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Abstract 

Videos as one of the most engaging mediums strike a deep connection with humans. 

Video salient object detection (VSOD) aims at discovering and locating the most 

visually distinctive parts of a video clip. Compared with still-image based Salient 

Object Detection (SOD) tasks, VSOD does not only suffer from processing a huge 

amount of data but also is directly affected by temporal dynamics. For instance, both 

moving foreground and background objects in a video clip make some existing image-

based methods less effective. 

How to effectively model both spatial information and temporal dynamics is crucial 

to this task. Recently, there are some works using self-attention mechanism to capture 

the spatiotemporal information due to its ability of modeling long-range dependencies 

of patch tokens. However, these models designate similar receptive fields of the 

spatiotemporal feature maps, which limits the ability of the models in handling the 

frames with multiple salient objects of different scales. To address this issue, we 

propose a Multi-Scale Self-Attention (MSSA) operation to better model the 

spatiotemporal features of salient objects with different scales. The experimental results 

demonstrate that our method achieves better performance on challenge datasets by 

using MSSA operation. 
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Chapter 1 Introduction 

1.1 Research Background 

Videos as one of the most common mediums strike an important role in our daily 

life. Video Salient Object Detection (VSOD) constitutes a fundamental undertaking 

within the realm of video processing, with the primary objective of identifying and 

segmenting the most visually distinctive regions within a given video clip. This task 

originates from the investigation of human visual attention mechanisms, as humans 

exhibit the ability to swiftly focus on the most informative aspects of visual scenes. The 

practical implications of Video Salient Object Detection (VSOD) span a broad spectrum 

of real-world applications, including video captioning [1], video compression [2], 

visual tracking [3], and autonomous driving [4].  

However, compared with the still image-based tasks, video SOD has an important 

difference, that is, the motion information between the adjacent frames. When events 

occurring in the real world are temporally condensed into a few seconds of video 

footage, the pixel values across different frames may exhibit temporal inconsistencies 

on the time dimension. How to effectively take such dynamic information into 

consideration makes VSOD very challenging. 

1.2. Existing Methods 

In recent years, VSOD task has witnessed a notable surge in the application of 

learning-based techniques, prominently featuring convolutional neural network (CNN) 

based methodologies as the prevailing paradigm. Some previous graph-based methods 

[5] intend to utilize the motion information based on spatio-temporal coherence, but 

due to the limitation of handcrafted features such methods fail to accurately model the 

spatial and temporal information in complicated scenes. Some fully convolutional 

network based methods [6], [7] utilize previous frame or predicted saliency map 
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concatenated with the current frame as the input to the network to model the temporal 

coherence. For the lack of employing explicit motion estimation, such CNN based 

methods are more easily affected by temporal dynamics from a video clip.  

To better utilize both spatial and temporal information for detection, some works 

[8], [9] employ 3D convolutions as a means to capture and incorporate temporal 

information into their models. Compared to the 2D convolution, an additional 

dimension is added to the 3D convolution kernel which also brings additional 

computation cost. 

 

Fig. 1 Illustration for 3D CNN based methods. Ft-1 denotes the last frame, Ft+1 denotes the next frame. 

 In recent, more and more works [10], [11] intend to fuse optical flow information 

to help the network learn more about representations of object motion. Incorporating 

additional prior information, such as optical flow or depth cues, may deviate the 

network from being a truly end-to-end architecture. 

 

Fig. 2 Illustration for two-stream network based methods. 

Similar to Recurrent Neural Network (RNN), the Long Short-term Memory (LSTM) 

network could consider the information of the last step. Such method uses a CNN 

Ft-1

Ft

Ft+1

 
 
  
 
 

CNN

CNN

 

Frame

Optical flow
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module to learn the static feature of the images, and fed to ConvLSTM layer then give 

the final saliency prediction. Therefore, it can be used to model the temporal coherence. 

Fan et al. [12] introduced a foundational model incorporating ConvLSTM and 

introduced a comprehensively annotated dataset for VSOD. 

 

Fig. 3 Illustration for ConvLSTM based methods. Ft-1 and Ft denotes the last frame and current frame. 

In more recent studies, several approaches have been developed with the aim of 

leveraging non-local attention-based mechanisms to effectively explore pairwise 

relations among adjacent frames. Specifically, Fan et al. [12] and Gu et al. [13] 

introduced saliency-aware attention modules and Constrained Self-Attention (CSA) 

operations, respectively, to enhance the model's ability to capture motion cues in the 

video data. And Su et al [14] first introduce Transformer block to capture the long-range 

dependencies through self-attention mechanism. But the original vision transformer [15] 

blocks rely on static receptive fields of the tokens and is incapable of capturing features 

at different scales. 

 

  

 

1.3 Research Objectives 

Taking inspiration from the above observations, this paper presents a multi-scale 

self-attention guided VSOD network, which could not only capture the long-range 

Ft-1

Ft

CNN

CNN

LSTM

Fig. 4 Illustration of Gu el ’s method and Illustration of Su el ’s method. 
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dependencies between adjacent video frames but also improve the model’s ability of 

handling images with multiple objects in different scales. The proposed method utilizes 

multi-scaled self-attention within different Vision Transformer [15] blocks. Specifically, 

the multi-scaled self-attention intends to merge different receptive field sizes into 

tokens, thereby representing larger object features, while concurrently retaining certain 

tokens to preserve fine-grained features. In short, the main contributions of our paper 

are summarized as follows: 

⚫ We propose a network which could consider both spatial and temporal 

information of a video clip. 

