
Super Resolution for QR Code Images
Takahiro Shindo

School of FSE
Waseda University

Tokyo, Japan
taka s0265@ruri.waseda.jp

Taiju Watanabe
School of FSE

Waseda University
Tokyo, Japan

lvpurin@fuji.waseda.jp

Remina Yano
Graduate School of FSE

Waseda University
Tokyo, Japan

yano.remina@toki.waseda.jp

Marika Arimoto
Graduate School of FSE

Waseda University
Tokyo, Japan

m.arimoto@akane.waseda.jp

Miho Takahashi
Graduate School of FSE

Waseda University
Tokyo, Japan

miho.takahashi@akane.waseda.jp

Hiroshi Watanabe
Graduate School of FSE

Waseda University
Tokyo, Japan

hiroshi.watanabe@waseda.jp

Abstract—In this paper, we propose an image denoising and a
super resolution method for converting unreadable low resolution
QR code images into readable high resolution ones. We propose
an image denoising and a super resolution method using a
simple CNN-based model. Image denoising using CNN-based
image generation models can be applied to various noises by
training model with different levels of noise. On the other hand,
denoising using the conventional image processing method can
only be applied to the specific type of noise. Therefore, image
denoising using CNN is considered to be superior to image
processing methods in terms of generalization performance. We
further implement super resolution method to convert into high
resolution images. We propose QRCNN and QRGAN, simple
image denoising and super resolution models for QR code images.
QRCNN and QRGAN are based on SRResNet and SRGAN,
respectively. However, they both have simpler structure like
SRCNN. Given QR code images for the dataset, we can reduce
the computational complexity and memory usage by modifying
model structure.

Keywords—QRCNN, QRGAN, SRResNet, SRGAN, SRCNN

I. INTRODUCTION

Nowadays, there are a lot of opportunities for people to
scan QR codes due to the rise of QR code payments and
site guidance. However, we sometimes encounter scanned QR
codes images that are printed blurry or taken from a distance.
Our proposed methods, QRCNN and QRGAN can convert
unreadable low resolution QR code images into readable high
resolution ones. QRGAN is a GAN-based [1] model based
on QRCNN. In order to reduce computational complexity,
these models have simple model structures and only allow
grayscale images for the dataset. QRCNN and QRGAN are
simpler model of SRResNet and SRGAN [2], respectively.
In contrast to SRResNet and SRGAN, our proposed methods
can reduce memory usage by not using pretrained VGG [3] for
loss calculation. Super resolution model, SRCNN [4] is widely
known to have very simple model structure whose number of
layers and parameters are similar to our proposed methods.
We compare the performance of our methods with SRCNN
and show superiority to SRCNN.

II. RELATED WORKS

A. SRCNN
The most common super resolution method based on CNN

is SRCNN. This model consists of only three convolution
layers and two activation functions (ReLU [5]). In SRCNN,
low resolution input images are upscaled to the desired
image size using bicubic interpolation [6] before input to the
network. Therefore, the size of the image does not change
in the neural network. The loss function of SRCNN is given by

lSR = lSR
MSE . (1)

Only mean squared error (MSE) of the ground truth and the
generated image is used for loss function.

B. SRGAN
The most common super resolution method based on

GANs with generators and discriminators is SRGAN. The
generator attempts to produce an image that is close to
the ground truth. The discriminator attempts to distinguish
between the ground truth and the image produced by the
generator. SRGAN utilizes this principle to improve super
resolution tasks. Contrary to SRCNN, SRGAN enables super
resolution by upscaling the size of the image in the middle
of the neural network. Therefore, the input image is smaller
than the output image. The generator consists of deep layers
with 16 residual blocks and skip connections. Each residual
block contains two convolutional networks. The discriminator
consists of 8 convolutional networks. The loss function of
SRGAN is given by

lSR = lSR
X︸︷︷︸

content loss

+ 10−3lSR︸ ︷︷ ︸
adversarial loss

, (2)

where the function consists of a content loss and an adversarial
loss. Content loss is calculated by MSE or obtained from
feature maps derived from VGG. Adversarial loss, on the
other hand, results from the generator and the discriminator
competing each other.

