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1. Introduction 
The pervasiveness of “Internet-of-Things” in daily 

life has led to a recent surge in fog computing, 
encompassing a collaboration of cloud computing and 
edge intelligence. As a significant field of IoT, 
real-time detection and classification have a huge 
demand. Due to the gap of hardware performance 
between mobile devices and cloud servers and the 
increment of internet bandwidth and speed, the 
cooperative approach of edge devices and cloud 
servers would be an accessible orientation for 
real-time tasks.  

Based on the thought of mobile edge computing and 
proposed edge and cloud cooperative approach, we 
create an edge-cloud system named ECNet [1]. And in 
the ECNet system, the network at edge side is the 
most vital component. This thesis is mainly designing 
a lightweight CNN network for edge side. By 
introducing the residual unit and other fine-tuning 
procedure, the network reach to an equilibrium which 
means apart from single network performance, the 
designed network can make the connection between 
edge side and cloud side smoothly. Besides, we set a 
series of offload determination in the system and 
make further analysis. 

 
2. Related Technologies 

2.1 YOLO 
YOLO [2] is one-stage object detection algorithm. 

YOLO firstly divides the image into S×S grid units, 
and each grid predicts the bounding box and 
confidence score of the object, and then filters the 
redundant bounding box based on the probability 
distribution of the category. Compared with the 
R-CNN series of two-stage object detection algorithms, 
YOLO does not require intensive calculations before 
and after ROI warping, which makes the algorithm 
parameters smaller and make the processing of 
calculation faster. The network structure of YOLOv2 
is similar to GoogleNet [3] which is contained with 
convolutional layers, max-pooling layers and fully 
connected layer. The convolutional layer and 
max-pooling layer in the network are used for feature 
extraction, and the usage of fully connected layer is to 
output category scores and the location of the target. 

 
 

 

 

2.2 ResNet 
In order to solve the optimization problem, a 

residual network is proposed. In the residual network, 
instead of letting the network directly fit the original 
mapping, it fits the residual mapping. The residual 
network adds some shortcut connections to the 
forward network so that these connections will skip 
some layers and pass the original data directly to the 
subsequent layers. The newly added shortcut 
connection will not increase the parameters and 
complexity of the model. 

There are two connection grogram of residual block 
[4]. The one is the BasicBlock, which does not do the 
upgradation, so the output dimension of the residual 
structure is the same as the input dimension. Another 
one is Bottleneck, which is used to reduce the number 
of channel dimensions and increase speed. 
 

3. Proposed Approach  

3.1 ECNet 
Based on the following guideline and the thought of 

BranchyNet [5], we design a new edge-cloud system 
aiming for objects detection task, named ECNet. As 
shown in Figure 1, the general framework of ECNet is 
mainly consists of edge operation and cloud operation. 
Feature maps extracted from edge-side will be 
transferred to cloud-side determined by offload 
controller. ECNet combine a light weight neural 
network on edge devices with a high-performance 
network on cloud servers and compress input sensor 
data, then offload it from edge side to cloud side 
depending on the metric for the result of edge side. 
 

 
Figure 1. General framework of ECNet 

 
 
 

 



3.2 Network at edge side 
We intend to design front part of both network 

being same so that sensor data extracted from edge 
side can directly apply in cloud side. So we have to 
change the structure of the network at edge side.  
However, this kind of distributed approach is 
challenging for a number of considerations, including: 
 The structure of DarkNet53 is built on numerous 

residual block, and each of residual block 
contains successive 3 × 3 and 1 × 1 convolutional 
layers connected by one shortcut connection. This 
structure is aiming to solve the degradation 
problem on deep networks. Reconstructed front 
part of edge-side network should avoid dividing 
residual block to ensure its integrity. 

 In detection tasks, YOLOv3 predicts boxes at 3 
different scales. The cloud-side of ECNet extracts 
features from those scales using a similar 
concept as feature pyramid networks. It has good 
performance on small objects that are to be 
recognized by the detector. The location of 
offloading feature map to cloud-side should be 
before the layer where starting extracting 
features. 

 To limit computing cost and processing time at 
edge-side, the depth of edge-side should not be 
too large.  

Guided by aforementioned considerations, the 
structure of edge-cloud network is designed after 
several times of trials and simulations. 
 

4. Experiments and results 
We set the receptive field as indicator that help us 

abandon some low performance model quickly which 
make our work more efficiently. 

 
Figure 2. Receptive field growth of our network 

Figure 2 shows the receptive field growth in our 
finally decided network structure. The blue part 
represents the amount of the receptive field after every 
layers and the red arrow points the layer where the 
system will do the operating of sensor data 
compression and transmission. 

Table 1. Performance on the 10 classes dataset 
 Rank-1(%) Rank-5(%) Processing 

Time(s/frame) 
Our Network 68.5 81.8 0.013 
Darknet19 (YOLO 
v2) 64.3 76.4 0.006 

Darknet53 (YOLO v3) 81.2 98.2 0.023 

By testing on our 10 classes dataset, we can find 
our designed network can improve the Top-1 accuracy 
about 4% comparing with the DarkNet19 as Table 1 
shows. But the price is that we have to scarify some 
performance on processing time. By running on our 
platform, the FPS our network can reach is about 77, 
which is enable for our real applying scenario. 