⚫ Incorporating diverse Transformer blocks, our approach is designed to 

effectively capture long-range dependencies among adjacent frames. And we 

use different scaled self-attention operations to merge multi-scaled features 

within a self-attention layer. 

⚫ We evaluate our method on video salient object detection benchmark. 

Experimental results show that the proposed multi-scaled self-attention 

operations makes the network performance better than that with original 

Transformer blocks in ViT. 

1.4 Outline of Thesis 

The structure of this thesis is as follows: 

Chapter 1: We give the introduction of Video Salient Object Detection task and the 

background of this research, which contains the challenging part of this task. We also 

introduce the existing methods in VSOD task, which contains 3D convolution based 

method, optical-flow based method, ConvLstm based method and attention based 

method.  

Chapter 2: We produce an introduction to the related technologies in our work. In 

2.1, we give a brief introduction to Convolutional Neural Network, including classic 
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VGG backbone which is used in our model. In 2.2, we introduce self-attention 

mechanism in vision field. Due to its ability of capturing long-range dependencies of 

patch tokens, we introduce it to our work for modelling context information between 

adjacent video frames. In 2.3, we mainly talk about the improvements of fixed-scale 

self-attention mechanisms. In this part, we mainly introduce two works, swin-

Transformer [18] and PVT (Pyramid Vision Transformer) [19]. One splits the feature 

maps into regions and perform self-attention within them locally, the other utilizes  

spatial reduction to merge tokens of key and value. 

Chapter 3: In this chapter, we mainly talk about the proposed architecture for this 

task. In 3.1, we introduce the detailed design for our model. In 3.2, we mainly talk about 

the multi-scale self-attention operation in this proposed architecture. In 3.3, we 

introduce the training scheme of our work, which includes the loss functions and the 

training details.    

Chapter 4: The experimental parts are shown in chapter 4. Firstly we introduce the 

four benchmark datasets in this task which includes DAVIS16 [22], FBMS [23] 

SegTrack-V2 [24] and ViSal [25]. Secondly, we give an introduction to the evaluation 

metrics which help to evaluate the quality of the proposed model. Then we give the 

experimental results of our work and comparisons to other models.  

Chapter 5: In this chapter, we give the conclusion to our work and the predicted 

improvements in the future work. 
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Chapter 2 Related Work 

2.1 Introduction of Convolution Neural Network 

2.1.1 Construction of Convolutional Neural Network 

Input layer: The input to the entire network typically comprises a three-dimensional 

matrix, representing the pixel information of an image. The dimensions of this matrix 

correspond to the image size, where the length and width indicate the spatial dimensions, 

while the depth denotes the number of color channels in the image. In the case of black-

and-white images, the depth is 1, whereas for images in RGB color mode, the depth is 

3. 

Convolution layer: The convolution layer is a critical component of CNNs. Unlike 

the fully connected layer, each node in the convolution layer receives input from a 

localized region in the neural network's preceding layer, typically represented by small 

blocks of size 3x3 or 5x5. As a result of the convolution operation, the node matrix 

undergoes an increase in depth, contributing to the extraction of deeper features within 

the network. 

Pooling layer: The pooling layer in a CNN is responsible for spatially 

downsampling the input 3D matrix while maintaining its depth. This downsampling 

process can be likened to transforming a high-resolution image into a lower-resolution 

representation. Consequently, the pooling layer facilitates a reduction in the number of 

nodes within the final fully connected layer, effectively diminishing the overall 

parameter count of the neural network. It is important to note that the pooling layer 

itself lacks trainable parameters. 

Fully connected layer: Following several iterations of convolution and pooling 

operations, the final classification outcome is typically obtained through one to two 

fully connected layers at the end of the CNN architecture. These convolution and 
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pooling operations play a vital role in abstracting information from the input image, 

transforming it into higher-level features with increased information content. 

Consequently, we can perceive convolution and pooling as automated image extraction 

processes. Subsequent to feature extraction, the task of classification is accomplished 

using fully connected layers. In the case of multi-class classification, the softmax 

activation function is often employed as the final layer, enabling the derivation of the 

probability distribution for each sample belonging to various categories. 

Next, I will introduce the two most important parts in CNN, Convolution layers and 

Pooling layers. 

Convolution layer: The focal element within the convolutional neural network 

structure is the filter, depicted as a yellow and orange 3x3x3 matrix in Fig.6. The filter 

plays a crucial role in transforming a sub-node matrix from the current layer of the 

neural network into a unit node matrix within the subsequent layer. The unit node matrix 

is characterized by a length and width of 1, while its depth remains unrestricted. The 

convolution operation demands careful consideration of several parameters, including 

the number of filters, the size of the filter, the convolution stride, and the padding size. 

The commonly used filter sizes are 3 × 3 or 5 × 5, the first two dimensions in the 

yellow and orange matrices in Fig.6, which are artificially set. The depth of the node 

matrix of the filter, that is, the last dimension of the yellow and orange matrices in Fig.6 

(last dimension of the size of the filter), is determined by the depth of the node matrix 

in the current layer of the neural network (the depth of the node matrix of the RGB 

image is 3). The depth of the convolution layer output matrix (also known as the depth 

Fig. 5 Convolutional neural network. 
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of the filter) is determined by the number of filters in the convolution layer. This 

parameter is also artificially set, and generally increases with the convolution operation. 

