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Abstract. The difficulty of semantic segmentation in computer vision
has been reintroduced as a topic of interest for researchers thanks to
the advancement of deep learning algorithms. This research aims into
the logic of multi-modal semantic segmentation on images with two dif-
ferent modalities of RGB and Depth, which employs RGB-D images as
input. For cross-modal calibration and fusion, this research presents a
novel FFCA Module. It can achieve the goal of enhancing segmentation
results by acquiring complementing information from several modalities.
This module is plug-and-play compatible and can be used with existing
neural networks. A multi-modal semantic segmentation network named
FFCANet has been designed to test the validity, with a dual-branch en-
coder structure and a global context module developed using the classic
combination of ResNet and DeepLabV3+ backbone. Compared with the
baseline, the model used in this research has drastically improved the
accuracy of the semantic segmentation task.

1 Introduction

Semantic segmentation has been a fundamental and critical problem in com-
puter vision [1] for the past long time. The advent of neural networks signif-
icantly improved semantic segmentation performance [2]. CNN based on the
Encoder-Decoder structures [3] has become the mainstream, and its accuracy
and efficiency have greatly exceeded other methods.

However, semantic segmentation in indoor scenes[4] is still a challenging task,
because its semantic information is more complex than outdoor scene[5]. Multi-
modal input is a feasible solution for indoor scene [6]. The RGB-D method is
becoming increasingly popular among multi-modal segmentation systems since
it may gather spatial information and scene structure coding.

Previously, the biggest obstacle to RGB-D solutions was that depth images
were difficult to obtain. However, with the proliferation of depth cameras[7],
collecting depth photos is no longer expensive and complicated. The popularity
of civilian depth cameras [8], such as the Microsoft Kinect sensor [6], has made
acquiring depth photos much easier and cheaper. Consequently, semantic seg-
mentation datasets based on RGB-D images have started to arise sequentially
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[9]. RGB-D-based semantic segmentation is becoming more and more popular
and common.

Further modalities bring additional spatial information, but fusing these two
modalities becomes new challenge [10]. Calculating HHA [11] is a reasonable way
to enhance depth in preprocessing phase for extracting features better. HHA
includes three channels: horizontal disparity, height above ground, and the angle
the pixel’s local surface normal makes with the inferred gravity direction [12].

In the deep-learning-based RGB-D segmentation methods, to extract fea-
tures from RGB and depth modalities separately, it is common to design a dual
branching network structure [13]. The depth features are gradually fused into the
feature map of RGB when the network goes deeper. Adding features with depth
information to RGB can significantly improve the accuracy of segmentation [14].
Especially in the case of using HHA, since the HHA image has three channels,
the same structure can be used to extract RGB and depth information.

In this paper, We innovatively propose a multi-modal feature fusion atten-
tion mechanism for cross-modal calibration, which calibrates the information
of different modalities in both feature channels and spatial dimensions through
two different attention mechanisms. The unique feature fusion module enables
the network to better capture the complementary information among different
modalities based on the standard features, thus improving the segmentation re-
sults.

According to its characteristics, this module is named the feature fusion
cascade attention mechanism module, abbreviated as the FFCA module. The
method chapter will introduce this module, including multi-modal attention and
feature fusion, and show the semantic segmentation model based on this FFCA
module: FFCANet.

2 Related Work

2.1 Semantic Segmentation

In computer vision, the first application of CNN is image classification [15]. Con-
sequently, other directions also emerged with deep learning-based approaches,
such as detection, generation, and segmentation. Similar to the concept of ”en-
coding” in NLP [16], the Neural Network for semantic segmentation task usually
consists of two parts: The part that extracts the feature map is called the en-
coder, and the part that obtains the segmentation result from the feature map
is called the decoder.

Encoder is used to extract the feature map though cropping or compressing
the input image, they generally have similar structure with the backbone used
for classification task [17], such as AlexNet [18] and so on [19] [20] [21] [22] [23].
These networks focus on how to extract features from the input image more
efficiently, then have gradually developed several different styles. Some networks
choose to utilize convolutional kernels of different sizes to obtain multi-scale con-
textual features [19] [24] [25] [26]; others desire to make more efficient use of the
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information available in the image while reducing the computational overhead
DenseNet [27] [28] [29]. The most popular network is the ResNet families [21].
It adds identity connections to solve the degradation problem in deep models.
This scheme the most common encoder for semantic segmentation tasks.