To add the algorithm of early-exit in the ECNet, we 
consider the confidence score to measure how 
confident the result we get at edge side network. By 
setting different threshold, the performance of 
network is significantly changing. 

 
Figure 3. Accuracy of edge side network for varying 

confidence threshold 
5. Conclusion  

We proposed ECNet, which is an edge-cloud 
network system to make combination and connection 
between lightweight network on mobile devices and 
high-performance network on cloud servers, dealing 
with the balance between performance and time cost 
in the real-time detection tasks. Our main focus is on 
the designation of the lightweight network and 
offload algorithm and methods in system. 
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Abstract 

 
The pervasiveness of “Internet-of-Things” in daily life has led to a recent surge in fog 

computing, encompassing a collaboration of cloud computing and edge intelligence. As a 

significant field of IoT, real-time detection and classification have a huge demand. Due to the 

gap of hardware performance between mobile devices and cloud servers and the increment 

of internet bandwidth and speed, combination of edge devices and cloud servers would be an 

accessible orientation for real-time tasks. We create an edge-cloud system named ECNet. 

The network at edge side is the most vital component in ECNet, as the edge side part is 

usually deployed on embedded computing boards or smartphones. We should consider not 

only the balance between processing time and accuracy performance but also the versatility 

with the network at cloud side. Our works focus on addressing these issues so that we 

designed a lightweight CNN network for edge side. By introducing the residual unit and other 

fine-tuning procedure, the network reach to an equilibrium which means apart from single 

network performance, the designed network can make the connection between edge side and 

cloud side smoothly. Besides, we set a series of offload determination in the system and make 

further analysis. 

 

Keywords: Real-time detection, edge-cloud system, ECNet, lightweight network, edge 

computing 
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1. Introduction 

1.1. Current demand of real-time detection 

With the deepening of deep learning research, the application fields of deep learning have 

also been expanding in recent years, and it has become a series of powerful machine learning 

models. Object detection [1] is also a research hotspot in the scientific research field in recent 

years. The main work of this task is an important fusion in the field of artificial intelligence (AI), 

which realizes the intelligence of robots or other platforms through various things and tasks. 

Besides, object detection is related to computer vision and image processing, which processes 

the detection of semantic target instances of a certain type (such as people, buildings or cars) 

in digital images. And the detection fields mainly include face detection and pedestrian 

detection. Robots and AI programs select and recognize targets from input information such 

as video and camera images which can be used in multiple scenarios including component 

recognition, edge detection, and appearance analysis from different angles. In a word, object 

detection has huge needs in many fields of computer vision, including image retrieval and 

video surveillance to unmanned driving fields. 

Detection task can separate into 2 fields, real-time and off-time. The performance on off-

time person detection is pretty well and now is applying in real situation like the Takumi Eyes 

system [2] which is developed by NTT Company, applying for detection and person 

identification. Video recording will upload to cloud from the camera or transfer to the server 

and then start to detect by the trained network.  

The pervasiveness of “Internet-of-Things” [3] in daily life has led to a recent surge in fog 

computing, encompassing a collaboration of cloud computing and edge intelligence. As a 

significant field of IoT, real-time detection and classification have a huge demand. The range 

of usage of real-time object recognition is including automatic driving, surveillance in public 

area, big data collection, etc.  
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In this thesis, we mainly propose investigating system-level solution for object recognition 

by combining edge and cloud network, which mainly focus on lightweight CNN network in the 

edge side. 

1.2. Problem statement 

With the development of data transmission, edge and cloud cooperative approach for 

object detection has been proposed [4]. Object recognition can be performed by many cloud 

vision API services using deep learning. In this case, images are provided to cloud on the 

Internet. On the other hand, object recognition at an edge becomes possible because of the 

improvement of computation power on edge devices. And new neural network architecture 

such as MobileNet [5], YOLO-tiny [6] for light hardware has been developed. The current state 

of deep learning systems on edge devices still leaves an unsatisfactory result comparing with 

cloud server mainly because of the gap of calculation power between edge devices and cloud 

servers. It is prone to sacrifice either processing time or accuracy. Besides, the step of 

offloading input sensor data to large models in the cloud will easily lead to associated 

communication costs, latency issues and privacy concerns [7]. 

To solve insufficient calculation power of edge side, the thought of mobile edge computing 

[8] has been applied. Mobile edge computing is a cloud server running at the edge of a mobile 

network and complete some tasks that could not be achieved by traditional network on edge 

side. Besides, the edge side can preprocess data and extract feature that we need. Edge 

computing allows more computing tasks to take place on the decentralized nodes at the edge 

of networks. Many applications which are delay sensitive and mission-critical can leverage 

edge devices to reduce the time delay or even to meet the need of real-time detection and 

online decision. 
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1.3. Thesis outline 

The outline of this thesis is organized as follows:  

Chapter 1: We describe the background of real-time objects detection and with deep learning 

and the problem that needed to be solved in this work. Besides, some challenges and 

problems existing in the field of real-time objects detection at this stage have been pointed 

out, and we propose the innovation points of specific application scenarios based on the edge-

cloud system. 