Pooling layer: First of all, I would like to introduce the concept of pooling. Owing 

to the inherent spatial correlation in an image, neighboring pixels often exhibit similar 

values, resulting in the convolution layer's output pixels in close proximity also 

possessing comparable values. Consequently, a considerable portion of the information 

within the output of the convolution layer tends to be redundant.  

The pooling layer efficiently reduces the spatial dimensions of the matrix by 

downsampling the input data (mainly reduce the length and width of the matrix, 

generally do not reduce the depth of the matrix), so as to reduce the parameters in the 

final full connection layer.  

2.1.2 Introduction of VGG-16 

VGG [16] is a deep neural network architecture proposed by the Visual Geometry 

Group at Oxford University in 2014. The VGG architecture utilizes continuous small 

convolutional kernels (3x3) and pooling layers to construct a deep neural network. The 

depth of the deep neural network can reach 16 or 19 layers. Therefore, VGG-16 and 

VGG-19 are the two most commonly used network structures. The VGG-16 and VGG-

19 are very similar, both composed of VGG blocks. The VGG blocks are composed of 

Fig. 6 Convolution operation. 
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convolutional layers and pooling layers. The difference is that VGG-19 has 3 additional 

convolutional layers and 1 dense layer, which improves the model's ability to fit more 

complex datasets. 

The VGG blocks utilize small 3x3 convolution kernel to increase the number of 

channels while the pooling layers cut down height and width of feature maps. There are 

several advantages to using 3x3 small convolutional kernel: (1) Reduce model 

parameters. A 3x3 convolutional kernel has 9 weight parameters, while a 5x5 

convolutional kernel requires 25 weight parameters. Therefore, using a 3x3 

convolutional kernel can significantly reduce the number of network parameters, 

thereby reducing the risk of overfitting. (2) Improve the nonlinear ability of the model. 

Multiple 3x3 convolution kernels connected in series can form a convolution kernel 

with a larger Receptive field, and this combination has stronger nonlinear ability. In 

VGG, using 3x3 convolutional kernels multiple times is equivalent to using larger 

convolutional kernels, which can improve the network's feature extraction ability. (3) 

Reduce computational complexity. VGG network uses multiple 3x3 convolution 

kernels, which can increase the Receptive field without increasing the amount of 

computation, but improve the network performance. 

The constructure of VGG-16. 

Input: 224x224 RGB image. Block1: Contains 2 convolutional layers [64x3x3]. 

Block2: Contains 2 convolutional layers [128x3x3]. Block3: Contains 3 convolutional 

layers [256x3x3]. Block4: Contains 3 convolutional layers [512x3x3]. Block5: 

Contains 3 convolutional layers [512x3x3]. The shape of input tensors is 224x224x3, 

after Block1, the shape of the tensors will be 112x112x64 (height*width*channels). 

The convolution layers in the VGG block do not change the spatial size of the feature 

maps, but the pooling operations will cut down the spatial sizes of them. The function 

of convolution layers is to extract different features from different levels. That’s why 

the number of channels will be gradually increase. Different types of features are stored 
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in different channels, and the increase in the number of channels helps the backbone 

network better extract features from input images. After five max-pooling operations, 

the shape of the tensors will be 7x7x512 (height*width*channels). The number of 

channels of 512 will enable the backbone network to learn features at different levels. 

Then tensors will be flattened and after several dense layers, the number of channels 

will be cut down to 4096 and then to 1000 (ImageNet challenge contains 1000 

categories). 

 

Fig. 7. Introduction to the VGG blocks in VGG-16 architecture. 

 

2.2 Self-Attention Mechanism in Vision Field 

Self-attention mechanism is proposed to capture long-range dependencies in 

machine translation. As a sequence model, it works by measuring pair-wise 

relationships of all patch tokens. Recently, Vision Transformer (ViT) [15] have shown 

that such self-attention mechanism also has superior performance in visual tasks. In 

Vision Transformer, an image is viewed as fixed-size patch tokens. Thus, we divide the 

input image into patch tokens and linearly embed each of them. Then the feature 

sequence will be fed into self-attention layer to do multi-head self-attention operation. 

After self-attention layer and LayerNorm, the feature sequence will be fed into 

FeedForward layer to do Multilayer Perceptron (MLP) operation. Because ViT is 

designed and first applied to classification tasks, an there is an additional token in the 
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input sequence, and the corresponding output of this token is result of the predicted 

category. The architecture of Vision Transformer (ViT) is shown below. 

 

Fig. 8. Introduction to Vision Transformer (ViT) and Transformer block. 

ViT only utilizes the encoder of Transformer architecture and the ViT block contains 

the following parts. 

Patch Embedding. If the height and width of the input image are 224x224, dividing 

the image into size 16x16 will generate 196 patches per image. The dimension of each 

patch is 16x16x3, after linear projection (the dimension of linear projection is 768 x n, 

n=768), the dimension of the input image will be 196x768. The number of patches is 

196 and the dimension of each token is 768. However, there is an additional cls token 

which is for classification. Therefore, the final dimension is 197x768. Up to now, the 

vision task is changed to a seq2seq problem. 

Positional encoding. The positional encoding in ViT could be considered as a table 

which contains N rows (N is the length of input pathch sequence). Each row of this 

table represents a tensor, whose dimension is same as the input after patch embedding 

(768). The operation of positional encoding is sum operation, not the concat operation. 