978-1-6654-9232-4/22/$31.00 ©2022 IEEE 274

20
22

 IE
EE

 1
1t

h
G

lo
ba

l C
on

fe
re

nc
e

on
 C

on
su

m
er

 E
le

ct
ro

ni
cs

 (G
C

C
E)

 |
97

8-
1-

66
54

-9
23

2-
4/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

G
C

C
E5

64
75

.2
02

2.
10

01
41

54

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on August 03,2023 at 03:32:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Model structure of QRCNN and QRGAN

C. SRResNet

This model has similar deep structure to SRGAN, but does
not have the discriminator. It is a model which we deprive
the adversarial components of SRGAN. Similar to SRGAN,
the generator attempts to produce an image that is close to
the ground truth. Due to the lack of a discriminator, the loss
function of SRResNet is given by

lSR = lSR
X︸︷︷︸

content loss

, (3)

where the adversarial loss is not included. Same as SRGAN,
content loss is calculated by MSE or obtained from feature
maps derived from VGG.

III. PROPOSED METHOD

A. Model Structure

The model structure of both QRCNN and QRGAN are
simple and the number of parameters of the generator used
in these models is 176,449. Fig. 1 shows the model structure
of QRCNN and QRGAN. Similar to SRResNet and SRGAN,
our proposed methods enable super resolution by upscaling
the input image in the middle of the network. The generator
has three convolutional layers, two pixel shuffle layers and two
activations (LeakyReLU). The discriminator of QRGAN has
two convolutional layers, a batch normalization layer and an
activation function (LeakyReLU). Contrary to SRResNet and
SRGAN, proposed models are applied to grayscale images and
does not use residual blocks or skip connections.

B. Loss Function

Like SRResNet, loss function of QRCNN has only content
loss. Similar to SRGAN, loss function of QRGAN consists

of content loss and adversarial loss. SRResNet and SRGAN
use feature maps of VGG for content loss. However, our
proposed methods use mean squared difference of pixels
between the generated image and the ground truth image for
the content loss. The loss function of QRCNN is given by

lSR = lSR
MSE︸ ︷︷ ︸

content loss

. (4)

The loss function of QRGAN is given by

lSR = lSR
MSE︸ ︷︷ ︸

content loss

+ 10−3lSR︸ ︷︷ ︸
adversarial loss

. (5)

IV. EXPERIMENT

A. Dataset

We use 1100 images from QR code image dataset [?], which
is available on Kaggle. These QR code images contain linked
numbers. When we scan these QR codes correctly, we can
obtain these numbers. We use 1000 images for training and
100 images for evaluation. Since the size of the original image
varies, we normalized them to a single size 256×256 [pixels]
using bicubic method.

B. Training Details

As for training, we use 1000 QR code images. To simulate
small QR code images, we convert training images to 64×64
[pixels] using bicubic method and apply Gaussian blur or add
Gaussian noise. We use these resized images for the input
of the generator of QRCNN and QRGAN. As for the input
of the discriminator of QRGAN, the output image (256×256
[pixels]) generated by the generator of QRGAN and the
ground truth image (256×256 [pixels]) are used. The number

275
Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on August 03,2023 at 03:32:23 UTC from IEEE Xplore. Restrictions apply.

of epochs is just 3 and 10 for Gaussian blur and Gaussian
noise, respectively, so the learning process is very short.

C. Evaluation Method

We use 100 images for evaluation. Similar to the training
process, we convert testing images to 64×64 [pixels] using
bicubic and apply Gaussian blur or add Gaussian noise. We
use these as the input images for the pretrained generator of
QRCNN and QRGAN and simulate whether the output images
are readable. In other words, we simulate whether the linked
number is obtained by scanning the output image. For this
simulation, we use python module, pyzbar. Pyzbar can scan
QR code images and determine what is linked with these QR
codes.

