edge arithmetic, and 

insufficient transmission bandwidth. In addition, 

traditional feature extraction struggles to effectively 

capture the detailed features of high-resolution 

objects, leading to a decrease in accuracy. Various 

solutions have been proposed, such as cutting 

images for individual detection or using multi-scale 

processing mechanisms, but each has its limitations. 

This thesis proposes a pedestrian detection 

framework that makes the detection speed and 

inference latency tunable so that the results are both 

accurate and fast. 

2. Related works 

2.1 Object detection model-YOLOv7   

Although various target detection models have 

emerged in an endless stream in recent years, 

YOLOv7 still achieves a new high in detection 

speed and accuracy. Several trainable 

bag-of-freebies are designed in the model so that the 

real-time detector can greatly improve detection 

accuracy without increasing the inference cost.[1] 

For the development of target detection, YOLOv7 

also raised two new issues, namely, how to 

effectively replace the original module with module 

reparameterization, and how to deal with the 

assignment of different output layers by the dynamic 

label assignment strategy. The model proposes 

"extend" and "compound scaling" methods for 

real-time detectors, which can use parameters and 

calculations more efficiently. At the same time, the 

method proposed in the model can effectively reduce 

the parameters of real-time detectors by 50% and 

has faster inference speed and higher detection 

accuracy. 

2.2 Methods of high-resolution input 

In high-resolution object detection, research has 

focused on processing large images. The paper "You 

Only Look Twice" [2] proposes methods to address 

small object detection and data imbalance. It uses 

feature maps from different sensory fields to 

enhance small object detection and employs multiple 

scales of data for training, along with data 

augmentation. The method uses sliding window 

clipping to segment oversized images, which are 

then processed separately and merged using NMS. 

Another paper, "Flexible High-resolution Object 

Detection on Edge Devices with Tunable Latency," 

[3] suggests efficient image segmentation to separate 

regions with dense and sparse objects. Different 

parametric models are used for detection, assigning 

large models to computationally demanding regions 

for accuracy and small models for faster inference 

and reduced latency. The method generalizes the 

model using adjustable latency constraints. 

2.3. Benchmark and baseline 

The Panda dataset is used in this research to provide 

super-resolution images for training and validation. 

This is a human-centered video dataset at the 

gigapixel level, which contains a variety of 

real-world scenarios. Each image frame in this 

dataset can reach a size of 26753*15052 pixels, 

which is much larger than the regular data volume 

for object detection tasks. It provides 18 scenes and 

more than 15,974.6 k of bounding box annotations. 

The benchmark provides the results of Cascade 

RCNN, Faster RCNN, and RetinaNet as the baseline, 

and the experimental results in this thesis will be 

compared with this baseline to observe its 

effectiveness. 

The evaluation criteria of this research will use 

the Microsoft Coco metrics to judge the 

effectiveness of the proposed method. 

3. Proposed method 

In this approach, a stable and fast human 

detection model is first selected. The relationship 

between human size and model performance is 

evaluated to generate a size vs. precision curve. By 

choosing a precision threshold (p), the minimum 

human size (S) required to achieve the desired 

precision is determined. 

Next, the image is divided into patches, and the 

size range of bounding boxes containing the pixel 

point is recorded for each patch (calculated by 



extracting frames from the video). Heat maps are 

generated based on the human size range in each 

patch. 

To mark regions containing patches where 

human sizes range from [0 to 2S), minimum 

rectangles are utilized while maintaining the 

original resolution for this type. Similarly, 

minimum rectangles are used for regions 

containing patches with human sizes ranging from 

[2nS to 2n+1S), but these regions are down-sampled 

to 1/2n *1/2n size. 

The compression-processed individual 

sub-graphs are then transmitted to the cloud for 

inference, and the inference results are sent back to 

the edge devices. Finally, the inference results are 

fused, and post-processing steps like NMS are 

performed to refine the final output. 

 
Fig. 1. Overview of the framework 

We also provide a detailed description of the 

processing techniques of each module in the thesis 

and explain it with an example of a scenario. 

4. Experiments 

The code in this experiment was written by 

Python 3.7.13, Pytorch 1.12.0 and executed under 

the Ubuntu 20.04 operating system. The graphics 

card used in the study is Nvidia RTX A6000. 

In this experiment, the initial threshold of AP is 

set to 0.4, and according to the fitting curve of 

human size and AP we tested, we set the minimum 

value of size at 64 pixels. and the scene image is 

divided into regions with S=64 pixels as the 

standard. And we take one of the 30 frames of the 

video as historical data, which is used to analyze 

the scene. We used five scenes in the dataset to do 

the test and got the data results in Table 2. 

