979-8-3503-4017-4/23/$31.00 ©2023 IEEE

Point Cloud Denoising and Outlier Detection with
Local Geometric Structure by Dynamic Graph CNN

Kosuke Nakayama
Graduate School of Fundamental
Science and Engineering
Waseda University
Tokyo, Japan
kosuke0013 @fuji.waseda.jp

Abstract—The digitalization of society is rapidly developing
toward the realization of the digital twin and metaverse. In
particular, point clouds are attracting attention as a media
format for 3D space. Point cloud data is contaminated with noise
and outliers due to measurement errors. Therefore, denoising
and outlier detection are necessary for point cloud processing.
Among them, PointCleanNet is an effective method for point cloud
denoising and outlier detection. However, it does not consider the
local geometric structure of the patch. We solve this problem by
applying two types of graph convolutional layer designed based
on the Dynamic Graph CNN. Experimental results show that
the proposed methods outperform the conventional method in
AUPR, which indicates outlier detection accuracy, and Chamfer
Distance, which indicates denoising accuracy.
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I. INTRODUCTION

Digital technology is rapidly progressing in various fields
toward the realization of the digital twin and metaverse. In
particular, point clouds are attracting attention as a format
for representing three-dimensional space. Point cloud data can
be acquired with laser scanner. However, it contains outliers
and noise due to instrument limitations. Noisy data reduces
the accuracy of later processing such as object detection,
segmentation, and reconstruction. Therefore, denoising and
outlier detection are important technologies that form the basis
of point cloud processing.

In general, there are statistical methods for point cloud
denoising and outlier detection. One is bilateral filtering [1]
based on the distance between each point and a plane fitted to
the neighboring points. The other is moving least square [2]
that projects each point onto a surface fitted to the neighbor-
hood points. However, these two methods cannot handle all
planes, surfaces, and edges and have the problem of excessive
smoothing.

To address this limitation, deep learning methods for point
cloud denoising and outlier detection have been developed
in the last few years. In particular, PointCleanNet [3] is an
effective deep learning-based method. However, it does not
consider the local geometric structure of the patch. Therefore,
it is difficult to capture noise and outliers.

Hiroto Fukuta
Graduate School of Fundamental
Science and Engineering
Waseda University
Tokyo, Japan
taketomohiro @akane.waseda.jp

Hiroshi Watanabe
Graduate School of Fundamental
Science and Engineering
Waseda University
Tokyo, Japan
hiroshi.watanabe @waseda.jp

To solve this problem, we apply two types of graph convo-
lutional layers based on Dynamic Graph CNN [4]. The first is
to dynamically construct a neighborhood graph in each layer.
The second is to propagate the neighborhood search results in
low-dimensional space to the backward layers. These proposed
methods solve the problem of not considering the relationship
between points in a patch. Experimental results confirm that
the proposed methods outperform the conventional method
in AUPR, which indicates outlier detection accuracy, and
Chamfer Distance, which indicates denoising accuracy.

II. RELATED WORKS
A. PointCleanNet

PointCleanNet is a point cloud denoising and outlier detec-
tion method using deep learning. It consists of two stages: 1)
Outlier Detector for outlier removal and 2) Denoiser for noise
correction. Specifically, the outlier detector classifies outliers
and discards them from the original point cloud. Next, the
denoiser estimates correction vectors that project the noisy
points onto the original clean surface. The method is efficient
and robust to various levels of outliers and noise. It is also very
easy to incorporate into existing shape processing pipelines
because of its simplicity and versatility. However, there are
problems with remaining outliers and unnatural distortion
of planes and surfaces. This is because the local geometric
structure within the patch is not considered in the input point
cloud.

B. Dynamic Graph Convolutional Neural Networks

Dynamic Graph CNN is a point cloud classification and
segmentation method using deep learning. In the process, the
nodes of the graph represent points and edges are established
based on pairwise distances between points. This structure
effectively transforms point cloud data into a graph repre-
sentation. In particular, by defining convolution operations on
dynamic graphs, local geometric features can be learned. The
topology of the graph is used to adaptively determine the
receptive field of each point, allowing the user to focus on local
neighborhood information that is important for understanding
the 3D shape. In addition, mathematical analysis to optimize
graph convolutional networks is discussed [5].
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Fig. 1. The architecture of the proposed method: Outlier Detector and Denoiser.

