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Abstract—Modern object detectors often use multi-scale detec-
tion to improve their performance. To enrich the semantic infor-
mation from the original feature map generated by backbone,
various pyramid-liked architectures such as FPN and PANet are
used as the neck of an object detector. However, most researches
focus on the macro design of the topology connection of the
pyramid structure while putting less effort into the micro design
of feature fusion strategy. To address this, we propose a novel
fusion strategy that adopts a cross-attention fashion. We named
it Feature Transfer Block (FTB) as it explicitly selects semantic
information from different scales of feature maps for fusion. This
design is cost-efficient and easy to integrate with current designs.
Experimental results demonstrate a moderate improvement of
YOLOX series on COCO and CrowdHuman when implemented
with FTB.

Index Terms—object detection, feature fusion, cross-attention

I. INTRODUCTION

Object detection is a fundamental and crucial task in com-
puter vision, serving as the foundation for image comprehen-
sion and processing. It involves identifying objects of interest
in input images or videos and providing essential information
about their categories and locations.

Modern object detectors commonly employ multi-scale
schemes for detection. By using feature maps from various
depths of the feature hierarchy, these models can comprehend
semantic information at different scales, enabling predictions
for objects of different sizes. Several architectures, such as
Feature Pyramid Network(FPN) [1], Path Aggregation Net-
work(PANet) [2], and BiFPN [3], serve as necks for object
detectors. Among these, the PANet-like structure is frequently
utilized in contemporary YOLO-series designs.

Although various pyramid-like networks have been intro-
duced to enhance the multi-scale feature fusion process as
mentioned above, adding more connections between levels
may increase the computational cost and lead to diminishing
returns in terms of overall improvement, resulting in sub-
optimal fusion outcomes.

The current fusion strategy, which typically employs sim-
ple concatenation or element-wise addition, heavily relies on
the computational capacity of adjacent ConvBlocks. While
these ConvBlocks are concurrently responsible for feature
extraction, the fusion process may fail to effectively merge

semantic information from different layers under constrained
computation resources.

To tackle this issue, our paper propose a novel feature
fusion strategy which allows the detection to have better
performance with negligible extra computational cost. The
main contributions in this paper can be summarized as follows:

1) We propose the Feature Transfer Block (FTB) to replace
traditional feature fusion architectures. FTB allows for
merging semantic features by explicitly selecting fea-
tures using a cross-attention mechanism. It is a light
weight block which can be applied as a plug-in module
for any feature fusion structure.

2) We implement FTB on YOLOX-s and YOLOX [4].
The experiments on COCO [5] and CrowdHuman [6]
demonstrate its effectiveness.

II. RELATED WORKS

A. One-stage Object Detector

One-stage object detectors are classified as proposal-based
methods that generate predictions from pre-defined anchors.
It views the object detection as a regression problem which
forms an end-to-end structure to get the prediction result
all at once. The represented method are YOLO series [4],
SSD [7]. These detectors typically consist of three parts:
backbone, neck and head. The backbone serves as the feature
extraction component, while the neck rearranges the feature
maps generated by the backbone and sends them to the
head. This simple design ensures low detection latency while
maintaining considerable detection accuracy.

B. Multi-scale Detection

Multi-scale detection is a fundamental technique in com-
puter vision, essential for capturing objects of varying sizes
in an image. Traditionally, feature pyramids were created by
extracting features from images with different input sizes.
However, this approach resulted in a significant increase in
inference time. Moreover, using a single-scale feature map
often led to low recall and imprecise location predictions,
limiting the object detectors’ overall performance.

In modern approaches, dense prediction models leverage
multi-scale features directly generated by the backbone feature
hierarchy for multi-scale detection. For example, SSD utilized
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Fig. 1. (a) The overview of the PANet in YOLOX. CBA stands for the sequence of ConvBlock, BatchNorm(BN), and Activation function. It uses nearest-
neighbor interpolation as the up-sampling method and adopts a simple convolution block with a stride of 2 for down-sampling. The detailed structure of
CSPBlock can be found in [4]. (b) The upper (1) represents the original multi-scale feature fusion strategy. The lower (b) is the proposed FTB. (c) The
illustration of FTB. The channel attention is first calculated by channel average pooling and then passed through a bottleneck structure that squeezes the
channels from C to C/16 and then recovers to C.

multiple intermediate feature maps from the backbone. The
FPN not only utilizes bottom-up features but also conducts
top-down feature fusion, enabling stronger semantic informa-
tion from higher pyramid levels to reinforce low-level features.
This combination results in feature maps with both low-level
details and abstract semantic information, leading to improved
accuracy and robustness of the detector.

Comparing to FPN, the PANet incorporates additional
bottom-up connections after the top-down stage, enabling
more extensive feature fusion. PANet is often employed as
a neck in general one-stage object detectors. As shown in Fig.
1(a), Cn and Pn represent the feature maps generated from
the backbone and after the neck, respectively. Here, n indicates
the down-sampling ratio of 2n compared to the input shape. In
typical YOLO-series detectors, the neck part uses C3, C4, C5

as input and P3, P4, P5 as the output.