 

 

Table I Results of Our Proposed Method and The Baseline 

 AP 
Average 

Time/s 
FPS 

Cascade 

R-CNN 
0.30889 20 0.05 

Faster 

R-CNN 
0.28442 14.29 0.07 

RetinaNet 0.22545 10 0.1 

YOLOv7* 0.483 2.91 0.337 

Proposed 

Method 
0.412 0.486 2.06 

 

In the table, YOLOv7* means that the input 

image was down-sampled by a factor of 2, and 

then a sliding window with a size of 640*640 

pixels was used to do the detection. 

It can be seen that our proposed scheme 

outperforms the three models of baseline in 

terms of both accuracy and inference time. 

5. Conclusion 

In summary, our research focuses on a 

tunable framework for pedestrian detection that 

is highly efficient in both accuracy and speed. 

Since our method divides the original data, it 

can support parallel computing of multiple 

small-scale pictures or videos. And it is flexible 

to explore potential applications with other 

algorithms or detection models.  

In addition, from the perspective of data 

transmission, the feasibility of computing some 

of the compressed data images directly on the 

camera side can be considered, while other 

images can be efficiently processed in the cloud. 

Overall, our proposed method in this paper 

demonstrates its compatibility with various 

algorithms and its potential for super-resolution 

image object detection in edge-cloud systems. 
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Abstract 

The concern of this thesis is object detection in the context of high-resolution inputs 

for edge-cloud-based artificial intelligence systems. The bottlenecks and challenges 

faced by this topic are high-resolution images or videos leading to increased 

computational complexity, insufficient edge arithmetic, and insufficient transmission 

bandwidth. In addition, traditional feature extraction struggles to effectively capture the 

detailed features of high-resolution objects, leading to a decrease in accuracy. Various 

solutions have been proposed, such as cutting images for individual detection or using 

multi-scale processing mechanisms, but each has its limitations. This thesis proposes a 

pedestrian detection framework that makes the detection speed and inference latency 

tunable so that the results are both accurate and fast. 

Because the edge camera is fixed, the frame composition is stable, and the 

uniqueness of pedestrian detection. The proposed method in this thesis reduces the 

amount of computation and data transmission by segmenting and cropping the image 

according to the object size and compressing the data accordingly for regions with 

different-sized objects. The compressed data is transmitted to the cloud for detection, 

and the detection results are post-processed to output the final detection results. 

This detection framework experiments on a super-resolution dataset with the 

YOLOv7 detection model. By comparing the results with the baseline results, the 

experiment results show that the proposed method can achieve accurate and efficient 

object detection in high-resolution scenes while reducing computational requirements 

and bandwidth costs. 

 

Keywords: Edge-AI, human detection, YOLOv7, high-resolution, computer vision.  
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Chapter 1 Introduction 

1.1 Overview of the Task 

1.1.1 Background of Object Detection 

Object detection is a fundamental research task in the field of computer vision 

aimed at automatically identifying and localizing specific objects in images or videos. 

In the past decades, significant progress has been made in object detection technology, 

providing powerful solutions for numerous practical applications. Among them, 

pedestrian detection, as an important task of object detection, has extensive value and 

research significance. 

Pedestrian detection is a key computer vision task with applications in various 

fields. For example, it plays a crucial role in intelligent surveillance systems, traffic 

management, autonomous driving, and human-computer interaction. Pedestrian 

detection also makes significant contributions to public safety, urban planning, crowd 

management, and social sciences. Accurate pedestrian detection enables us to obtain 

valuable data on demographics, pedestrian behavioral patterns, urban space utilization, 

etc., thus providing substantial support for decision-making and resource allocation. 

However, pedestrian detection encounters several challenges and difficulties. First, 

pedestrians exhibit great variations in appearance and pose in different scenes and 

viewpoints, leading to low robustness of detection algorithms against complex 

backgrounds, occlusions, and pose variations. Second, pedestrian detection tasks 

require a balance between real-time and accuracy, especially in high-density crowds 

and complex environments, requiring algorithms with high detection speed and low 

miss rates. In addition, pedestrian detection needs to address challenges such as 

annotation difficulties and unbalanced training samples on large-scale datasets. 

To overcome these challenges, researchers have proposed innovative methods and 
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techniques to improve pedestrian detection performance. Traditional machine learning 

methods and feature extraction techniques, e.g., manual features, Haar features, have 

achieved some success. However, in recent years, the rapid development of deep 

learning technologies has brought breakthroughs in pedestrian detection. The 

introduction of convolutional neural networks and object detection networks such as 

Cascade R-CNN, YOLO, Faster R-CNN, and SSD has significantly improved the 

performance and accuracy of pedestrian detection. 