Thus, after adding additional positional encoding, the dimension is still 197x768. 
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Layer-Normalization and Multi-head attention. The dimension of tensors after 

Layer-Normalization is still 197x768. When doing multi-head self-attention to the 

tensors, the input will be projected to q, k, v. If the parameter of the heads is n, the 

dimension of q, k, v will be 197x(768/n). The tensors will do self-attention operations 

under each head respectively, and finally be concatenated to the original shape of 

197x768. Then after the Layer-Normalization, the shape of the output is still 197x768.  

MLP operation. In each ViT block, there are two linear layers which firstly increase 

the dimension to 197x3072 and then reduce it to 197x768. The aim of MLP operation 

is to increase the representation ability of backbone network by introducing more non-

linear transformations. 

After each block, the shape of the tensors will be unchanged. When the backbone 

network goes deeper, finally the cls token Zl will give the predicted result for the 

network. 

 

2.2.1 Multi-head Self-Attention Mechanism 

Transformer is proposed in the paper Attention is All You Need [17]. It was initially 

utilized in Natural Language Processing (NLP) task. Next, I will briefly introduce self-

attention mechanism in Transformer. 

As shown in Fig.9, the input at the bottom of the figure (X1, X2, X3, X4) represents 

the input sequence data. For example, tensors X1 - X4 could represent a sentence which 

contains four words, that is ‘I like playing basketball’. Then after embedding, they will 

become a1-a4. Next there will be three matrices multiplied by each of them to obtain qi, 

ki, vi,  i ∈ (1, 2, … , T):  

𝑞𝑖 = 𝑊𝑄𝑎𝑖,                           (1) 

𝑘𝑖 = 𝑊𝑘𝑎𝑖,                           (2) 
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𝑣𝑖 = 𝑊𝑉𝑎𝑖,                          (3) 

The following Fig. 9 shows how the output b1 corresponding to the input X1 is 

obtained. Firstly, calculate the vector dot product of q1 with different k values, and 

calculate the �̂�1,i ,which is a number between 0 and 1 through Softmax operation. Then 

multiply the �̂�1,1, �̂�1,2, �̂�1,3, and �̂�1,4 obtained in the previous step with the v1, v2, 

v3, and v4, and then sum them to obtain the output b1. Similarly, the calculation process 

for b2, b3, and b4 is basically the same as b1. 

 

 

 

 

 

 

 

 

 

 

For the input sequence, x1, x2, x3, x4…, unlike the processing of RNN/LSTM, the 

Self-attention mechanism can perform parallel calculations on x1, x2, x3, x4. This 

greatly improves the model's speed for feature extraction. 

Why the Transformer needs multi-head self-attention? 

When encoding information about the current location, the model excessively 

focuses its attention on its own location. The usage of multi-head self-attention 

mechanism can provide the output of the attention layer with encoded representation 

Fig. 9. The calculation process of self-attention operation. 
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information belonging to different subspaces, thereby enhancing the representation 

ability of the model. The multi-head self-attention operation is illustrated below. 

 

 

 

 

 

 

 

 

 

2.2.2 Introduction of Layer Normalization 

   Layer Normalization is a normalization function used in deep neural networks. It 

can normalize the output of each neuron in the network, so that the output of each layer 

in the network has similar distribution. 

   Different from Batch Normalization, Layer Normalization is not performed on the 

input of each mini batch. Instead it is performed on the output of each neuron. 

Specifically, for the output of each layer of network, we can perform Layer 

Normalization on the output of each neuron: 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥𝑖) =
𝑥𝑖− 𝜇

√𝜎2+𝜖
 ,                    (4) 

where 𝜇 represent the mean and 𝜎 is standard deviation of the output of the neuron 

in the mini batch, respectively. 𝜖  is a small constant number used to prevent the 

denominator from being zero. Through Layer Normalization, the network can converge 

faster and also improve its generalization ability. In tasks such as Natural Language 

Processing, Layer Normalization could achieve better performance. Since its 

Fig. 10. The illustration of multi-head self-attention. 
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normalization for each neuron does not depend on the size of the mini batch, it can also 

be used in smaller mini batches. 

2.3 Improvement of Fixed-scale Multi-head Self-attention 

   In recent years, Transformer based models have not only been fully applied in the 

field of Natural Language Processing (NLP), but also achieved astonishing 

performance in the field of computer vision, i.e., object detection and semantic 

segmentation… At the same time, more and more new improvements have been made 

to address the shortcomings of the original Vision Transformer model. 

2.3.1 Swin-Transformer  

   Swin-Transformer [18] is published by Microsoft on ICCV in 2021. Once published, 

this paper has already been the top on multiple visual tasks. Fig.11 shows the difference 

between Swin-Transformer and original ViT. From the figure, we could summarize at 

least two differences: 

   Firstly, Swin-Transformer adopts a hierarchical structure, which facilitates the 

handling of varying feature map sizes. For example, there are downsampling of 4 times, 

8 times, and 16 times for the image. This type of backbone architecture proves to be 

well-suited for tasks like object detection and semantic segmentation. In the original 

Vision Transformer, the downsampling rate was fixed at 16 times from the outset, with 

subsequent feature maps preserving this unaltered downsampling rate. We could see 

this difference in the Fig.11. 