III. PROPOSED METHOD

A. Architecture

The architecture consists of two stages: 1) Outlier Detector
for outlier removal and 2) Denoiser for noise correction. It is
shown in Fig. 1. It consists of quaternion spatial transform,
graph convolutional layer, and residual block. In particular,
the graph convolutional layer consists of four local feature
networks. In this network, local neighborhood graphs are
constructed by k-nearest neighbor search. Then, convolution
and addition operations using them are used to generate edge
features that can represent relationships between points. They
allow the calculation to reflect the local geometric structure
information while maintaining the global shape information
of the patch.

Quaternion spatial transform is a network that outputs a
rotation matrix using quaternions to rotate the patch. It is
effective for translational invariance and implicitly learns the
rotation transformation to be robust to outliers and noise.
Residual block is a network that adds skip connections to the
conventional structure. It can be effective in addressing the
vanishing gradient problem.

B. Outlier Detector

The outlier detector takes a local patch P’; of outlier points
P as input and outputs the outlier estimation probability
g (P!) for each point in the patch. After that, an outlier is
determined based on the set threshold value. Points determined

to be outliers are added to the outlier set O. The outlier
determination is given by

If &; > Threshold : &; € O. (1)
Then, point cloud P with outliers removed is given by
P=P\O. )

For the loss, we used the manhattan distance L, between
the estimated outlier label o, and the correct outlier label o;.
The loss function of outlier detector is given by

Lo(pipi) = 1|08 — o0i |1 3)

C. Denoiser

The denoiser takes as input the local patch P; of noisy points
P after removing outliers, and outputs the noise correction
vector f(P;) for each point. The denoised smooth point cloud
P is given by
P=P + f(P). )
For the loss function, we used L., a combination of two
types of losses Ly and L,.. L, is the square of the L2 distance
between each point after denoising and the nearest point in the
neighborhood centered at the correct data point corresponding
to that point. On the other hand, L, is the square of the
euclidean distance between the point and the farthest point.
These two were weighted by a, L,. These loss functions are
represented by

Lx(f’iapﬁ,») = min || p; - D ||§7 ®)
), €Pp;
D ~ = D. —Dp. 2
Lr(pis Pp) = max | i = p; Iz ©6)
Lo(p; Ps,) = als + (1 — ) L,. @)

D. Difference of Two Graph Convolutional Layers

We introduced two types of graph convolution layers. They
are shown in Fig. 2. In the first method, based on the
normal Dynamic Graph CNN. The k-neighborhood graph is
not fixed, and the graph is dynamically updated after each
local feature network. This allows a detailed analysis of the
local structure of the neighborhood. In the second method,
the graph was designed based on the optimization of graph
convolution. The graph is fixed, and the k-neighborhood graph
in low-dimensional space is also reflected in each local feature
network. This is expected to improve the computational speed
compared to the usual graph convolution.

IV. EXPERIMENT
A. Datasets

For the outlier detector, the PointCleanNet outlier dataset
consisting of 28 different point clouds with 140000 points for
each shape is used. For the denoiser, the PointCleanNet noise
dataset consisting of 28 different point clouds with 100000
points for each shape is used.
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Fig. 2. Comparison of two graph convolutional layers. (a) Nomal graph
convolution of point clouds. (b) Optimized graph convolution of point clouds.

B. Experimental Parameters

For the outlier detector, the outlier threshold is set to 0.5
and the number of k-nearest neighbor searches to 16. The
parameters used in the training were batch size 16, learning
rate 10~%, number of epochs 800, and initial values of network
weights were initialized by He [6]. For the denoiser, The « in
the loss function L, is 0.99 and the k-nearest neighbor search
is set to 16. The parameters used for training were a batch
size of 16, a learning rate of 1078, an epoch count of 800,
and a uniform random value of (—0.001,0.001) for the initial
network weights.

C. Evaluation Method

The average AUPR was used for comparison of outlier
detection accuracy. This is because the point cloud of the
data set has a bias in the number of outlier and nonoutlier
points; the AUPR is a curve representing the change in the
reproducibility-fitness ratio of the test results and the study of
the area of curvilinearization. The area value ranges from 0 to
1, with larger values indicating higher prediction accuracy. The
average value of Chamfer Distance was used for comparison
of denoising accuracy. The similarity of point clouds can
be measured by evaluating them against each other from
both predicted and ground truth, with lower values indicating
higher denoising accuracy. The concept of Chamfer Distance
is shown in Fig. 3. Chamfer Distance(CD) is given by

1 . 1 .
CD = =3 minlp; —pjl + 5 X minp; — il ®)
pep” pepPi€P

VAN

Fig. 3. The concept of Chamfer Distance.
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D. Accuracy Evaluation

1) Outlier Detectoion: The results of outlier detection accu-
racy by AUPR are shown in Table I. It shows that "Ours1” has
the best performance. It outperforms the PointCleanNet score
by 0.048 when the noise level is 1.0.