1.1.2 Background of object detection on high-resolution images 

In the context of high-resolution inputs, object detection faces significant 

challenges, mainly in computation and perception. 

First, high-resolution images or videos increase computational complexity. As the 

image resolution increases, the size of the object region and the number of pixels also 

increases, which requires more computational resources and processing time. Due to 

the need to process more features and a larger sensory field to capture contextual 

information, traditional object detection algorithms are usually difficult to meet the 

real-time requirements in high-resolution scenes. 

Second, high-resolution images pose perceptual challenges to object detection. 

Objects in high-resolution images show higher complexity and richer appearance 

features. Traditional feature extraction methods are more difficult to effectively 

capture these detailed features, and if the original input is detected after a simple 

downsampling process, it will lead to the loss of this detailed information. This leads 

to a decrease in detection accuracy. 

To cope with the challenges posed by high-resolution inputs, researchers have 

proposed various solutions. For example, cutting the images to detect them separately, 

or using multi-scale processing mechanisms, such as constructing a feature pyramid in 

the model. However, each method has its advantages and disadvantages, and this 

thesis addresses these challenges by proposing a solution that is relatively acceptable 
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in terms of speed and accuracy. 

1.1.3 Background of Edge AI  

 

Fig. 1. The difference between Edge AI and Cloud AI 

Edge AI refers to deploying AI algorithms and models directly on edge devices 

such as smartphones, IoT devices, and edge servers, rather than relying exclusively on 

cloud processing. This paradigm shift has received significant attention and research 

interest in recent years due to its potential to address the limitations of cloud-centric 

AI systems. 

The main challenges faced by AI systems at the edge, besides having cost issues of 

needing to transmit large volumes of data and privacy and security concerns, the main 

technological core lies in latency and bandwidth constraints. Cloud-based AI systems 

all suffer from high latency issues and require large amounts of bandwidth due to the 

need to transfer data to remote servers for processing. However, many real-time 

computing applications, such as video analytics under surveillance cameras and 

autonomous driving systems in cars, require low latency and high bandwidth. 

Traditional cloud-centric architectures, on the other hand, while having a large 

number of computing resources, do so at the cost of latency and data security issues, 

and therefore cannot meet these requirements. Edge AI aims to overcome these 

limitations by enabling AI processing and decision-making directly on edge devices, 



12 

 

reducing the need to transmit data to the cloud. 

To address these challenges, research in edge AI aims to explore lightweight AI 

models suitable for resource-constrained edge devices, as well as more efficient edge 

reasoning frameworks, and edge-cloud coordination mechanisms. What is proposed in 

this thesis is an inference framework suitable for object detection tasks on edge AI. 

 

1.2 Problem Statement 

1.2.1 Bottlenecks in the Edge AI System 

Edge devices usually have limited computing power and storage space, so it is 

difficult to deploy complex deep-learning models and algorithms. This limits the 

performance and capability of Edge AI systems when dealing with large-scale data 

and complex tasks. Data exchange with the cloud, on the other hand, requires high 

bandwidth, so solving this problem requires an edge-cloud framework that contains 

lightweight models and effectively compresses the amount of data transfer.  

Training models on the cloud and then deploying them to edge devices is currently 

an effective solution for object detection tasks in edge AI systems. In practical 

application deployment scenarios, reasonable use of contextual information for 

analysis and computation on the cloud can achieve twice the result with half the effort, 

while enhancing the generalization ability of the model. The method proposed in this 

thesis is to reduce the inference delay, reasonably allocate the arithmetic power, and 

reduce the bandwidth cost by reducing the amount of data transmission between the 

edge and the cloud. 

1.2.2 Characteristics of Pedestrian Detection 

Most pedestrian detection in real applications is captured by fixed cameras, such as 



13 

 

street surveillance and car cameras. It is characterized by a more stable overall 

composition of the image, and the position of the pedestrians appearing in the image 

is traceable. 

And because the person is the object of object detection, the shape and actual size 

of the detection frame are relatively stable. Since the camera is fixed and stationary, 

people close to the camera have large sizes and people far from the camera have small 

sizes in most images. This thesis will use this as one of the theoretical bases for the 

construction of the frame. 

 

1.3 Thesis Outline 

Chapter 1: This Chapter introduces the object detection task background and its 

application to edge AI systems. We also compare the difference between current cloud 

computing and edge AI, explain the advantages of edge AI, and explain the purpose of 

designing this framework in this thesis. The theoretical underpinnings of the approach 

proposed in this thesis are also explained from two perspectives: latency and bandwidth 

issues and task characterization in real-world applications. 