The word decoder first appeared in SegNet [3] through a series of decon-
volution [30] or up-sampling operations. The decoder restores the feature map
to the original input size to realize the pixel-by-pixel classification of the input
image. Compared with the traditional CNN structure, these decoders generally
have a different convolutional structure [31] [32] [33]. These kernels use multiple
sizes of the kernel to capture features at different scales to solve the multi-scale
problem [34] [35] [36]. A famous example is DeepLab series [37] [38] [39] [40] .
This structure is widely used in various tasks related to semantic segmentation.
The most advanced DeepLabv3+ [40] in the series employs atrous convolution
and spatial pyramidal pooling module and simultaneously improves speed and
accuracy.

Another unique structure is the global context module. It can incorporate
global information into the feature map. Before the emergence of CNN, context
modules are already present in the traditional approaches [41] [42]. Subsequently,
this concept was introduced to deep learning [43] [44] [45] [46]. A more general
approach is to insert the context module between the encoder and the decoder.
The most typical example of this structure is EncNet [47]. By introducing the
context encoding module, EncNet is capable of processing global contextual
information.

2.2 RGB-D Segmentation

As a kind of multi-modal approach [48], using RGB-D images as input are par-
ticularly common in the segmentation task of indoor scenes. Since RGB-D pho-
tographs contain spatial information missing from 2D images, they can reveal
more relevant elements in indoor situations unrelated to lighting. Couprie et
al. [14] found that using depth information can significantly improve the distin-
guishability of objects with a similar appearance.

Researchers discovered the effectiveness of deep information quite early, even
before deep learning emerged. The traditional method of RGB-D segmentation
can be considered as a relatively fixed pipeline mode [49]. Similar to traditional
2D image segmentation, pre-segmentation segments the original RGB-D image
into more basic units, such as superpixels [50], blocks [51] and regions [52], then
these units will be classified by traditional statistical [53] [54] [55] or machine
learning methods [56] [12]. The earliest attempt came from Silberman et al [5].
They created the NYUv1 data set, which was eventually expanded to NYUv2
[4]. This approach based on Conditional Random Field (CRF) and has inspired
many subsequent researches [57] [58] [59], even in some early models of deep
learning also containing CRF-like structures[60] [37] [38].

The subsequent advent of deep learning likewise brought significant develop-
ments to RGB-D segmentation. These neural networks usually use two encoder
branches to extract RGB and depth features separately. This structure was first
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seen in FuseNet [13]. The focus of this type of research is how to integrate RGB
and depth information. Common strategies include Early Fusion [14], Middle Fu-
sion [30] or Late Fusion [61]. These early approaches inspired later research, such
as RDFNet [62] which extends RefineNet [63] with a multi-modal fusion block.
LSTM-CF [64] uses a horizontal LSTM to capture RGB and depth features, then
introduces a vertical LSTM to combine them. Liu et al. improved the HHA [11]
encoding by integrating 2D and 3D information [61]. They also extended the
VGG [14] encoder in DeepLab [37] for RGB-D semantic segmentation. Cheng et
al. proposed a gated fusion method [30], which studied the paired relationship
between adjacent RGB-D pixels. MTI-Net [65] discussed the importance of con-
sidering task interaction on multiple scales when extracting task information in
a multi-task learning setting. ICM [66] is an ensemble classification model that
proposes regularization based on variance. ESANet [67] has an encoder with two
branches and uses the attention mechanism to fuse depth into the RGB encoder
in several stages. ShapeConv [68] introduces a shape-aware convolution layer to
process depth features.

The method used in this paper is to combine the mid-term fusion of the
attention mechanism, use the attention mechanism to calibrate the features from
different modalities, and fuse the features of each stage of the encoder through
element-by-element addition.

3 Method

After a detailed discussion of the strengths and weaknesses of best practices for
RGB-D semantic segmentation, we propose a new method for RGB-D semantic
segmentation, inspired by attention mechanisms like CBAM [69] and SKNet [70].
The crucial part of this method is a Feature Fused Cascade Attention Module
(FFCA Module).

Fig. 1. FFCA module

Considering that each down-sampling occurs at the beginning of the hidden
layers, the output of each hidden layer is the feature map with the highest level of
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abstraction. Therefore, feature fusion should occur after each hidden layer. Fig. 1
shows the insertion method and internal structure of the FFCAModule proposed
in this study. Different features from two different modalities are converged into
the RGB and HHA branches in an element-by-element summation after a cross-
modal calibration based on the Attention mechanism to achieve the fusion of
features. HHA [11] is a generalization of Depth images that makes it easier to
apply CNN algorithms to RGB-D data, which is a considerable improvement
over depth channels alone.