Chapter 2: We introduce the technologies related to this work, ranging from the current 

research status in the field of target detection, the summary of the research on several types 

of target detection algorithms, the principle knowledge of CNN and the residual network 

algorithms. Through analyzing the contributions, focuses and the limitations of previous 

detection networks, the potential benefits of our work have been shown. 

Chapter 3: We demonstrate the whole edge-cloud system which is designed for real-time tasks. 

To satisfy the demand of performance and other details in whole system, we design a new 

network which is going to be applied in edge side and introduce the framework of the new 

network. Besides, the inference design in the system has been discussed in this chapter.  

Chapter 4: The experimental environment is introduced in this chapter. By training the 

designed network on test dataset, the evaluation results be analyzed and be compared with 

other network, along with the illustrated results, we demonstrate the superiority of our 

proposed method in the field of accuracy and time effectiveness. 

Chapter 5: In this chapter we conclude this thesis. 

 

 

 

 



 

4 

 

2. Related Technologies  

2.1. Classification and detection methods 

As an important branch of computer vision, objects detection has developed rapidly in the 

fields of video and image recognition. In recent years, due to the substantial increase in 

hardware CPU and GPU computing power, deep learning has developed rapidly, the results 

obtained by traditional target detection methods are slowly overtaken by target detection 

based on deep learning algorithms, and the detection based on deep leaning algorithms 

achieve better results. So nowadays, the mainstream objects detection methods can be 

divided into the following two categories: traditional objects detection algorithms and objects 

detection algorithms based on deep learning. Figure 2.1 shows a brief overview of objects 

detection algorithms. 

 

Figure 2.1 Classification of Object Detection Algorithms 

2.1.1. Traditional objects detection algorithms 

Traditional target detection methods [9, 10] mostly use the following steps: 1) Identifying 

the target on the image and filter out the target area; 2) Extracting the target features of the 

candidate area; 3) Using the classifier such as support vector machines [11] to classify the 

candidate target in the last step. Following is the detailed operations and characteristics of 
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each steps. 

1) Region selection 

In a given picture, the position of the target object in the picture appears randomly, and the 

size of the target is undeterminable. Therefore, the selection of candidate regions requires the 

use of sliding windows with different aspect ratios to scan the image, resulting in many 

irrelevant sliding windows which cause that in high time complexity for the region selection 

process, and subsequent effects on the recognition efficiency of the entire model. To solve this 

problem, a sliding window with a fixed aspect ratio is usually used, but the detection effect of 

multiple categories in the image is reduced, and the target position cannot be selected much 

accurately. 

2) Feature extraction 

Feature extraction uses SIFT [12], HOG [9] or DPM [13, 14] operators. However, in actual 

images, the shapes of detection targets are diverse. Besides, the lighting conditions are 

complex and the background is ever-changing. These complex conditions cause that it is 

difficult for traditional operators to adapt to the real scenario, resulting in poor performance 

on feature extraction. If the feature is not extracted well, the classification effect of the 

subsequent classifier will be unqualified. 

3) Classifiers 

In this step, every classes in the graph will have their own corresponding classifier and will 

be trained separately. The classifier can be Linear SVM or Adaboost [15]. The features 

extracted from each candidate region will pass to each classifier, and comprehensively judge 

for classification. 

Generally, the main problems affecting the efficiency of traditional target detection 

algorithms are region selection and feature extraction. The region selection strategy based on 

sliding windows is not targeted, leading to window redundancy. Besides, traditional operators 

are difficult to adapt to changes in diversity of targets’ size. These problems lead to the 

traditional target detection algorithm need more time on region selection with low accuracy. 
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What’s more, the system has poor recognition robustness for multi-category object features. 

2.1.2. Objects detection based on deep learning 

Objects detection algorithms based on deep learning can be divided into two parts. One is 

the R-CNN series of algorithms which is based on candidate target regions like R-CNN[16]，

Fast R-CNN[17] and Faster R-CNN[18]. They need to use selective search [19] or EdgeBoxes [20] 

to determine region proposal, and then do classification and regression. The continuous 

evolution of objects detection algorithms has shifted from dense sliding window-based 

methods like DPM to region proposal methods. The method of region proposal can effectively 

reduce the number of candidate bounding box. By achieving a more complex learning 

mechanism than sliding windows, the algorithm can improve the performance of accuracy on 

objects detection. Since CNNs won the championship in ILSVRC2012 [21], convolutional neural 

networks have been widely used in target detection models in recent years.  

R-CNN applied CNNs to the bottom-up region filtering generated by selective search. R-CNN 

generates 2000 region of interest (ROI) through selective search, and extract features 

separately through CNN so that the network significantly improved the detection accuracy. In 

the final stage, R-CNN uses a support vector machine classifier to classify and predict the target. 

In order to obtain better performance, linear regression is also used to fine-tune the position 

and size of the detection bounding box. Since the R-CNN model has achieved amazing results, 

many new ideas have been implemented on CNN, such as the SPP-Net [22], Fast R-CNN and 

Faster R-CNN. The accuracy of objects recognition and processing speed of the above methods 

have been rapidly improved, and the fastest recognition speed can reach 15fps. The 

continuous improvement of the Fast R-CNN makes the detection task more accurate and faster. 

Although these methods use thousands of region of interest to reduce the space of the target 

area that the image needs to search, the detection speed still cannot meet the requirements 

of real-time target detection. 