Chapter 2: We introduce the more advanced and efficient object detection algorithm 

and discuss its detection effectiveness, i.e., the model of YOLOv7 used in the 

experiments. In addition, we present the relevant dataset used for training and 

validation in the experiments, the realizations of other widely used object detection 

models on this dataset, and the evaluation metrics. 

Chapter 3: Through a detailed introduction, we show the framework of the proposed 

method. The overall structure of this Edge-Cloud-based object detection framework 

and the purpose of the design of each module in it are presented. In addition, we also 

provide an expanded description of the processing of each of these modules. 

Chapter 4: We briefly describe the experimental setting of the proposed model. 
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Experiments based on our proposed model were conducted on the dataset and the 

resultant data were analyzed. And the performance with the existing baseline on this 

dataset is compared and discussed in terms of two metrics: accuracy and detection 

speed. 

Chapter 5: We summarize the strengths and weaknesses of this thesis and analyze the 

possibility and acceptability of its deployment in real applications. Finally, the 

framework's future improvement directions are discussed. 
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Chapter 2 Related Works 

2.1 Previous methods  

2.1.1 Object Detection Model  

The detection framework proposed in this thesis requires a network with both 

accuracy and inference speed as a base model. We chose yolov7 for further 

experiments. YOLOv7 is a real-time object detection model published by the official 

YOLO team. The research's background and motivation stem from the significance of 

real-time object detection in computer vision. Devices running real-time detectors are 

often equipped with mobile CPUs, GPUs, and NPUs. The recent focus on edge 

devices aims to optimize vanilla convolution, depth-wise convolution, or MLP 

operations. YOLOv7's proposed real-time object detector better supports both edge 

mobile GPUs and high computing power GPUs, aligning with the current trend of 

adapting detectors to edge devices. 

This model addresses several challenges, including model structure 

reparameterization and dynamic label assignment in models with multiple output 

layers. A new label assignment method, the "coarse-to-fine guided label assignment 

strategy," is introduced to address dynamic object assignment problems. Three main 

innovations presented in the method are the design of a trainable "bag-of-freebies," 

solving the problems of module reparameterization and dynamic label assignment in 

object detection, and the introduction of the extend and compound scaling methods 

for real-time detectors. These methods efficiently utilize parameters and computations, 

resulting in 50% parameter reduction, faster inference speed, and higher detection 

accuracy. 
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Fig. 2. Extended efficient layer aggregation networks. 

In this Fig. 2 (a) VoVNet is an existing backbone for implementing object detection, 

and CSPVoVNet in (b) is designed based on VoVNet that analyzes gradient paths to 

enable the learning of weights in different layers to more diverse features. This gradient 

analysis method enables inference with higher speed and more accurate results. And in 

(c) ELAN considers how to design an efficient network, and the proposed method for 

this is to control the shortest and longest gradient path so that deeper networks can learn 

and converge effectively. 

Extended-ELAN based on ELAN is used in this method. The stacking of computing 

blocks in ELAN reaches a stable state. If more computing blocks are stacked infinitely, 

this stable state may be destroyed, and the parameter utilization will be reduced. 

E-ELAN proposed a method that uses expand, shuffle, and merge cardinality to achieve 

the ability to continuously enhance the network's learning ability without destroying the 

original gradient path. 

  

 

Fig. 3. Model scaling for concatenation-based models 

In order to meet the needs of different inference speeds, it is necessary to adjust 
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some properties of the model and generate models of different scales. The model 

analyzes the influence of convolution and group convolution on the number of 

parameters and computation and designs the corresponding model scaling method. 

For concatenate-based architectures, when the execution depth is enlarged or reduced, 

the computational blocks of the translation layer will decrease or increase, so different 

scaling factors cannot be analyzed separately. The compound model scaling method is 

proposed in the paper. When scaling the depth factor of a computational block, the 

change of the output channel of the block shoud also be calculated. The transition 

layer will then be scaled by an equally varying width factor. This preserves the 

properties of the model as it was originally designed and maintains the optimal 

structure. 

 

Fig. 4. Coarse for auxiliary and fine for lead head label assigner 

Regarding the "Trainable bag-of-freebies," the method introduces "Planned 

re-parameterized convolution" and "label assignment" as the main technical points. 

The convolutional structure is based on RepConv, with RepConvN replacing identity 

connections. Deep supervision is added to enhance training, and the label assignment 

method employs soft labels from the lead head to guide both the auxiliary head and 

lead head learning. The Coarse-to-fine lead head guided label assigner generates thick 

and thin labels to optimize the auxiliary head's recall rate, dynamically adjusting the 

importance of fine and coarse labels during the learning process. 