3.1 FFCA Module: Feature Fused Cascade Attention Module

Fig. 2. Cascaded Channel and Spatial Attention

The extra spatial information contained in RGB-D can compensate well for
the lack of RGB compared to pure RGB’s traditional 2D image semantic seg-
mentation. However, simply adding the output features from the two coding
branches may not achieve the desired result due to the difficulty of aligning the
depth information with RGB and the amount of noise it contains. Therefore, the
critical of feature fusion is to handle the differences between two different image
signals properly.

This research proposes a cross-modal Cascade Attention to solve these prob-
lems. As shown in Fig. 2, this structure contains two different attention mecha-
nisms: Channel Attention and Spatial Attention. This module concatenates the
two attention structures to perform cross-modal calibration in the feature maps’
channel and spatial dimensions. The feature maps of both modalities have the
same size. The calibration assigns a pair of weights for elements at the same
position in two modalities to facilitate subsequent feature fusion by element-by-
element addition.
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3.2 Multiple Layer Channel Attention

The structure of multiple layer channel attention in cascaded attention shown in
Fig. 3. This multilayer Channel Attention can be regarded as a modified solution
of the multi-input attention mechanism in SKNet [70]. The difference is that the
two feature maps come from two different modalities.

Fig. 3. Multiple Layer Channel Attention

This channel attention has two layers: the first concatenates and sums the fea-
ture vectors, thus extracting the separated and fused features of the two modal-
ities. The second concatenates these two features, then uses two fully connected
layers and softmax to obtain the RGB and HHA attention vectors. Taking any
RGB feature map RGB ∈ RH×W×C , the HHA feature map HHA ∈ RH×W×C

as input, the operation of this Channel Attention can be described in the fol-
lowing mathematical language:

Global averaging pooling: like the Squeeze operation in SENet [71], the
RGB and HHA feature maps need to undergo a global averaging pooling Fgp

after being fed into the Attention module to obtain the feature vectors zRGB ∈
RC and zHHA ∈ RC, enabling them to be fed into the subsequent fully connected
layer. Specifically, the c-th element of both vectors is computed utilizing the c-th
channel of shape H×W in the corresponding feature map:

zRGBc
= Fgp (RGBc) =

1

H×W

H∑
i=1

w∑
j=1

RGBc(i, j) (1)

zHHAc
= Fgp (HHAc) =

1

H×W

H∑
i=1

w∑
j=1

HHAc(i, j) (2)

Multi-layered full-connection: the role of the two full-connection layers
in the Attention block is to produce a Scale vector z that fuses two different
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modalities. to be able to take advantage of the common features of both modal-
ities while calibrating across modalities, the inputs to the first full-connection
layer are zRGB ∈ RC and zHHA ∈ RC summing element by element the fusion
vector at zsum ∈ RC, and zconcat ∈ R2C obtained by concatenating the two.
The first layer extracts the fusion feature zs ∈ Rd and the separation feature
zc ∈ Rd for each of the two modalities through two fully connected layers FFCs

and FFCc
which are at the same level:

zs = FFCs
(zsum) = δ (B (Ws × (zRGB ⊕ zHHA))) (3)

zs = FFCs
(zsum ) = δ (B (Ws × (zRGB∥zHHA))) (4)

Where δ represents the ReLU activation layer, B is the Batch Norm layer, and
Ws ∈ Rd×c and Wc ∈ Rd×2C are the weight parameters for the fully connected
layers FFCs

and FFCc
weight parameters. d is the number of channels reduced

after a fully connected squeeze and the minimum value is given via L. The
shrinkage ratio r and the minimum value L are both hyperparameters of the
network structure. Typically, r = 16 and L = 32. This value is dynamically
adjusted by itself in a similar way to that in SENet and proportion to a certain
range:

d = max(C/r,L) (5)

The second layer of full concatenation is equivalent to the excitation op-
eration in SENet and is used to obtain the weights of both RGB and HHA
modalities in the channel dimension. The fused features zs and separated fea-
tures zc in the first layer are stitched together into a feature vector z ∈ R2d of
twice the length, which contains both fused and separated features for both RGB
and HHA modalities, making the fully connected layer FFCRGB