Compared with the two-stage detection model, the one-stage detection model of the YOLO 
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[23] series and the SSD [24] series has realized real-time detection due to its simple structure 

and faster detection algorithm as Figure 2.2 shows. 

 

Figure 2.2 Schematic plot for (a) one-stage detector and (b) two-stage detector 

2.2. You Only Look Once   

In 2016, one-stage detection algorithm YOLO with a simple network structure has been 

proposed. YOLO firstly divides the image into S×S grid units, and each grid predicts the 

bounding box and confidence score of the object, and then filters the redundant bounding box 

based on the probability distribution of the category. Compared with the R-CNN series of two-

stage detection algorithms, YOLO does not require intensive calculations before and after ROI 
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warping, which makes the algorithm parameters smaller and make the processing of 

calculation faster. Based on YOLO, YOLOv2[25] proposed a new backbone network Darknet-19 

that reduced the computational cost by 80% compared to VGG16 network, and added several 

batch normalization layers after each convolutional layer to speed up the operation of 

convergence aiming to improving the speed of network training. Besides, the anchor 

mechanism is applied in the YOLOv2, and the K-means clustering algorithm is used to 

determine the number and size of anchors, which significantly improves the recall rate, but its 

positioning of the bounding box is still inaccurate. Compared with YOLO, YOLOv2 achieves 21.6% 

mAP in the MS COCO [26] dataset with faster speed. 

YOLOv3 [27] proposed less floating-point operations and new backbone network Darknet-

53 which use convolutional layers to achieve image scale changes and introduces a residual 

structure to improve detection accuracy. When predicting the anchor box, the confidence and 

the coordinates are predicted separately, instead of directly predicting the bounding box 

coordinates and confidence through the network regression in YOLOv2. In addition, drawing 

on the idea of feature pyramid and predicting on three scales, the detection rate of small 

targets can be improved to a certain extent. YOLOv3 has improved 11.4% mAP on the MS COCO 

data set with fewer parameters. 

In 2020, YOLOv4 [28] was proposed as an efficient and powerful target detection model. 

CSP Darknet53 [29], which can better balance the input network resolution, number of 

convolutional layers, and parameters, was selected as the backbone network. SPP[22] module 

is added in the network, which uses four pooling layers of different scales to operate on 

features, thereby significantly increasing the receptive field without affecting the running 

speed and getting more context features. Thanks to the SPP module, the detection 

performance is improved by fusing three features of different scales. In addition, YOLOv4 uses 

the Mosaic data enhancement method, self-confrontation training method, cross mini-batch 

normalization method, point-oriented attention module and other improved tuning methods 

to further improve the detection accuracy. YOLOv4 obtained 43.5% mAP at 65 frames per 

second on the MS COCO data set, which is 10.5% higher than YOLOv3 mAP. 
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2.2.1. Algorithm of YOLO 

YOLO divides the picture into S×S areas. Note that the concept of this area is different from 

the area where the picture is divided into N areas mentioned above and thrown into the 

detector. The area mentioned above is really cropping the picture, or cutting a certain part of 

the picture into the detector, and the division area here is only a logical division. The division 

is reflected in the last fully connected layer of YOLO, which is the prediction made by YOLO for 

each picture. 

The predicted vector is a vector of length S×S× (B×5+C). Where S is the number of grids 

divided, generally S=7; B is the number of frames predicted by each grid, generally B=2; C is 

the number of categories related to your actual problem, but it should be noted that we should 

use the background as one category is considered. 

S×S×C category information indicates what category each grid may belong to; S×S×B 

confidence levels indicate the confidence level of B boxes in each grid. After YOLO predicts, 

generally only the confidence level is above 0.5 the boxes will be retained. Of course, this 

threshold can also be adjusted manually. S×S×B×4 pieces of position information, the 4 pieces 

of position information are (x, y, w, h), where x, y are the center points of the box. We multiply 

the conditional class probabilities and the individual box confidence predictions, 

      Pr( Class𝑖𝑖 ∣∣ Object ) ∗ Pr(Object) ∗ IOUpred
truth = Pr(Class𝑖𝑖) ∗ IOUpred

truth            (2.1) 

which gives each candidate box a certain confidence scores on class perspective. These scores 

contain the meaning not only degree of how well the class we predicted in box fits to the real 

object in the image but also the probability of this class appearing in the box. 

In YOLOV2, the model introduces the K-means clustering algorithm to filter out the most 

suitable candidate bounding box, and the K-means algorithm can be used to predict the length 

and width of the detection boxes. In order to reduce the error of the Euclidean distance in K-

means on the position of the target candidate boxes, the intersection and union ratio (IOU) is 

set as the measurement standard: 
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d( box, centroids ) = 1 − IOU( box, centroids )                 (2.2) 

YOLO will output of 7×7×30 features at last, and each cell corresponds to 1×1×30. In one 

cell, the first 10 features mainly contain coordinates of 2 bounding boxes, and the last 20 

represent the probability that the cell belongs to 20 categories under the assumption that it 

contains objects. Figure 2.3 is the diagram of feature dimension. 