Yolov7 model has highly improved speed and accuracy compared to other existing 

object detection models. Its performance surpasses all other detectors within the FPS 

range of 5 to 160, achieving the highest accuracy of 56.8% AP among real-time object 

detectors operating at 30 FPS or higher, which is suitable for the experiments in our 
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method. 

2.1.2 Edge AI system 

The layered structure of the most common edge computing system is mainly 

composed of Endpoint, Near edge, Far edge, Cloud, and Enterprise. Among them, the 

near edge refers to non-standard servers or devices, and the far edge refers to 

intermediate nodes with strong computing power, such as the cascade server room of 

cloud service providers or the operator's server room, and so on. The cloud is the 

proprietary cloud service or shared cloud, which has a large number of centralized 

computing resources, and these resources are reasonably allocated and centrally 

managed. 

Computing in the cloud and at the edge are not substitutes for each other but rather 

complement each other to tune for better fulfillment of goals, such as object detection 

tasks using artificial intelligence. Input data is usually obtained by devices at the edge, 

and after transferring a large amount of training data to the cloud, the cloud will train 

neural network models against this data. Heavy computational tasks and storage of 

model data are deployed in the cloud. After the model training is completed, in 

practical applications, the edge end sends the acquired real-time data to the cloud, and 

the object detection model in the cloud inputs it into the network and then sends the 

inference results to the edge device. Therefore, how to process the real-time data 

while ensuring accuracy so that the amount of data sent can be compressed, and how 

to reduce the amount of computation in the cloud is a key issue in this task.  

2.1.3 Previous method in high resolution  

There has also been research in the direction of processing large-size images in 

object detection tasks. This thesis also refers to some of these methods. In the paper 

You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite Imagery, 

several processing methods are proposed to overcome the problems of the object 
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being too small in the image and the imbalance of data volume. It incorporates feature 

maps of different sensory fields in its model to enhance the detection of small objects. 

In addition, it employs different scales of data for training as well as data 

augmentation to increase the percentage of foreground objects in the image. In terms 

of data, sliding window clipping is used in this method to segment the oversized 

resolution images, which are processed separately and then NMS processing is used 

to fuse the detection results of all the sub-images. 

Another referenced paper on the task of object detection on high-resolution images 

is called Flexible High-resolution Object Detection on Edge Devices with Tunable 

Latency. This paper proposes an efficient segmentation of the image so that regions 

requiring dense and sparse objects are separated. and sparse regions are separated. 

Then different parametric models are used for detection. Large models are assigned to 

regions that require more computing power to ensure accuracy, and small models are 

used to accelerate inference and reduce system latency. Moreover, the method can 

generalize the model by using the set latency as an adjustable constraint. 

 

2.2 Benchmark and Dataset 

In this paper panda dataset is used as high-resolution input. The images and videos 

in this dataset are captured by fixed cameras on the streets. This is a human-centered 

video dataset at the gigapixel level which can be used for large-scale, long-term, and 

multi-object visual analysis. It contains a variety of real-world scenarios, where 

pedestrians vary even more than a hundred times in scale in the images, posing a huge 

challenge to the detection task.  

Data-wise, each image frame in this dataset can reach a size of 26753*15052 pixels, 

which is much larger than the regular data volume for object detection tasks. It 

provides 18 scenes and more than 15,974.6 k of bounding box annotations. 
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In terms of benchmark format, the panda dataset uses the bounding box annotation 

format of Microsoft Coco format, which is the most common format for object 

detection tasks. Therefore, the coco evaluation criteria were also used in evaluating 

the experimental results. The benchmark provides the results of Cascade RCNN, 

Faster RCNN, and RetinaNet as the baseline, which are widely used detectors, and the 

experimental results in this thesis will be compared with this baseline to observe its 

effectiveness. 

 

2.3 Evaluation Metrics 

For the object detection task, the most important thing is that the network model is 

fast and accurate. A commonly used evaluation metric is generally mAP, which refers 

to mean average precision mean, accuracy evaluation. For speed, it is evaluated using 

FPS, which is the number of images processed per second or the time required to 

process each image. 

The metric mAP needs to be calculated from several different parameters. Firstly, 

the detection frame of each inference result is compared with the annotation frame of 

the original ground truth to calculate the IOU value. IOU value is calculated as the 

ratio of the intersection and concatenation of the detection frame and the annotation 

frame. 