C. Object Detection Benchmarks
COCO [5] is considered to be the most used benchmark for

general object detection. The detector’s score on the COCO
is highly important and widely recognized as a standard for
evaluating its performance.

CrowdHuman [6] is published for better evaluating detectors
in crowd scenarios. With average number more than 22
persons per image, it is both a valuable pedestrian detection
training material and a challenge benchmark for the object
detectors.

III. PROPOSED METHOD

In this section, we propose a novel feature fusion approach
called Feature Transfer Block (FTB) for multi-scale detection.
Unlike traditional methods that implicitly select and merge
feature maps, FTB adopts a cross-attention-like architecture
to explicitly select and transfer semantic information between
different scales. The FTB acts as a plugin module, seamlessly
replacing the previous fusion components as shown in the Fig.
1(b).

Fig. 2. Various architecture of feature fusion strategy. The upper two are the
traditional feature fusion strategy. Type A: extra convolution layer for original
layer. Type B: extra convolution layer for incoming layer. FTB: feature transfer
block

To facilitate the understanding of the fusion process, we
provide definitions for the involved components. When con-
sidering two input layers, one is designated as the ”incoming
layer” if it is either up-sampled or down-sampled from differ-
ent levels. The layer at the same level as the output is referred
to as the ”original layer.”. The fusion process is to transfer the
semantic information from the incoming layer to the original
layer.

Feature fusion involves the selection and rearrangement of
semantic information from different domains in the feature
pyramid, where each domain represents a different scale. In
complex scenarios, the prediction of a target benefits from not
only its own texture but also global context information from
different scales. Therefore, explicitly selecting and merging
features before fusion leads to a promising approach.

To achieve the decoupling of feature extraction and feature
fusion, we introduce additional modules: type A, type B, and
the FTB (Fig. 2). These modules, which consist of simple
convolution layers, significantly contribute to the effectiveness
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of our proposed approach. Type A and type B serve as
naive implementations and contrast groups; they simply add
additional layers to the original input and incoming input, re-
spectively, with the hope of selecting semantic information. On
the other hand, the FTB explicitly selects semantic information
from the incoming layer with reference to the original layer,
facilitating more effective and informative feature fusion.

The PANet for YOLOX, depicted in Fig. 1(a), comprises
four fusion modules: f5→4, f4→3, f3→4, and f4→5. Each
module corresponds to transferring features from level 5 to 4,
level 4 to 3, level 3 to 4, and level 4 to 5, respectively. These
fusion modules play a critical role in integrating multi-scale
features, enhancing the overall detection performance.

FTB explicitly selects semantic information from incoming
layer with the reference of original layer. We denote the
original feature layer and the incoming feature layer as Igate
and Iinfo. Then the spatial attention Attsp ∈ R1×W×H and
the channel attention Attchn ∈ RC×1×1 can be calculated as

Attsp = Sigmoid(BN(Conv1×1(Igate))),

Attchn = Sigmoid(BottleNeck(Avg.P (Igate))).
(1)

where BN represents the batch-norm layer. The channel
attention is first calculated by channel average pooling and
then passed through a bottleneck structure that squeezes the
channels from C to C/16 and then recovers to C. Then the
discriminate selection output is obtained by

Iout = (Attsp ×Attchn)× Iinfo, (2)

as shown in Fig. 1(c). This operation combines the spatial and
channel attention masks (Attsp and Attchn) with the incoming
feature layer (Iinfo) to produce the refined output feature map
Iout.

IV. EXPERIMENTS

A. Implement Details

During the training process on the COCO dataset, we
strictly follow the training scheme outlined in [4]. Addition-
ally, we utilize COCO’s official tools for the model evaluation.

For the training on the CrowdHuman dataset, we keep most
of the training settings but adjust the batch size from 64 to 32.
Moreover, we adopt the evaluation metric used in [8] to assess
the model’s performance on the CrowdHuman dataset. MR−2

reflects the missing rate of detection per image and JI evaluates
the degree of overlap between the predicted bounding box and
the ground truth. A well performed detector is expected to have
low MR−2 and high JI. Detailed definition can be found in
[8].

B. Experiments Results

The first experiments is conducted on CrowdHuman. We
start by training the YOLOX and YOLOX-s models to estab-
lish the baseline performance. We then proceed to evaluate the
impact of our proposed Feature Transfer Block (FTB) on the
performance of these models.