 

Figure 2.3 Characteristic dimension difference between YOLOv1 and YOLOv2 

2.2.2. Architecture of YOLOv2 

The network structure of YOLOv2 is similar to GoogleNet [30] which is contained with 

convolutional layers, max-pooling layers and fully connected layer. The convolutional layer and 

max-pooling layer in the network are used for feature extraction, and the usage of fully 

connected layer is to output category scores and the location of the target. The network 

structure is shown in Figure 2.4. The network system can read images of any size and feed 
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them back to the network. The input image is divided into 7×7 grids and for each grid, and the 

network will do prediction and output 3 bounding boxes with object category classifications. 

 

Figure 2.4 YOLO Network Structure 

2.2.3. Loss function 

In YOLO, we use multi-part loss function for training. There are 3 parts in the multi-part loss 

function: the loss for calculating the confidence error of the background, the loss for 

calculating the coordinate error of anchor boxes and prediction boxes and the total loss of 

each part of the prediction box with the ground truth. 

            

𝜆𝜆coord ∑  𝑆𝑆2
𝑖𝑖=0 ∑  𝐵𝐵

𝑗𝑗=0 𝟙𝟙𝑖𝑖𝑗𝑗
obj [(𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2]

+𝜆𝜆coord ∑  𝑆𝑆2
𝑖𝑖=0 ∑  𝐵𝐵

𝑗𝑗=0 𝟙𝟙𝑖𝑖𝑗𝑗
obj ���𝑤𝑤𝑖𝑖 − �𝑤𝑤�𝑖𝑖�

2
+ ��ℎ𝑖𝑖 − �ℎ�𝑖𝑖�

2

�

+∑  𝑆𝑆2
𝑖𝑖=0 ∑  𝐵𝐵

𝑗𝑗=0 𝟙𝟙𝑖𝑖𝑗𝑗
obj �𝐶𝐶𝑖𝑖 − �̂�𝐶𝑖𝑖�

2

+𝜆𝜆noobj ∑  𝑆𝑆2
𝑖𝑖=0 ∑  𝐵𝐵

𝑗𝑗=0 𝟙𝟙𝑖𝑖𝑗𝑗
noobj �𝐶𝐶𝑖𝑖 − �̂�𝐶𝑖𝑖�

2

+∑  𝑆𝑆2
𝑖𝑖=0 𝟙𝟙𝑖𝑖

obj ∑  𝑐𝑐∈ classes (𝑝𝑝𝑖𝑖(𝑐𝑐) − �̂�𝑝𝑖𝑖(𝑐𝑐))2

         (2.3) 

In the third part, the loss between ground truth and prediction boxes can further separate 

into 3 parts. One is coordinate loss, firstly we determine which cell the center point falls on, 
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and then calculate the IOU value of the 5 a prior boxes and the ground truth of this cell. Second 

part is confidence loss. We add a weight coefficient in the processing of calculating loss, when 

it is 1, the loss is the true IOU value of the prediction frame and ground truth. And the final 

one is the classification loss. 

2.2.4. Non-Maximum Suppression 

Non-Max Suppression [31] means that the detection results of each candidate frame are 

compared, the maximum value is retained, and other repeated regions are screened and 

removed, thereby leaving the target candidate region with the best effect. In the target 

detection model, many rough candidate results can be obtained through detection, but it is 

obviously unrealistic to adjust these rough results one by one. Therefore, these results need 

to be filtered out, and the most accurate case can be selected from them, and then the 

screening subsequent results are adjusted to improve model efficiency. 

Algorithm1 Non-Max Suppression 

1: procedure NMS(B, c) 

2:   Bnms ← ∅ 

3：  for bi ∈ B do 

4:       discard ← False 

5:       for bj ∈ B do 

6:           if same(bi, bj) > λnms then 

7:               if score(c, bj) > score(c, bi) then 

8:                   discard ← False 

9:       if not discard then 

10:          Bnms ← Bnms ∪  bi 

11:   return Bnms 

 

As shown in the Figure 2.5, sort according to the classification probability of the classifiers 
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of these boxes for the area where is a dog : A<B<C<D<E. 

Then we take out the E detection box with the highest probability and calculate the 

intersection ratio of A, B, C and E respectively. The algorithm will compare with the previously 

set threshold after calculation. If the IOU is greater than the set threshold, keep the current 

corresponding, if the detection frame is less than the set threshold, remove the corresponding 

detection frame, such as the B frame and the maximum probability E frame for storage.  

Second round we select D from the remaining detection boxes of A, C, D, and then repeat 

the above steps, respectively use the A, C box and the detection box D to calculate the 

intersection ratio, keep the greater than the threshold. We can remove the bounding box less 

than threshold and save D as the second reserved detection frame, and continue to iterate to 

find all remaining detection box. 

 

Figure 2.5 Comparison of NMS algorithm before and after screening 

2.2.5. Bounding-box regression 

We can find that the IOU intersection ratio between the red box (proposal) and the target 

marker box (ground truth) detected by the algorithm in the model is less than 0.5, which is 

lower than the set threshold of 0.5 as shown in Figure 2.7. Therefore, this detection frame 

cannot be used as the target detection result and we need to fine-tune the proposal and make 

it closer to the annotation window of ground truth. 
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Figure 2.6 Bounding-box regression diagram 

In Figure 2.6, red box represents the original proposal, green box represents the ground 

truth. Our ultimate goal is to make proposal and ground truth as close as possible. The 

optimization goal can be expressed as formula 2.4. 