 

Fig. 5. Formula of Precision, Recall, and IoU 

The IOU value is calculated as the ratio of the intersection and concatenation of the 
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detected frame and the annotation frame, where the detected frame with the IOU 

value greater than the set threshold is determined as TP, the detected frame with the 

IOU value less than the set threshold is determined as FP and the non-detected object 

is determined as FN. 

Under this criterion, Precision is calculated as the ratio of TP and TP + FP; Recall is 

calculated as the ratio of TP and TP + FN, and AP refers to the area under the curve of 

the relationship between the two values of Precision and Recall, the higher the value 

of AP, the better the detection effect of the model. 

In the Microsoft coco series of evaluation metrics, mAP is the average AP value for 

each detection category calculated with multiple IOU thresholds from 0.5 to 0.95 in 

steps of 0.05. In addition to this, there are different AP types differentiated by object 

size, small, medium, and large. These metrics will be used in experiments and data 

analysis to evaluate the effectiveness of the model. 

 

 

Chapter 3 Proposed Method  

3.1 Main Idea 

In considering the edge-cloud system for object detection incorporates a unique 

feature of the human detection task. That is, the shape and actual size of the human 

box is relatively stable. Since the camera is stationary, in most images, people close to 

the camera are large and people far from the camera are small. Meanwhile, the 

relationship between the percentage of the object in the image and the detection 

accuracy in object detection is well documented; the smaller the image, the more 

likely the feature map will lose information, and the less accurate the detection results 

will be. 
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Fig. 6. Distribution of different-size objects in the example scene 

 

Fig. 7. Distribution of different-size objects on the vertical axis 

Based on these investigations and experiments, I propose the main idea of the study. 

It is to take the size of the object in the image as the basis for judgment, and the image 

is partitioned and cropped. Then the image to be detected is processed by data 

compression. Before object detection, some methods are used to compress the amount 

of data in the video. The basis of partitioning is the range of human size detected in 

each region. Some regions have no human presence, and we can ignore that region. 

Some regions have small human size detected and we need to analyze them at their 

native resolution. Some regions have large human detections, and we can 

down-sample these regions to reduce the amount of computation. The downsampling 

multiplier depends on the value we set for the minimum accuracy. The compressed 

data is transmitted to the cloud for detection, and the inference results are obtained 

before fusing the results of each sub-image and outputting them to the original image. 
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⚫ Select a stable and fast human detection model.  

⚫ Evaluate the relationship between human size and model performance to get a 

size vs. precision curve. Select a precision threshold (p) to get the minimum 

human size(S) to reach such precision. 

⚫ Split the image into patches and record the size range of all bbox containing the 

pixel point at each patch. (Calculated by extracting a few frames from the video). 

⚫ Obtain heat maps based on the human size range at each patch.  

⚫ Use minimum rectangle(s) to mark region(s) that contain all patches that human 

size ∈[0,2S) occur. We keep the original resolution to this type. 

⚫ Use minimum rectangle(s) to mark region(s) that contain all patches that human 

size ∈[2nS, 2n+1S) occur. We down-sample to 1/2n *1/2n. 

⚫ The compression-processed individual subgraphs are then transmitted to the 

cloud for inference and the inference results are sent to the edge devices. 

⚫ Finally, each inference result is fused, and post-processing such as NMS is 

performed. 
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3.2 Proposed Method 

3.2.1 AP and Size Curve 

 

Fig. 8. Human size vs AP curve 

After identifying the detection model yolov7 to be used in this framework, its 

performance is first evaluated. We deployed this model on different scenarios of the 

panda dataset and obtained detection results for objects of different scale sizes. The 

detection results are compared with the annotated boxes of the ground truth to obtain 

a set of data corresponding to the human size and accuracy. By fitting this set of data, 

the curve relationship between human size and AP value can be obtained, and with 

this set of data, we can judge the value of the smallest human size that is acceptable 

after downsampling processing after we set an accuracy threshold. Since the default 

input of yolov7 is 640*640 pixels, we limit the range of human size to 0-640 in the 

process of performance testing to facilitate the subsequent experiments. 
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3.2.2 Image Grids  

 

Fig. 9. Grids in the example image 

The purpose of the second step of this framework is to partition the image screen. 

Here we use one of the scenarios from the panda dataset as an example. First, we need 

to partition the original image into a grid, where the pixel value size of each grid is set 

to the input size after the default resize operation of the detection model. In this way, 

we can ensure the stability and reliability of the detection results. 

3.2.3 Analyze the Composition of the Scene 

Then we use the historical data to analyze the overall composition of the scene. We 

use the sliding window to crop the uncompressed original data and then input each 

sub-image into the detection model to be used to obtain the results. The inference 

results of each subgraph are then fused to obtain the detection data for the whole scene. 