   Secondly, Swin-Transformer incorporates the concept of Windows Multi-Head 

Self-Attention (W-MSA). In this approach, for instance, in the 4x downsampling and 

8x downsampling scenarios depicted in the subsequent figure, the feature map is 

partitioned into multiple non-intersecting regions (referred to as Windows), within 

which the Multi-Head Self-Attention mechanism operates independently. By utilizing 

this localized attention strategy, as opposed to performing Multi-Head Self-Attention 
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on the entire (Global) feature map in Vision Transformer, the computational complexity 

is effectively reduced. Although this approach reduces computational complexity, it 

also isolates feature fusion between different windows. Therefore, the author proposed 

the concept of Shifted-Windows Multi-Head Self-Attention (SW-MSA). 

 

2.3.2 Pyramid Vision Transformer 

The motivation proposed in this paper [19] is to enhance the performance of 

original Vision Transformer. The illustration of comparisons with CNN, ViT and PVT 

is shown in Fig. 12. The proposal of ViT is creative, but there is also much space for 

improvement. For example, it is difficult to directly apply ViT backbone to some 

downstream tasks. There are two main reasons. On the one hand, it has network design 

issues, and on the other hand, it has high memory usage on GPU.  

(1) Network design issue. We know that ViT divides an input image into patch 

tokens, thus a 16-stride or 32-stride feature map will be obtained. The size of the feature 

16 

8 

4 

16 

16 

16 

classification

segmentation

detection classification

(a) swin-transformer (b) ViT

Fig. 11. Illustration of Swin-Transformer and ViT. 
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map in the network remains unchanged, and overall it is a columnar structure as shown 

 

Fig. 12. Comparisons with CNNs, Vision Transformer, and Pyramid Vision Transformer. 

in Fig.12 (b). From the figure, we can see that CNN is a pyramid structure, and the 

deeper the network, the smaller the feature map and the more channels there are. 

However, ViT is a columnar structure that maintains a single size of the feature maps 

throughout the network.   

The question is whether the choice of 16-stride or 32-stride is reasonable for 

different tasks? The answer is clearly no. The problem of the input ViT feature tokens: 

The resolution of ViT feature maps depends on the setting of the input patch-token size, 

however, the resolution requirements vary for different images or tasks. The more 

complicated the image or task, the higher the demand for resolution. An apple with a 

resolution of 2x2 is sufficient, a seagull with a resolution of 3x3, and a palace with a 

resolution of 4x4.  

(2) Memory usage issues. Another issue with ViT is its high GPU memory usage, 

which makes it difficult to process high-resolution input image. For Classification task, 

a resolution of 224x224 may be sufficient for input images, but for tasks such as 

Semantic Segmentation and Object Detection, we often need higher resolution input 

images. The high GPU memory usage of ViT is largely due to the need for Attention 

computation. The higher the resolution of the input image, the higher the memory usage 

for Attention computation, so it is difficult to process high-resolution images with ViT. 
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Chapter 3 Proposed Method 

   In this chapter, we mainly introduce the proposed method and its overall 

architecture, and the main proposal Multi-Scaled Self-Attention(MSSA) branch for this 

task. We give the detailed process of computation of Multi-Scaled Self-Attention 

operation. Then in 3.3, we give the introduction of the network training. In this part, we 

introduce the loss function and detailed training schemes. 

As mentioned in Chapter 1 Introduction, in order to capture both spatial information 

and temporal dynamics, which is the challenge of this task, we decided to utilize VGG 

to extract spatial features and utilize self-attention mechanism to capture long-range 

dependencies. That’s because after down sampling by CNN backbone, the length of 

patch tokens will be much shorter than before. As known to us, the computational cost 

for ViT is based on the input size of images. Thus, for the lightweight task VSOD, such 

operation is necessary and could cause a reduction of calculation.   

Since the input is adjacent N frames of video clips, after patch embedding, the 

feature tokens which contains N frames information, will be fed into self-attention layer. 

VSOD task aims at locating and segmenting the common foreground objects of a video 

clip. Therefore, such self-attention operation will capture long-range dependencies 

from these consecutive frames. And makes the model pay more attention to the common 

foregrounds of the adjacent frames. The illustration of this process is shown in Fig.13. 

That’s why we use self-attention mechanism to replace the sequence model. Another 

reason is that the traditional sequence model like LSTM is serial, which means that it 

needs to know the step of last time and then calculate the next step. Such operation will 

slow down the computational speed of the model. However, self-attention mechanism 

could do matrix multiplication in parallel, which could accelerate on GPU. 

Finally, we concatenate the spatial feature maps with the enhanced temporal feature 

maps, and use a convolution layer to give the final predicted masks. 
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3.1 Network Architecture 

   The overview of our proposed method is shown in Fig.14. Given an input of N 

frames of a video clip, they are firstly fed into CNN backbone to extract multi-scale 

spatial features. The encoder of our network is built upon VGG16 which I introduced 

in the related work part. The VGG blocks utilize small 3*3 convolution kernel to 

increase the number of channels while the pooling layers cut down height and width of 

feature maps. Such operation makes the encoder learn more deep features while the 

increase of the calculation amount continues to slow down.  

We encapsulate different self-attention schemes into different transformer blocks. 

For this part of network, we call it MSSA. MSSA is designed to capture spatial temporal 

information of adjacent frames. They are utilized in the top two layers in the Fig.14, 

because the computational cost of the self-attention mechanism depends on the length 

of feature sequence. To avoid expensive memory consumption and computational cost, 

we use it on the spatial reduced feature layers to produce the multi-scale self-attention 

Self-Attention Layer

 

 

reshape reshape reshape

                          

     

Fig. 13. Illustration of capturing long-range dependency using self-attention mechanism. 
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enhanced feature maps. For decoder, we reference the strategies of feature pyramid 

network [20]. The MSSA enhanced spatiotemporal feature maps are upsampled using 

bilinear interpolation to match the low-level feature size. Then we concatenate the static 

spatial features with the spatiotemporal features. Finally, a convolution layer is utilized 

to give the predicted mask.  