, which is located
in the second layer for the two different modalities, and FFCHHA

can extract the
required feature weights for each. Similar to the first layer, the weights of the
two full connections are WRGB ∈ RC×2d and WHHA ∈ RC×2d respectively.

wRGB = FFCRGB
(z) = WRGB × (zS∥zc) (6)

wHHA = FFCHHA
(z) = WHHA × (zs∥zc) (7)

Cross-modal Softmax normalization: multi-layer full connectivity has
filtered out those feature channels from RGB and HHA that are more useful for
subsequent segmentation tasks and given them higher weights. However, some
of the corresponding channels of the two feature maps may be redundant or
contain some information that would interfere with each other. For the subse-
quent feature fusion to proceed smoothly, using softmax to calibrate the feature
weights jointly wRGB and wHHA is necessary.

wRGB(Calibrated) = FSoftmax (wRGB∥wHHA)dim=1 [wRGB ] (8)

wRGB(Calibrated) = FSoftmax (wRGB∥wHHA)dim=1 [wHHA] (9)

1251



8 Y. Liu et al.

In this process, the weight vectors wRGB and wHHA are no longer spliced
into longer vectors, but adding a matrix of dimension WRGB||HHA ∈ R2×C , the
normalization of Softmax is performed in this new extended dimension. This
normalization allows the weights of the feature channels at the corresponding
positions of the two modalities to always sum to 1, enabling the maximum ex-
ploitation of the complementary features of the different modalities on the chan-
nels.

3.3 Fusion Spatial Attention

This research addresses RGB-D feature fusion problems by introducing a Fu-
sion Spatial Attention module. Compared with the general single-mode space
Attention mechanism, the multi-modal space fusion attention includes inputs
from two different modalities in the final convolution process. Fig. 4 shows this
structure. In addition to splicing the pooled single-channel features, the spatial
feature also contains an additional mixing channel.

Fig. 4. Fusion Spatial Attention

Taking as input an arbitrary RGB feature map RGB ∈ RH×W×C and an
HHA feature map HHA ∈ RH×W×C , the following mathematical language will
describe this Spatial Attention operation:

Channel averaging pooling: channel pooling Fcp is a compression of the
feature map from the channel dimension. A feature map of dimension H×W×C
will be compressed to H×W, keeping only one channel. The value of pixel (i.j)
at any position in this single-channel feature map is the mean value of the pixels
at the corresponding position for all channels in the original feature map:
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feat RGB(i, j) = Fcp(RGB) =
1

C

C∑
c=1

RGBc(i, j) (10)

feat HHA(i, j) = Fcp(HHA) =
1

C

C∑
c=1

HHAc(i, j) (11)

Fusion channels: Spatial attention generally contains two pooling opera-
tions, to obtain RGB and depth feature channel. The two feature channel are
concatenated into a two-channel feature map to provide redundant information.

On this basis, a hybrid channel is also innovatively introduced in this study to
obtain the fusion information between the two modalities. The spatial features
from two modalities are summed pixel-by-pixel to let subsequent convolution
exploit the complement information better:

featFusion = featRGB ⊕ featHHA (12)

feature = featRGB∥featFusion∥featHHA (13)

Spatial weights: This Attention module uses two convolutional layers of the
same size FConvRGB

and FConvHHA
to generate the Spatial Attention weights

for RGB and HHA respectively. The Sigmoid activation function is discarded
here and used for subsequent cross-modal calibration. The size of both sets of
convolution kernels is 7 × 7, cause the larger size allows for the aggregation of
more prodomain features:

wRGB = FConvRGB (features) = Conv7×7
RGB (features) (14)

wHHA = FCσnHHHA
(features) = Conv7x7HHA (features) (15)

Cross-modal Softmax normalization: Similar to Channel Attention in
the previous section, Softmax is used here for joint spatial calibration, which will
normalize the matrix of spatial attention. This is to address the signal alignment
problem of RGB and HHA:

wRGB(Calibrated)
= FSoftmax (wRGB∥wHHA)dim=1 [wRGB ] (16)

wRGB(Calibrated)
= FSoftmax (wRGB∥wHHA)dim=1 [wHHA] (17)

Since wRGB and wHHA are no longer feature vectors but one-dimensional
feature maps, the stitched wRGB∥HHA ∈ R2×W×H will have a three-dimensional
shape. softmax normalization is still performed in this new extended dimension
of length 2. This step allows the weights of the two sets of feature maps corre-
sponding to spatial locations to always sum to 1, which can compensate for the
different responses of the RGB and depth maps at the edges of the object and
promote a better alignment of the two signals.
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3.4 FFCANet: Feature Fused Cascade Attention Network