This process is computationally intensive but belongs to pre-processing and can be 

done in the computationally rich cloud before the deployment of edge devices. The 

purpose of this step is to obtain detection frames with higher accuracy so that our 

subsequent analysis of the picture is more accurate, and the partition is clearer.  
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Fig. 10. Range of human size in each grid. 

Then we count the range of human size that has appeared on each frame in the 

already partitioned grid and record it. Based on this range value, we can know which 

grids have larger pedestrian pixel frames, which grids have smaller pedestrian pixel 

frames, and which grids have no pedestrians appearing. 

3.2.4 Image Partition 

Using the statistical human size range of each grid, we can categorize the grids in 

the image by downsampling multiplicity. The first category is where no pedestrians 

have appeared, corresponding to the sky or buildings in the image; these grids do not 

need to be detected and therefore do not need to transmit their data to the cloud. (Fill 

color is gray in Fig9) 

Each of the other colors corresponds to a different size range of grids, which are 

classified by different multiples of the minimum size value corresponding to the set 

accuracy threshold. 
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Fig. 11. Heat map and image partition 

After obtaining the heatmap, the overall screen can be divided according to the 

coordinates of different grids. Some areas in this step are split into more reasonable 

cropping methods. Each region is expanded outward by 1/2*max(range) from the 

coordinates of its corresponding grid edge, which is the maximum human size value 

expanded outward by half. Since the size counting is done concerning the position of 

the center point of the detection box, this step of expanding the region is to ensure that 

the object to be detected appears intact in the divided region. 
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Table 1 Metrics on how to partition, the corresponding downsampling rate, and the radio to original 

data amount. 

From Table 1, we can see the corresponding size level of different colors, the 

corresponding downsampling multiplicity, and the radio to the original data amount. 

From the data compression multiplicity, we can see that the larger the size level of the 

region, the smaller its down-sampled data after processing. Therefore, even if there is 

an overlap of different regions, the final data amount is smaller. 

3.2.5 Data Compression 

 

Fig. 12. Compressed image data amount vs. original image 
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In the process of data compression, we downsample the divided region. The 

downsampling approach used in the method proposed in this thesis is to incorporate a 

pooling layer that uses maximum pooling. This approach is to reduce the amount of 

computation while retaining more feature information. 

In Fig10, the image in the foreground is the data that we need to transmit to the 

cloud for processing through the edge-cloud system connection. It can be seen that the 

amount of data to be transferred is greatly reduced. 

During the transmission from the edge to the cloud, the amount of data that needs 

to be transmitted can be adjusted according to the actual arithmetic power of the edge, 

and since each image is compartmentalized, it can be very flexible to choose which 

data will be transmitted. The edge end can use a portion of the arithmetic that satisfies 

the processing conditions to perform detection on a portion of the image data. The 

advantage of this operation is that when there is sufficient computing power at the 

edge, the transmission step to the cloud can be eliminated as a way to again reduce the 

latency and increase the detection speed. 

In cloud processing, each subgraph is detected using a sliding window. Note that 

the coverage area of each sliding window is set to have a 15% overlapping portion. In 

this way, objects at the edge parts of the image can be avoided to lose their feature 

information, resulting in omission in the detection results. 

3.2.5 Post Processes 

After the image input is detected in the cloud, its inference results, i.e., the 

detection frame data, are retransmitted to the edge device. The edge device then has to 

perform post-processing operations on the results again. 

Firstly, the data results of the different sub-images are combined, and the detection 

frames located at the edges of the image are fused and adjusted. 

Then NMS processing is also required at the edge end. In this step, we use soft 
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NMS as a classification method, which modifies the traditional NMS but does not 

increase the computational effort, which is the reason we chose it. 

Firstly, candidate bounding boxes with confidence scores of the detected objects are 

generated and these candidates are sorted according to the confidence scores. Then, 

starting from the box with a high confidence score, each box is iterated, calculating 

the IoU values concerning the other boxes and decreasing their confidence scores 

accordingly. If the confidence score is below the threshold, this detection box is 

removed. After repeating the above operation for all candidate detection boxes, the 

remaining detection boxes obtained are the results of soft NMS. 

The soft NMS allows potential detection frames to be retained while reducing 

overlapping results. The overall frame accuracy can be further improved in this way. 

  



31 

 

Chapter 4 Experiments 

4.1 Experiments details 

The graphics card used in the study is Nvidia RTX A6000 (Ampere GPU, 48GB 

GDDR6 memory, 768GB/s memory bandwidth). The code in this experiment was 

executed under the Ubuntu 20.04 operating system and written by Python 3.7.13, 

Pytorch 1.12.0.  