Table I presents a comprehensive comparison of the dif-
ferent fusion strategies and the inclusion of the FTB module

TABLE I
COMPARSION EXPERIMENTS OF DIFFERENT FUSION STRATEGY ON

CROWDHUMAN

Model Fusion Strategy AP ↑ MR−2 ↓ JI ↑

YOLOX-s

Concat(Baseline) 90.15 43.72 75.89
Type A 90.20 43.56 75.79
Type B 90.21 43.67 75.75

FTB 90.31 43.47 75.73

YOLOX Concat(Baseline) 92.19 39.88 77.80
FTB 92.44 39.30 78.58

TABLE II
COMPARSION EXPERIMENTS ON COCO

Model FTB APval(%) ↑ AP50 AP75

YOLOX-s × 40.4 59.3 43.7
✓ 41.0 59.7 44.2

for both YOLOX and YOLOX-s models on the CrowdHuman
dataset. The baseline fusion strategy is the ”Concat” method.
We then evaluate two alternative fusion strategies, ”Type A”
and ”Type B,” which yield slightly improved results, showing
AP values of 90.20% and 90.21%, respectively. The FTB
module demonstrates its effectiveness by further boosting the
performance, achieving an AP of 90.31%.

Similarly, for the YOLOX model, the baseline fusion strat-
egy leads to an AP of 92.19%. However, when incorporating
the FTB module, we observe a significant overall performance
improvement, with the AP increasing to 92.44%, MR−2 de-
creasing to 39.30%, and JI rising to 78.58%.

These results demonstrate that the inclusion of the FTB
module enhances the performance of both YOLOX and
YOLOX-s models on the CrowdHuman dataset, validating its
effectiveness in facilitating feature transferability and improv-
ing object detection accuracy under extreme crowded targets
scenario.

To demonstrate its improvement on general object detection,
We then conduct the experiments of YOLO-s on the COCO.

Table II presents the comparison of the YOLOX-s model’s
performance with and without the FTB module. Under the
baseline setting without the FTB module, our reproduced
YOLOX-s model achieves its self claimed performance ac-
cording to its official implementation [4]. However, the adap-
tation of the FTB module improves the model’s AP by 0.6%
which we consider to be significant on COCO benchmark.

These results indicate that the FTB module plays a ben-
eficial role in general object detection, further reinforcing
its effectiveness in feature transfer and multi-task learning
scenarios.

C. Visualization Results

To provide insights into the effectiveness and capabilities
of our proposed Feature Transfer Block (FTB), we utilize
visualization techniques, specifically heatmap generation, to
analyze the spatial attention within the FTB module. These
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Fig. 3. Visualization of spatial attention within the Feature Transfer Block
(FTB) on input images from the CrowdHuman Dataset. (a) is the input images
in letter-box. The heatmaps (b), (c), (d), and (e) correspond to spatial attention
visualization on f5→4, f4→3, f3→4, and f4→5, respectively.

heatmaps offer valuable visualizations of the attention mech-
anism’s internal workings, showcasing the regions of interest
and focus during the model’s decision-making process.

We visualize the regions of high attention within the FTB
when applied to the CrowdHuman dataset to demonstrate
the efficacy of the FTB’s spatial attention mechanism. Fig.
3 presents the visualization of spatial attention on feature
transfers between different layers in YOLOX-s, including
f5→4, f4→3, f3→4, and f4→5. These heatmaps indirectly
validate the attention mechanism’s ability to effectively capture
and prioritize relevant features, leading to improved model
predictions.

Furthermore, Fig. 4 showcases specific examples of hot
maps generated from the spatial attention within the FTB
on the feature transfer f3→4. Notably, the hot maps clearly
indicate that the spatial attentions are focusing on crowded
regions, illustrating the FTB’s capability to capture important
information in complex scenes.

These visualizations bolster the efficacy and interpretability
of the spatial attention mechanism within the proposed FTB,
offering compelling evidence for its contribution to improving
the feature fusion process.

V. CONCLUSION

In this paper, in order to address the need for an improved
multi-scale feature fusion strategy, we propose the Feature
Transfer Block to enhance the performance of the yolo-like
one-stage detector. Unlike traditional methods that implicitly
select and merge feature maps, FTB adopts a cross-attention-
like architecture to explicitly select and transfer semantic

Fig. 4. Examples of hot maps generated from the spatial attention within
the FTB on feature transfer f3→4. The hot maps clearly indicate the spatial
attentions are focusing on the crowds, highlighting the FTB’s ability to capture
relevant features in complex scenes.

information between different pyramid levels. It is both com-
putationally efficient and easy to integrate in place of the
current fusion modules. Our experiments on the CrowdHuman
datasets indicate that the implementation of the FTB can
moderately improve the performance of an one-stage object
detector in dense crowd scenario. The comparsion experi-
ments on COCO also demonstrate FTB’s robustness which
contributes to the general object detection. What’s more, the
visualization result of the spatial attention in FTB clearly
shows its effectiveness in focusing the important area.

Overall, this paper proposes FTB as a novel feature fusion
strategy, showcasing its moderate performance improvements
on COCO and CrowdHuman benchmarks. These results vali-
date the effectiveness of FTB in enhancing the overall perfor-
mance of one-stage object detectors.
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