                                       𝑊𝑊∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
𝑊𝑊�∗

 ∑  𝑁𝑁
𝑖𝑖 �𝑡𝑡∗𝑖𝑖 −𝑊𝑊�∗𝑇𝑇𝜙𝜙5�𝑃𝑃𝑖𝑖��

2
+ 𝜆𝜆∥∥𝑊𝑊�∗∥∥

2
            (2.4) 

To achieve this goal, the normal method is translating the center point firstly, and then doing 

scale scaling. 

2.3. ResNet 

Deep convolutional networks have made a series of breakthroughs in image classification 

tasks and it integrates three-level features and classifiers of low, medium and high through a 

multi-layer end-to-end approach, and the number of these features can also be increased by 

stacking the number of layers. As the number of network layers increases, problems in the 

procedure of training become more prominent. The more significant problem is the 

disappearance/exploding of gradients, which will affect convergence at the beginning network 

training. On the premise that the deep network can converge, as the network depth increases, 

the accuracy rate begins to saturate or even drop, which is called the network degradation. 

Because of this problem, increasing the number of layers on a given network will increase the 
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training error.  

The degradation of the network shows that not all systems are easy to optimize. Under 

extreme conditions, if all the added layers are direct copies of the previous layer, the training 

error of the deep network should be the same as that of the shallow network. Therefore, the 

main problem that cause the network degradation is still an optimization problem.  

In order to solve the optimization problem, a residual network is proposed. In the residual 

network, instead of letting the network directly fit the original mapping, it fits the residual 

mapping. The residual network adds some shortcut connections to the forward network so 

that these connections will skip some layers and pass the original data directly to the 

subsequent layers. The newly added shortcut connection will not increase the parameters and 

complexity of the model. 

Kaiming He proposed a brand-new network called Deep Residual Network [32], which 

allows the network to deepen as much as possible, and introduced a new structure as Figure 

2.8 shows. 

 

Figure 2.7 Residual Block Diagram 

ResNet proposes two types of mappings: one is identity mapping, which refers to the curve 

in Figure 2.7, and the other is residual mapping, which refers to the part except the curve. 
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Based on the structure, we know the final output is y = F(x) + x. To solve the problem that 

accuracy is decreasing as the network deepens, ResNet provides two options. If the network 

has given acceptable output, the residual mapping will be decreased to 0 when we continue 

to deepen the network, which means that the network is always in the optimal state in theory, 

and the performance of the network will not decrease as the depth of network increases. 

There are two connection grogram of ResNet which are shown in Figure 2.8. Left one is the 

BasicBlock, which is designed for ResNet-18 and ResNet-34. BasicBlock does not do the 

upgradation, so the output dimension of the residual structure is the same as the input 

dimension. And right one is Bottleneck, which is used on ResNet-50/101/152. The purpose of 

using Bottleneck is to reduce the number of channel dimensions and increase speed. 

 

Figure 2.8 Structure of BasicBlock and Bottleneck 

2.4. Metric 

2.4.1. Precision and recall 

Normally, a good classifier requires a combination of precision and recall to evaluate it. We 

usually use the degree of precision, recall and F1 score as the basic data to judge the 

performance of a network. 
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Table 2.1 Confusion matrix example 

  Predicted 

  Negative Positive 

Actual 
Negative True Negative False Positive 

Positive False Negative True Positive 

True Positive (TP): detected that the target is this category and matches the real category 

classification; 

False Positive (FP): detected that the target is this category and the classification situation 

is different from the real category; 

False Negative (FN): detected that the target is not this category and the classification 

situation is different from the real category; 

True Negative (TN): detected that the target is not this category and matches the real 

category classification. 

The following parameters are usually used in detection task: 

Precision =  TP 
 TP + FP 

=  TP 
 num of predicted Positive 

                 (2.5) 

Recall =  TP 
 TP + FN 

=  TP 
 num of actual Positive 

                     (2.6) 

F1 score = 2·P ·R
 P+R 

                                    (2.7) 

2.4.2. mAP 

mAP (mean average precision) is used for measuring the recognition accuracy in target 

detection. In multiple categories of object detection, each category can draw a curve based on 

recall and precision, AP is the area under the curve, and mAP is the average of multiple 
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categories of AP 

 

Figure 2.9 Evaluation of F1 Score, AUC and AP 

2.4.3. FPS 

In addition to the performance of accuracy, another important performance indicator of the 

target detection algorithm is speed. Only high speed of detection can achieve the goal of real-

time detection, which is extremely important for some application scenarios. A common 

indicator for evaluating speed is frame per second (FPS), which is the number of pictures that 

can be processed per second. The time required to process a picture can also be used to 

evaluate the detection speed, which means that the shorter the processing time, the faster 

the speed. 
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3. Proposed Approach  

Taking the thought of BranchyNet [33] and other edge computing system as reference, we 

incorporate the proposed residual block into network at edge side. So there are several 

architectural improvements need to be applied. We will introduce them in detail and further 

discuss the framework of real-time detection system and the design principle behind it. 