To ensure the validity of the experimental results, we retrained the yolov7 model. 

The training dataset in the panda dataset was used during model training, considering 

the carrying capacity of the graphics card and the fairness of the results. We refer to 

the training scheme in baseline, which is to down-sample the original gigapixel 

images by a factor of 4 and use a 2,048*1,024 (pixels) sliding window to decompose 

the down-sampled images. 

In the process of reasoning and testing the results, consider the baseline practice of 

downsampling the original images by a factor of 2. We also input the images into the 

detection framework proposed in this thesis after performing a 2-factor downsampling 

operation. 

In the preliminary performance testing of yolov7, to test its effect under different 

conditions of scale, light, and occlusion range, we also used part of the dataset of 

pedestrians from the MOT challenge, but it was not used in the training and testing. 
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4.2 Experiment results  

 AP Average Time FPS 

Cascade R-CNN 0.30889 20s 0.05 

Faster R-CNN 0.28442 14.29s 0.07 

RetinaNet 0.22545 10s 0.1 

YOLOv7(with slide window) 0.483 2.91s 0.337 

Proposed Method 0.412 0.486s 2.06 

Table 2 Results of our proposed method and the baseline 

The Cascade R-CNN, Faster R-CNN, and RetinaNet results are provided as the 

baseline by the Panda dataset. In the table YOLOv7(with slide window) means that 

the input image was down-sampled by a factor of 2, and then a sliding window with a 

size of 640*640 pixels was used to do the detection. 

The threshold requirement of AP is adjustable, when the lower the threshold 

requirement is set, the smaller the minimum value of human size in the compressed 

data, the higher the number of times the image can be compressed, and the faster the 

calculation speed? Therefore, in practical applications, the accuracy and inference 

time can be controlled and tuned. 

In this experiment, the initial threshold of AP is set to 0.4, and according to the 

fitting curve of human size and AP we tested, we locate the minimum value of size at 

64 pixels. and the scene image is divided into regions with S=64 pixels as the 

standard. In the experiment, we take one of the 30 frames of the video as historical 

data, which is used to analyze the scene. We used five scenes in the dataset to do the 

test and got the data results in Table 2. 
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It can be seen that our proposed scheme is higher compared to the preset AP 

threshold of 0.4. The reason for this is analyzed because there are some detection 

objects repeated within different subgraphs, so they are detected repeatedly, and their 

accuracy becomes higher after the post-processing soft NMS operation. 

In addition to this, it can be seen that our proposed scheme outperforms the three 

models of baseline in terms of both accuracy and inference time. Although it cannot 

realize the real-time detection of the original yolov7 version, it also shows its 

efficiency with high-resolution images of gigapixels. 
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Chapter 5 Conclusion and future works 

5.1 Conclusion 

In summary, our research focuses on a tunable framework for pedestrian detection 

that is highly efficient in both accuracy and speed. It has several advantages as a 

proposed approach to solve the deployment problem on edge-cloud systems. 

First of all, because our method divides the original data, it can support parallel 

computing of multiple small-scale pictures or videos. 

Second, it is flexible to explore potential applications with other algorithms or 

detection models. The adaptability of this approach allows integration with existing 

detection models, enhancing its versatility and utility in real-world scenarios. 

In addition, from the perspective of data transmission, the feasibility of computing 

some of the compressed data images directly on the camera side can be considered, 

while other images can be efficiently processed in the cloud. This dynamic division of 

computing between edge and cloud resources optimizes the balance of computing 

power and bandwidth, which can effectively alleviate resource constraints. 

And, through our downsampling process, the target with a size change of more than 

a hundred times in the original image can be stabilized within a reasonable range, and 

this method also makes the detection result more stable. 

Overall, our proposed method in this paper demonstrates its compatibility with 

various algorithms and its potential for super-resolution image object detection in 

edge-cloud systems. 

5.2 Future works 

The method proposed in this paper still has room for improvement, and these ideas 

may be implemented in future experiments. For example, although under the edge 
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camera, the composition of the image is stable, so that the trajectory of pedestrians 

can be traced. However, in actual deployment, the factors of the time axis can be 

considered. For example, at different time points, the areas where pedestrians appear 

may be different. Therefore, the area division method proposed in this paper can be 

optimized again. 

In addition, due to the limited data set and validation set we used, some extreme 

cases may affect the validity of the test results, such as low light, or the situation 

where the target has a lot of occlusions. Therefore, this method can consider these 

factors, and there is still room for improvement. 

As future research unfolds, this area may lead to the development of more robust 

and adaptable solutions for real-time object detection in high-resolution settings. 
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