The video clip, consisting of N frames (e.g., N = 5), is initially processed through a 

CNN backbone to extract static spatial features. Subsequently, the designed Multi-

Scaled Self-Attention (MSSA) module is applied to the top two feature layers. This 

module is specifically designed to capture long-range dependencies among the frames, 

thereby enhancing the modeling of spatio-temporal correlations. The output of this 

module yields enhanced spatiotemporal feature maps. To achieve consistency between 

spatio-temporal features and static spatial feature size, bilinear interpolation is 

employed for upsampling. Subsequently, the low-level feature and spatio-temporal 

feature maps are concatenated to yield the final predicted mask. 

3.2 Multi-scale Self-Attention 

   Motivation of proposing multi-scale self-attention for this task. 

   In VSOD task, because the form of data is a continuous frame of video, the distance 

between the objects and the camera in the dataset determines their sizes in the frames. 

Thus, the size of the same saliency object in consecutive frames of the video is different, 

      

2   

    INPUT  OUTPUT  

Attention1 Attention1 Attention2 Attention2

Attention1 Attention1 Attention2 Attention2

MSSA

Fig. 14. Overview of our proposed method. 
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as shown in Fig.15. The different sizes of the same salient object will bring difficulties 

to such process. Therefore, we proposed multi-scale self-attention in order to make the 

model fuse more different scaled feature information. 

 

Fig. 15. Illustration of the same salient object with different sizes in consecutive frames. 

In our work, since the input is N frames of a video clip, the shape of feature sequence 

has an additional dimension, that is, number of frames. In order to handle the frames 

with multiple salient foreground objects, we merge multiscale tokens within one 

attention layer. The input sequence 𝐹 ∈ 𝑅ℎ×𝑤×𝑓𝑟𝑎𝑚𝑒𝑠×𝑐  are firstly projected into 

query ( ), key (K), and value (V). Different from Shunted Transformer [21], we do not 

choose a series of different down-sampling ratios which is specially designed as 

backbone network. We only use one down-sampling ratio 2 which means reduction of 

the feature sequence’s length by half. The illustration of our multi-scale self-attention 

operation is shown in Fig.16.  

 

 

 

 

 

 

 

1 2 3 4

5 6 7 8

Self-Attention

 

 1V1

 2V2

Concat

 

Fig. 16. Illustration of multi-scale self-attention. 
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Integrating the keys with different scales within one attention layer enables the 

network to capture multi-granularity spatio-temporal features. Specifically, we split the 

attention process into two parts. The sizes of keys K and values V are different in each 

part for different heads indexed by i: 

𝑄𝑖 = 𝑋𝑊𝑖
𝑄

 

𝐾𝑖 = 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑟𝑒𝑑𝑢𝑐𝑒𝑑(𝑋, 𝑟𝑖)𝑊𝑖
𝐾
                     (5) 

         𝑉𝑖 =  𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑟𝑒𝑑𝑢𝑐𝑒𝑑(𝑋, 𝑟𝑖 )𝑊𝑖
𝑉

. 

In this work, we use a 3D convolution layer with kernel size and stride of 𝒓𝒊 to 

implement the spatial reduction operations. In practice, we set 𝒓𝒊 to 2 or 1 to prevent 

incurred feature information loss since our feature maps have already down sampled by 

CNN encoder. The shunted self-attention is calculated by: 

 ℎ𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝑖𝐾𝑖

𝑇

√𝑑ℎ
)𝑉𝑖                          (6) 

Then we replace the original self-attention layer in Transformer block to form the 

new blocks. The specific design for our MSSA branch is shown Fig.17. The green 

blocks denote the Transformer blocks with original self-attention layer, and the yellow 

blocks are with the multi-scale self-attention layer. Then we utilize the MSSA branch 

to capture the spatio-temporal features. 

 

 

 

 

 

 

 

Self-Attention

Layer Norm
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Layer Norm

 

Multi-scale

Self-Attention

Layer Norm

 

FeedForward

Layer Norm

 

Atten1 Atten1 Atten2 Atten2

Fig. 17. Illustration of proposed MSSA branch. 
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3.3 Network Training 

3.3.1 Loss Function 

Similar to PCSA network [13] and UFO [14], we use a weighted Binary Cross-

Entropy loss and a IoU loss for pixel-wise segmentation. We denote the predicted 

probability as   (i, j) and denote the groundtruth as G(i, j). The ratio of all positive 

pixels to the total number of pixels in the image is calculated as γ. Then the weight 

Binary Cross-Entropy loss can be defined as: 

𝐿𝑤𝑏𝑐𝑒 = −
1

𝐻𝑊
∑ ∑ γ𝑊

𝑗=1
𝐻
𝑖=1 𝐺(𝑖, 𝑗)𝑙𝑜𝑔(𝑝(𝑖, 𝑗))  − (1 − γ)(1 − 𝐺(𝑖, 𝑗)) (𝑙𝑜𝑔(1 − 𝑝(𝑖, 𝑗))),    (7) 

where H and W denote the height and width of the image. 