3.1. ECNet 

Edge and cloud cooperative approach for object detection has been proposed. The current 

state of deep learning systems on edge devices leaves an unsatisfactory result mainly because 

of the gap of calculation power between edge devices and cloud servers. It is prone to sacrifice 

either processing time or accuracy. Besides, the step of offloading input sensor data to large 

models in the cloud will easily lead to associated communication costs, latency issues and 

privacy concerns.  

To address these problems, it is nature to consider an edge-cloud system which combine a 

light weight neural network on edge devices with a high-performance network on cloud 

servers and compress input sensor data, then offload it from edge side to cloud side depending 

on the metric for the result of edge side. The light weight model at an edge device can quickly 

output feature extraction, and also complete the judgement if the model is confident. The 

sensor data which are not fulfilling the metric will send to cloud side to do further processing 

and final classification or detection. This approach has the benefit of low communication costs 

compared to continuous offloading input to the cloud and can achieve higher accuracy 

compared to a simple model on device. Additionally, since sensor data which has been feature 

extracted and compression from the edge device model are sent instead of raw image data, 

the system could provide lower need of network bandwidth and better privacy protection.  

Based on the following guideline and the thought of BranchyNet, we design a new edge-

cloud system aiming for objects detection task, named ECNet [36]. As shown in Figure 3.1, the 
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general framework of ECNet is mainly consists of edge operation and cloud operation. Feature 

maps extracted from edge-side will be transferred to cloud-side determined by offload 

controller. 

 

Figure 3.1 General framework of ECNet [36] 

3.2. Network at edge side  

3.2.1. Architecture  

In the initial construction of the edge-cloud system. The edge side is applied Darknet19 and 

the cloud side will leverage DarkNet53 as backbone, planning setting exit point at edge side. 

After the compression the sensor data will transfer to cloud side. Owing to the different 

structure of both side network, sensor data extracted at the exit point of edge side could not 

be directly employed in further processing. Therefore we intend to reconstruct front part of 

both network being same so that sensor data extracted from edge side can directly apply in 

cloud side. So we have to change the structure of network. However, this kind of distributed 

approach is challenging for a number of considerations, including: 

 Residual block in Darknet53. In structure of DarkNet53  is built on numerous residual 

block and each of residual block contains successive 3 × 3 and 1 × 1 convolutional layers 

one shortcut connection. This structure is aiming to solve the degradation problem on 

network which has deep structure. Reconstructed front part of network should avoid 

dividing residual block to ensure its integrity.  
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 In detection tasks, YOLOv3 predicts boxes at 3 different scales. Cloud network extracts 

features from those scales using a similar concept to feature pyramid networks. It has 

good performance on small objects that are to be recognized by the detector. The location 

of offloading sensor data to cloud side should before the layer where extracting features.  

 Simplify the structure to limit computing cost and processing time at edge side.  

Table 3.1 Architecture of designed network 

 Type Filters Size/Stride 

 Convolutional 32 3 × 3 
 Convolutional 64 3 × 3 / 2 

1× 

 

Convolutional 32 1 × 1 
Convolutional 64 3 × 3 
Residual   

 Convolutional 128 3 × 3 / 2 

2× 
Convolutional 64 1 × 1 
Convolutional 128 3 × 3 
Residual   

 Maxpool  2 × 2 / 2 
 Convolutional 256 3 × 3 

 Convolutional 128 1 × 1 

 Convolutional 256 3 × 3 

 Maxpool  2 × 2 / 2 

 Convolutional 512 3 × 3 

 Convolutional 256 1 × 1 

 Convolutional 512 3 × 3 

 Convolutional 256 1 × 1 

 Convolutional 512 3 × 3 

 Maxpool  2 × 2 / 2 

 Convolutional 1024 3 × 3 

 Convolutional 512 1 × 1 

 Convolutional 1024 3 × 3 

 Convolutional 512 1 × 1 

 Convolutional 1024 3 × 3 

 Convolutional 1000 1 × 1 
 Avgpool  Global 

 Softmax   
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Guided by aforementioned considerations, the structure of edge-cloud network is decided 

as Table 3.1 shows after several times trials and comparison.  

3.2.2. Loss function  

In the target detection task, the network needs to predict the class score of the object and 

the position of the bounding box. Therefore, the total loss losstotal is composed of category 

cost lossclass and bounding box expenditure lossIOU, as shown in formula 3.1. The category 

loss is the difference between the category probability that network classified and the ground 

truth. The loss of the bounding box is calculated by the intersection set (IOU) between the 

predicted box and the ground truth box. 

losstotal = lossclass + lossIOU                       (3.1) 

The influence of these parts on the overall detection effect depends on the degree of their 

contribution, so a weight parameter needs to be added for fine-tuning. The position error in 

target detection has a relatively large influence factor, so the position error weight is generally 

set to 5. Formula 3.2 is the loss of target detection in the thesis. The scale parameter is used 

to adjust the weight of different costs. The total loss is the sum of the S × S grid loss. The loss 

of each grid is composed of the object existence loss of N grids, the cost of class C, and the 

IOU loss of the best prediction box. Note that only when the object target exists in the grid, 

the loss function will penalize the class classification error by adding the class loss and the best 

IOU loss. 