D. Comparison

We compare the performance of our proposed methods and
SRCNN. To ensure the fairness of this comparison, the number
of input channels of SRCNN is fixed to one. SRCNN has
three convolutional layers. The number of channels and the
kernel size of these convolutional layers inherit the values
recommended in the paper of SRCNN. The number of output
channels of these convolutional layers are 128, 64 and 1, while
the number of the kernel size of these layers correspond to 9, 5
and 5. The number of parameters of SRCNN is 216,961, which
is larger than our proposed method. We train SRCNN similar
to QRCNN and QRGAN. In SRCNN, low resolution input
images are upscaled to the desired image size using bicubic
interpolation before input to the network.

E. Evaluation

1) Gaussian blur: To evaluate the performance of QRCNN
and QRGAN, we first prepare blurred low resolution QR code
images. We use Gaussian blur for this purpose. To control
blurriness of the input images, we change the parameters of
Gaussian blur used in training and evaluation. The parameters
are standard deviation and kernel size. We use these prepared
QR codes images for the input of SRCNN, QRCNN and
QRGAN. The result of the training process is shown in Fig.
2. (a) refers to the input image that Gaussian blur is applied,
(b) is the output image of SRCNN, (c) is the output image
of QRCNN, (d) is the output image of QRGAN and (e) is
the ground truth. All output images are readable. Table I-
V shows the result of the readability (%) corresponding to
different parameter sets. The blur values refer to the number
of QR code images which are already readable even before
applying QRCNN or QRGAN. Other values refer to the
number of readable QR code images which are generated
by SRCNN, QRCNN and QRGAN. For example, when the
standard deviation is 1.10 and the kernel size is 3, blurred
images will be completely readable by applying QRCNN or
QRGAN. From this simulation, some unreadable QR code
images with Gaussian blur can be converted into readable ones
by SRCNN, QRCNN and QRGAN. Moreover, our proposed
methods show better performance than SRCNN even though
the number of parameters is less.

TABLE I
RESULTS OF THE READABILITY OF GAUSSIAN BLUR (KERNEL SIZE 3)

Method standard deviation
1.1 1.2 1.3 1.4 1.5 1.6

Blur 26 18 22 19 15 18
SRCNN 100 100 100 100 98 97
QRCNN 100 100 100 100 100 100
QRGAN 100 100 100 100 100 100

TABLE II
RESULTS OF THE READABILITY OF GAUSSIAN BLUR (KERNEL SIZE 5)

Method standard deviation
1.1 1.2 1.3 1.4 1.5 1.6

Blur 4 0 0 0 0 0
SRCNN 100 86 66 35 24 6
QRCNN 100 100 75 56 53 55
QRGAN 100 100 74 59 50 55

TABLE III
RESULTS OF THE READABILITY OF GAUSSIAN BLUR (KERNEL SIZE 7)

Method standard deviation
1.1 1.2 1.3 1.4 1.5 1.6

Blur 3 0 0 0 0 0
SRCNN 100 100 99 76 57 27
QRCNN 100 100 100 100 85 49
QRGAN 100 100 100 100 88 50

TABLE IV
RESULTS OF THE READABILITY OF GAUSSIAN BLUR (KERNEL SIZE 9)

Method standard deviation
1.1 1.2 1.3 1.4 1.5 1.6

Blur 4 0 0 0 0 0
SRCNN 100 100 96 75 65 52
QRCNN 100 100 100 100 82 74
QRGAN 100 100 100 100 82 74

TABLE V
RESULTS OF THE READABILITY OF GAUSSIAN BLUR (KERNEL SIZE 11)