Besides we also use IoU loss to evaluate segmentation accuracy as follows: 

𝐿𝑖𝑜𝑢 = 1 −
∑ ∑ 𝑃(𝑖,𝑗)𝐺(𝑖,𝑗)𝑊

𝑗=1
𝐻
𝑖=1

∑ ∑ [𝑝(𝑖,𝑗)+𝐺(𝑖,𝑗)−𝑃(𝑖,𝑗)𝐺(𝑖,𝑗)]𝑊
𝑗=1

𝐻
𝑖=1

.          (8) 

The total loss of the framework is formulated as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑤𝑏𝑐𝑒 + 𝐿𝑖𝑜𝑢.                   (9) 

3.3.2 Training Scheme 

In accordance with the procedure adopted by various studies, we initially conduct 

pre-training on a static image dataset, and then finetune the whole network on the video 

dataset. The input contains N = 5 frames, which has fixed size of 224 × 224 for training 

and testing. The numbers of multi-heads of two different Transformer blocks are set to 

4 and 8 respectively, and the hidden dimensions of FeedForward layer are set to 782. 

All experiments are conducted on two GTX 1080Ti GPUs. 

Pretrain phase. We firstly pre-trained the network on static image dataset COCO-

SEG [22] which contains 200,000 images and each image has pixel-wise annotations. 

The Adam optimizer is employed with an initial learning rate of 1e-5, which is reduced 

by half every 20,000 epochs. The pretraining process takes about 21 hours for 100,000 
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epochs. 

Finetune phase. After pretraining, we finetune the network on the video datasets 

DAVIS16 [23] and FBMS [24], which contains 59 video clips in total. We set the 

batchsize to 4 and use the same learning rate schedule as the pretrain phase. The data 

augmentation methods contain random rotation, random flip, random crop and color 

jitter, which are the common practice for data augmentation. The finetune phase takes 

about 12 hours for 100,000 epochs. 
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Chapter 4 Experimental Results  

4.1 Datasets 

We evaluate video salient object detection methods on DAVIS16 [23], FBMS [24] 

SegTrack-V2 [25] and ViSal [26] benchmarks. DAVIS16 has 50 high-quality video 

sequences (30 for training and 20 for testing) which have pixel-wise manually created 

segmentation in the form of binary mask for each frame. ViSal and SegTrack-V2 

datasets are used to evaluate the model because all VSOD methods are not trained with 

any subsets of them. 

4.2 Evaluation Metrics 

Three main metrics are used to evaluate the VSOD method, including mean 

absolute error MAE [27], F-measure𝐹𝛽[28], and Structural measurement (S-measure) 

[29]. MAE measures the absolute pixel errors between the predicted mask and 

groundtruth: 

𝑀𝐴𝐸 =  
1

𝑁
∑ |(𝐺𝑖 − 𝑆𝑖)|𝑁

𝑖=1           (10) 

where N denotes the number of all pixels, 𝑆𝑖 represents the predicted saliency map 

value and 𝐺𝑖 represents the groud truth value. F-measure is computed as a weighted 

mean of precision and recall and it defined as follows: 

𝐹𝛽 =  
(1+𝛽2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝛽×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
            (11) 

S-measure assesses the structural similarity between the real-valued saliency map 

and the binary ground truth. It takes into consideration both object-aware (So) and 

region-aware (Sr) structural similarities: 

𝑆 =  𝛼 ×  𝑆𝑜 + (1 − 𝛼) × 𝑆𝑟       (12) 

where α is set to 0.5. 
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4.3 Experimental Results and Comparisons 

4.3.1 Visual Results 

   The Visual Results could be seen in this part.  

   These frames are from the public datasets, FBMS (tennis), and SegTrack-V2 (girl). 

The first column represents the original video clip, the second column displays the 

predicted salient mask, and the third column showcases the ground truth. From the 

depicted figure, it is evident that the predicted salient mask generated by our proposed 

method yields results comparable to the ground truth mask.  

4.3.2 Ablation Study 

We investigate the effect of the proposed MSSA branch by making comparisons 

with the original transformer blocks. The results can be seen in Tab.1, under the same 

training scheme, the MAE of the baseline with MSSA branch is lower than that with 

frames predictions GT frames predictions GT

Fig. 18. Visual results for our proposed method. 
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original Transformer blocks.  

Table. 1 Analysis of effectiveness of MSSA branch. 

Method 

DAVIS SegTrack-V2 

MAE↓ MAE↓ 

VGG+Tranformer 

block 

0.041 0.045 

VGG+MSSA(ours) 0.033 0.034 

   In table.1, we compare the main metrics MAE between the VGG+Transformer and 

our proposed VGG+MSSA. From this table, we can see that our proposed MSSA gives 

the better performance than that with original Transformer blocks, which shows the 

effectiveness of MSSA branch. 

   In Fig.19, we compare different metrics on the three main datasets. The first figure 

gives the comparisons with S-measure and MAE, and our proposed MSSA gives the 

better performance on these datasets. The Precision-Recall Curves of our proposed 

method also higher than that with original Transformer blocks. F-measure curves also 

give the same performance, which proves that our proposed MSSA is effective.   

ours

DAVIS

FBMS

SegTrack-V2

Fig. 19. Analysis of effectiveness of proposed MSSA method. 
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Then we compare our method with several previous SOTA methods, which includes 

two conventional methods: MSTM [30], STBP [31] and three deep-learning based 

methods: SCOM [32], SCNN [33], FGRN [34]. We use three evaluation metrics: MAE 

[27], Fmearsure [28], and Smeasure [29] for a fair comparison.  uantitative 

comparison results are shown in Tab.2. This shows that our method can perform better 

than some previous SOTA methods due to our proposed multi-scaled self-attention 

branch.  