Fig. 5. Network structure of FFCANet

The FFCA Module is a plug-and-play cross-modal calibration and feature
fusion module based on the Attention mechanism. Therefore, it also requires a
network structure to host the module for the semantic segmentation task. We
have built a network structure for the semantic segmentation task by modifying
existing network components based on existing research. This network efficiently
combines with the FFCAModule. We named it Feature Fused Cascade Attention
Network, or FFCANet for short.

The structure of the network in this study shown in Fig. 5. The overall struc-
ture of the network consists of an encoder, context module, and decoder. The
encoder part is chosen from ResNet [21], which is most commonly used in seman-
tic segmentation tasks and is extended into two branches connected by FFCA
Module. Context module is similar to pyramid pooling in PSPNet [34], refers
to Seichter et al.’s scheme used in ESANet [72] and modified their approach.
Since the two-branch structure of the encoder doubles the network parameters,
DeepLabV3+ [40] with a smaller number of parameters was chosen for the de-
coder to balance the accuracy of the network with the memory overhead.

4 Experiment

To verify the validity of the innovative work made in this study, the NYUv2 [4]
dataset was used as the benchmark for testing. Subsequent ablation experiments
will also be conducted on this dataset.
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4.1 Dataset and Metrics

Due to the scarcity of indoor RGBD datasets for semantic segmentation, NYU
Depth v2 (NYUv2) has been the gold standard in this direction for the past few
years. The dataset contains 1449 accurately labeled images with depth informa-
tion, of which 795 are for the training set and 654 for the test set.

Semantic segmentation is an intensive classification task. It means each pixel
in an image should be predicted to a semantic category. Therefore, we chose
MIoU as this research’s most dominant evaluation metric, like other semantic
segmentation tasks. MIoU mean is Mean Intersection over Union. It is generally
computed based on classes, and the IoU of each class is computed and then
accumulated and averaged to obtain a global-based evaluation.

MIoU =
1

k + 1
=

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(18)

4.2 Optimizing Experience

This experiment aims to investigate the best way to use the optimal FFCA
Module with the contextual module. We conduct experiments on three Back-
bone with two FFCA Module combining strategies: ResNet50, ResNet101, and
ResNet152. The results are shown in Table 1.

Table 1. Result of optimize experience

Backbone FFCAM Context P Acc M Acc FW Acc MIoU

ResNet50

5 ppm-1357 76.80 62.01 63.57 50.11
5 ppm-15 76.52 62.43 63.84 50.46
4 ppm-1357 77.16 62.67 63.91 51.08
4 ppm-15 76.96 62.71 63.90 51.19

ResNet101

5 ppm-1357 77.47 63.03 64.02 51.54
5 ppm-15 77.78 62.98 64.22 51.81
4 ppm-1357 77.92 63.28 64.77 52.32
4 ppm-15 78.13 63.14 64.86 52.58

ResNet152

5 ppm-1357 77.32 63.87 64.89 52.53
5 ppm-15 77.81 63.92 65.01 52.59
4 ppm-1357 78.01 64.71 65.08 53.09
4 ppm-15 78.39 65.31 65.72 53.30

We plug FFCA Module after each hidden layer for feature fusion. In addi-
tion to using four modules, another fusion strategy uses five modules, which the
FFCA Module also inserted after the initial first convolutional layer. Two dif-
ferent resolution combinations have been experimented with for the contextual
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modules to find the best combination of pyramidal pooling sizes. One was a two-
way pooling branch of 1x1 and 5x3; the other was a four-way pooling branch of
1x1, 3x2, 5x3, and 7x5.

Fig. 6. Local edge detail of the result

The encoder structure using four FFCA Modules is optimal in the optimiz-
ing experiment, with the best calibration and fusion of features between different
modes. Fig. 6 shows this visualized result. The network structure using 4 FFCA
Module performs better at the edges of different objects, as shown in the yellow
bordered area. They contain less inter-adhesion in the transition region. In con-
trast, at the locations marked by the red borders, the 5 FFCA Module structure
classification results show many broken edge features, indicating that the RGB
and depth signals are not well aligned.