Method standard deviation
1.1 1.2 1.3 1.4 1.5 1.6

Blur 4 0 0 0 0 0
SRCNN 100 100 95 75 65 51
QRCNN 100 100 100 100 76 74
QRGAN 100 100 100 100 77 74

TABLE VI
RESULTS OF THE READABILITY OF GAUSSIAN NOISE

Method standard deviation
0.7 0.8 0.9 1.0 1.1 1.2

Noise 55 39 12 0 0 0
SRCNN 100 100 94 80 65 48
QRCNN 100 100 100 95 81 66
QRGAN 100 100 100 100 80 73

276
Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on August 03,2023 at 03:32:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Results of training for blurred images : (a) Input with kernel size 7 and standard deviation 1.4 (height and width are expanded by 4 to align with
others); (b) Output of SRCNN; (c) Output of QRCNN; (d) Output of QRGAN; (e) Ground truth.

Fig. 3. Results of training for noise images : (a) Input with standard deviation 1.0 (height and width are expanded by 4 to align with others); (b) Output of
SRCNN; (c) Output of QRCNN; (d) Output of QRGAN; (e) Ground truth.

2) Gaussian noise: Next, we prepare low resolution QR
code images with noise. We use Gaussian noise for this
purpose. To control the levels of noise, we change the param-
eter of Gaussian noise used in training and evaluation. The
parameter we change is only standard deviation. We use these
prepared QR code images as an input of SRCNN, QRCNN and
QRGAN. The result of the training process is shown in Fig.
3. (a) refers to the input image with Gaussian noise, (b) is the
output image of SRCNN, (c) is the output image of QRCNN,
(d) is the output image of QRGAN and (e) is the ground truth.
All output images are readable. Table VI shows the result of
the readability (%) corresponding to different parameters. The
noise values refer to the number of QR code images which are
already readable even before applying QRCNN or QRGAN.
Other values refer to the number of readable QR code images
which are generated by SQCNN, QRCNN and QRGAN. For
example, when the standard deviation is 0.7, images with noise
will be completely readable by applying QRCNN or QRGAN.
Similar to the first simulation, the result of this simulation also
show the superiority of our proposed methods. QRCNN and
QRGAN can be applied to images not only with blur but with
noise.

V. CONCLUSION

In this paper, we propose QRCNN and QRGAN. QRCNN
and QRGAN can convert unreadable QR code images into
readable ones. From the experiments, our proposed methods
are effective for QR code images with blur or noise. Moreover,
our methods are superior to a typical CNN-based model,
SRCNN, in terms of QR code image super resolution. We
simplify the model structure by only allowing QR code images
for the target of image denoising and super resolution. As

a result, both QRCNN and QRGAN are able to reduce the
number of parameters and computational complexity. Our
model does not incorpolate pretrained model, so the memory
usage is also small. Therefore, QRCNN and QRGAN can be
implemented without relying on high performance GPUs.

ACKNOWLEDGMENT

The results of this research are based on the “Research and
Development of Ultra-Coverage Beyond 5G Wireless Com-
munications and Video Coding Standardization Technology
through International Collaboration among Japan, the United
States, and Australia” of the “Beyond 5G Research and De-
velopment Promotion Project (General Type)” commissioned
by the National Institute of Information and Communications
Technology (NICT), a research and development project for
innovative information and communications technology (No.
05101).

REFERENCES

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio,“Generative adversarial nets”, NIPS,
2014.

[2] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic single
image superresolution using a generative adversarial network”, CVPR,
2017.

[3] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition”, ICLR, 2015.

[4] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution”, ECCV, 2014.

[5] V. Nair and G.E. Hinton, “Rectified linear units improve restricted
boltzmann machines”, ICML, 2010.

[6] R. G. Keys, “Cubic convolution interpolation for digital image process-
ing”, IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-29, pp.
1153-1160, Dec. 1981.

[7] Cole Dieckhaus, “QR Codes”, Kaggle, 18 Feb. 2020.

277
Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on August 03,2023 at 03:32:23 UTC from IEEE Xplore. Restrictions apply.