2) Denoising: The results of denoising accuracy by Chamfer
Distance are shown in Table II. It shows that “Ours1” has the
best performance. It outperforms the PointCleanNet score by
0.0035 when the noise level is 1.5.

E. Calculation Speed Evaluation

The comparison of computational speed of the proposed
outlier detector and denoiser is also shown in Table II. This
shows that the performance of the “Ours2” is superior. In
particular, the outlier detector can compute each point in
0.36 x 10~* seconds. Thus, it can be seen that 1,400,000
points can be computed 8.4 minutes faster. Also, the denoiser
can calculate each point in 0.31 x 10~* seconds. Thus, it can
compute 1,000,000 points 5.2 minutes faster.

TABLE I
RESULTS OF THE OUTLIER DETECTION ACCURACY BY AUPR
WITH OUTLIER DETECTOR

Gaussian Noise Level

Model 0% 1.0%  15%  2.5%
PointCleanNet | 0.957  0.858  0.781  0.659
Oursl (k=16) | 0.972 0.906 0.821 0.670
Ours2 (k=16) | 0.969  0.902  0.805  0.665

TABLE 1l

RESULTS OF THE DENOISING ACCURACY BY CHAMFER DISTANCE
WITH DENOISER

Model Gaussian Noise Level

1.0% 15%  2.5%
PointCleanNet ‘ 0.0123 0.0224 0.137
Oursl (k=16) | 0.0109 0.0189 0.127
Ours2 (k=16) | 0.0111  0.0208  0.134
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Fig. 4. Experiments of qualitative results of the overall model for the icosahedron data. (a) Point clouds contaminated by outliers and noise. (b) Processing
results of conventional method. (c) Processing results of proposed methodl (Oursl). (d) Processing results of proposed method2 (Ours2). (e) Ground truth.

TABLE III
COMPARISON OF COMPUTATION TIME PER POINT
FOR OUTLIER DETECTOR AND DENOISER

Model | Outlier Detector (s) Denoiser (s)
Oursl (k=16) |  2.57 x 10~4 2.38 x 10™4
Ours2 (k=16) | 2.21 x 10™% 2.07 x 10—*

TABLE 1V

RESULTS OF THE OVERALL MODEL PERFORMANCE

Model | Chamfer Distance Time (s)
PointCleanNet | 1.56 x 10~4 —
Oursl (k=16) | 1.03 x 10~ 5.02 x 104
Ours2 (k=16) | 1.04x10~*  4.35 x 10~4

F. Overall Model Evaluation

To evaluate the performance of the overall model, which
consists of Outlier Detector and Denoiser. The data is applied
to a contaminated icosahedron. It is subjected to gaussian noise
with a standard deviation of 20% on the diagonal of the shape
bounding box. In addition, 30% of the points farther from the
surface than 1.5% standard deviation are converted as outliers.

Quantitative results are shown in TABLE IV. It shows that
the ”Ours1” is the best. In particular, it can be seen that for
PointCleanNet, the chamfer distance was reduced by 0.53 X
10~*. It can also be seen that the Ours2” is slightly inferior to
”Ours1”, but performs equally well. In addition, it can reduce
the computation time by 13.3%, showing that two proposed
methods are efficient.

Qualitative results are also shown in Fig. 4. It can be seen
that the two proposed methods detect outliers at a higher gaus-
sian level than the conventional methods. It shows that they
can reduce the unnatural distortion of the plane and smoothing

of the edge areas. These results confirm the effectiveness of the
two proposed methods. From the above, "Oursl outperforms
the conventional method in terms of performance. In addition,
”Ours2 shows that it is more efficient than the method that
computes the graph dynamically, in addition to having the
same performance as the method that computes the graph
dynamically.

V. CONCLUSION

In this paper, we proposed new method, point cloud denois-
ing and outlier detection. Specifically, we introduced two types
of graph convolutional layer based on Dynamic Graph CNN
to PointCleanNet. Experiments show that the two proposed
models are superior in AUPR and chamfer distance. Thus, the
effectiveness of the two models was confirmed. In particular,
we found that the ”Ours1” is accuracy specific, while the pro-
posed ’Ours2” is balance between accuracy and computation
speed. Depending on the issue to be applied, it is necessary
to be flexible in pursuit of accuracy or in consideration of
calculation speed.
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