Table 2. Comparison result

Method P Acc M Acc MIoU

FCN [17] 65.4 46.1 34.0
CRF-RNN [53] 66.3 48.9 35.4
DeepLab [40] 68.7 46.9 36.8
ACNet [46] – – 48.3
MTI-Net [65] 75.3 62.9 49.0
RDFNet [62] 76 62.8 50.1
ESANet [67] – – 50.5
ICM [66] 75.4 – 50.7

CANet [72] 76.6 63.8 51.2
ShapeConv [68] 75.8 62.8 51.3
NANet [73] 77.9 – 52.3
SA-Gate [74] 77.9 – 52.4
FFCANet 78.4 65.3 53.3
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After determining the network structure, we compared the performance of
the best version of FFCANet with similar other work on the publicly available
NYUv2 dataset. Table 2 shows the results. Notably, this work achieves remark-
able results in several metrics such as Pixel Acc, Mean Acc, and MIoU. This
result indicates the advantage of this cross-modal calibration and fusion mecha-
nism in dealing with complex indoor environments with depth images containing
noise.

For the pyramid pooling context, using too many combinations of pooling
at different resolutions does not boost the network’s accuracy. However, it may
interfere with the inference process of the subsequent decoder. That may be
caused by the small number of feature maps corresponding to a single pooling
branch when there are too many pooling branches. Therefore, in the final version
of the model, we only use two pooling branches. Their size is 1x1 and 5x3.

4.3 Ablation Experiment

Table 3. Result of ablation experience

Backbone Encoder Context P Acc M Acc FW Acc MIoU

ResNet50

RGB-D No 75.88 61.43 62.33 49.49
RGB-D Yes 76.03 61.79 62.54 49.72
FFCAM No 76.34 62.28 63.58 50.74
FFCAM Yes 76.96 62.71 63.9 51.19

ResNet101

RGB-D No 77.02 62.80 63.82 51.17
RGB-D Yes 77.38 62.98 64.52 51.54
FFCAM No 77.92 62.85 64.23 52.11
FFCAM Yes 78.13 63.14 64.86 52.58

ResNet152

RGB-D No 77.52 62.99 63.93 51.54
RGB-D Yes 77.58 63.14 64.31 51.87
FFCAM No 77.87 64.43 65.27 53.03
FFCAM Yes 78.40 65.31 65.72 53.30

The results of the ablation experiments for the network structure are shown
in Table 3, demonstrating the validity of the novel structure of the FFCA Mod-
ule. A plain RGB-D two-branch segmentation network has been used as the
baseline, which removed the FFCA Module between two encoder branches and
used a simple element-wise adding instead. The introduction of the global con-
text module also impacts the results, so the global context module is also a
variable in the ablation experiments.

This result revealed that the performance of the network is significantly af-
fected by the FFCA Module. When the network uses the FFCA Module as the
feature fusion mechanism, there is a significant improvement in the accuracy
of the model. Depending on the backbone, this difference can reach approxi-
mately 1.4% MIoU. The introduction of global pyramid pooling also contributes
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a slight accuracy improvement to the model, with a maximum difference of only
approximately 0.3%, which is not as significant as the improvement of the FFCA
Module.

Fig. 7. Visualisation result compared with baseline

The FFCANet with the FFCA Module has obtained better segmentation
results than Baseline shown in Fig. 7. As seen from the figure, the segmentation
results of FFCANet have fewer category errors, more accurate object edges, and
almost no shape breaking. It is due to the FFCA Module’s ability to calibrate
across modalities and its Squeeze-and-Excitation feature in Channel Attention.
This feature allows the module to suppress defects and noise in the depth image
very well, acquiring depth information while reducing the interference of harmful
parts in the final segmentation result.

5 Conclusion

In this paper, we propose a neural network called FFCANet for accurately ex-
ecuting RGB-D semantic segmentation tasks. We have built a network struc-
ture for the semantic segmentation task by modifying the existing ResNet. This
module can achieve cross-modal calibration of RGB information with depth in-
formation and fuse complementary information. Our experiments show that this
ability has made FFCANet get the performance improvement in RGB-D seman-
tic segmentation task.

As the novel structure, the role of FFCA Module is to incorporates two dif-
ferent modalities. This attention module is designed to be plug-and-play, can be
combined with any other RGB-D semantic segmentation network have double-
branch encoder structure without increasing the burden of calculation. Com-
pared with the baseline in ablation experiment, the model used in this research
has obviously improved the accuracy of the semantic segmentation task.
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