 

Table. 2 Comparisons of our method with other state-of-the arts on four VSOD datasets. 

Methods 

DAVIS SegV2 FBMS ViSal 

MAE↓  Sm↑ Fβ
m x↑ MAE↓ Sm↑ Fβ

m x↑ MAE↓ Sm↑ Fβ
m x↑ MAE↓ Sm↑ Fβ

m x↑ 

MSTM[28] 0.174 0.566 0.395 0.114 0.643 0.500 0.177 0.613 0.500 0.095 0.749 0.673 

STBP[29]  0.096 0.677 0.544 0.061 0.735 0.640 0.152 0.627 0.595 0.163 0.629 0.622 

SCOM[30] 0.055 0.814 0.746 0.030 0.815 0.764 0.079 0.794 0.797 0.122 0.762 0.831 

SCNN[31] 0.077 0.761 0.679 - - - 0.095 0.794 0.762 0.071 0.847 0.831 

FGRN[32] 0.043 0.838 0.783 0.035 0.770 0.694 0.088 0.809 0.767 0.045 0.861 0.848 

Ours 0.033 0.845 0.800 0.034 0.799 0.730 0.046 0.861 0.831 0.029 0.900 0.875 

 

4.4 Experimental Results of Our Method with Optical-flow 

However, there are some cases which are difficult to locate and segment the 

accurate saliency maps from the background. For instance, it is hard for the model to 

segment a dancing girl form the audience in DAVIS dataset, because they are all belong 

to the same object “people”. As we can see in the Fig.21, the images in the first column 

are the RGB images. A dancing girl is dancing in front of a crowd of people. Even for 

people, it seems hard to locate and segment the salient foreground dancing girl. Thus, 

introducing additional optical flow information is useful in such condition.  
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Using additional optical flow information could alleviate this issue by making our 

network pay more attention to the moving foreground objects. Therefore, we use the 

same backbone network to generate the flow feature maps to enhance the image features. 

The enhanced feature maps are then fed into the subsequent networks. The test results 

on DAVIS of our network with additional optical flow can be seen in Tab.3. The 

additional optical flow information alleviates the mistake in the dataset to some extent. 

However not all the datasets have rich optical flow information and using such optical 

flow information could make our network inconvenient. 

The architecture of our utilized encoder is shown below, we use the same backbone 

VGG-16 to generate optical flow features and then multiply with the RGB image 

feature maps. The subsequent network is unchanged and use the same way to extract 

spatial-temporal information. Finally gives the predicted salient mask.  

 

 

 

 

 

 

 

 

The utilized optical flow information is generated by PWC-Net [35]. In practical 

operation, we manually used this optical flow estimation method to obtain the optical 

information from the video dataset DAVIS, as supplementary information for the 

network. 

 
 
 

 
 
 Optical flow

Frames

Subsequent

network

Fig. 20. Illustration of our method with optical flow. 
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Fig. 21. Visual comparisons for our model with additional optical flow and without optical flow. 

 

From Fig.21, we can see that adding additional optical flow information helps the 

network better locate and segment the foreground salient objects. However, not all the 

video datasets contain the sufficient optical flow information. Some datasets only 

contain key frames of a video clip. Therefore, we conduct the experiments mainly on 

the large dataset DAVIS. And the comparison results could be seen in the following 

Table 3. When there is sufficient optical flow, the prior information will improve the 

accuracy of segmentation. 

Table. 3 Comparisons of our method with optical flow 

Methods 

DAVIS 

MAE↓ Sm↑ Fβ
m x↑ 

Ours (without 

flow) 

0.033 0.845 0.800 

Ours (with flow) 0.023 0.881 0.853 

RGB GT Ours(with flow) Ours(without flow)
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Chapter 5 Conclusion and future works 

5.1 Conclusion 

In this paper, we proposed a multi-scale self-attention (MSSA) module for VSOD, 

which could not only capture the spatiotemporal information but also make the network 

effectively model the salient objects with different scales. Experiments show that our 

MSSA achieve better performance than the original self-attention operation in ViT for 

VSOD task, and the test results on four benchmarks also demonstrate the effectiveness 

of our method.  

How to effectively capture spatial information and temporal dynamics is key to 

VSOD task. In the introduction part, we analyzed the challenge of this task and existing 

methods. According to my observation of the data in the video datasets, I found that the 

size of the same saliency object varies in different frames. Therefore, we proposed 

Multi-scaled Self-attention branch together with the CNN backbone to better adapt to 

the characteristics of the datasets. In Chapter 3, we give the architecture of our proposed 

model and related mathematical derivation. Finally, we give the experimental results 

and analysis of results. In this part, we have demonstrated that the proposed Multi-

scaled Self-attention is effective, which is the main contribution of this paper.  

 

5.2 Future works 

 In this paper, we proposed that using Multi-scaled Self-attention to integrating 

features from different scales while capturing long-range dependencies. Such work has 

not been done in VSOD task before. And we improve the effectiveness of our proposed 

method. However, due to the training scheme and insufficient design of some network 

feature fusion modules, there is still room for improvement in the performance of the 

model.  

   Secondly, I have submitted the paper to IEEE Global Conference on Consumer 
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Electronics(GCCE) 2023. If the paper is accepted I will submit the four-page version. 
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