 Cost = ∑  𝑆𝑆∗𝑆𝑆
𝑚𝑚=0 {∑  𝑁𝑁

𝑛𝑛=0  noobject scale ∗ 𝑃𝑃object,𝑛𝑛
2

+𝑚𝑚sObj ∗ {−noobject scale ∗ 𝑃𝑃object,best prediction
2

+objectobject ∗ �1 − 𝑃𝑃object, best predict 
�
2

+ �1 − IOUbestpredict�
2

+∑  𝑐𝑐
𝑖𝑖=0 � class_scale ∗ �𝑃𝑃class,𝑖𝑖 − 𝑃𝑃truth,𝑖𝑖���

              (3.2) 

In formula 3.2, S is the grid size, and N is the number of bounding boxes predicted in one 

grid. C is the number of target categories. The parameters of non-target existence ratio, target 
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ratio and category ratio are used to adjust the weight of each part of the cost. 𝑃𝑃object,𝑛𝑛  is the 

probability that the target exists in n networks and m bounding boxes. The isObj indicates 

whether the target object exists in the current bounding box. 𝑃𝑃object,best prediction
 is the best 

intersection and union ratio (IOU) of 𝑃𝑃object,𝑛𝑛   in n grid boxes. IOUbestpredict  is the best 

intersection ratio between the true bounding box and the predicted bounding box in m grid. 

It is the probability parameter that predicts whether the target category i exists, and the 

probability that there is a target object of category i in the image, that is, 0 or 1. 𝑃𝑃class,𝑖𝑖 is the 

probability parameter for predicting whether the target category i exists, and 𝑃𝑃truth,𝑖𝑖 is the 

probability of whether there is a target object of category i in the image or not . 

3.3. Inference design  

We add metric to judge whether the feature map should transfer from exit point or not and 

we call it confidence score. Confidence score is mainly based on entropy of the output at the 

end of edge network. If the score high than the threshold we set, which means the output is 

not acceptable. Then the feature map will transfer to the cloud side and do further operation. 

If the confidence score is under the line of threshold, which means the output is good enough 

for the whole system. So the system will directly output the result without enabling the cloud 

side. 

Besides, we apply the technology of quantization and compression into the system for 

loosing the offload burden. Firstly the system will saving feature map as binary file which can 

greatly reduce the storage cost. After transfer the binary file the system will read the file and 

do the dequantization on feature map data. 
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Figure 3.2 Flow of system inference 
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4. Experiment and results 

4.1. Implementation details 

4.1.1. Experiment environments 

The ECNet edge-cloud system for real-time objects detection is implemented in PyTorch 

1.3.1. The platform we train and evaluate the models is Nvidia GeForce GTX 2070 SUPER GPU 

with 8G memory and AMD 3600 CPU. And the experiments are conducted under the OS of 

Windows. 

4.1.2. Dataset for training and testing 

In order to verify the effectiveness of the model and the ability of target detection, we use 

two datasets in this experiment. The datasets we used are ImageNet [34] dataset and Pascal 

VOC 2007/2012 [35]. 

○1 E A ImageNet 

The ImageNet image dataset started in 2009, followed by the 7th ImageNet Challenge based 

on the ImageNet dataset. From 2017, ImageNet dataset has been maintained by Kaggle. It is 

a large-scale visualization database for the research of visual object recognition task. More 

than 14 million image URLs are manually annotated by ImageNet to indicate objects in the 

picture and more than one million images is providing bounding boxes. Besides, ImageNet 

contains more than 20,000 categories. 
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Figure 4.1 Samples from ImageNet Dataset [34] 

A○2 E A Pascal VOC 2007/2012 

The Pascal VOC dataset is an important foundation of the Pascal VOC Challenge, which 

promotes the development of image classification and object detection. The dataset used in 

the thesis is from the Pascal VOC 2007 and 2012 Challenges, which contain 9963 images and 

11125 images in 20 categories. 
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Figure 4.2 20 Classes in Pascal VOC 2007/2012 Dataset [35] 

4.2. Experiments and results analysis 

4.2.1. Design of network and theoretical analysis 

Because of the total algorithm and framework of the edge-cloud system, the design of network 

at edge side guideline which means the network should not only meet the need of the 

compatibility with the cloud side and early exist mechanism but also have a relatively 

satisfactory performance on processing time and accuracy. 

Based on the above guideline, we choose the darknet19 as the backbone, the structure of 

darknet19 is following. And then we add residual block into the layer and make a huge change 

at top layers. 
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Table 4.1 Architecture of Original DrakNet19 

 Type Filters Size/Stride 

 Convolutional 32 3 × 3 
 Maxpool  2 × 2 / 2 

 Convolutional 64 3 × 3 

 Maxpool  2 × 2 / 2 

 Convolutional 128 3 × 3 

 Convolutional 64 1 × 1 

 Convolutional 128 3 × 3 

 Maxpool  2 × 2 / 2 
 Convolutional 256 3 × 3 
 Convolutional 128 1 × 1 
 Convolutional 256 3 × 3 
 Maxpool  2 × 2 / 2 
 Convolutional 512 3 × 3 
 Convolutional 256 1 × 1 
 Convolutional 512 3 × 3 
 Convolutional 256 1 × 1 
 Convolutional 512 3 × 3 
 Maxpool  2 × 2 / 2 
 Convolutional 1024 3 × 3 
   Convolutional 512 1 × 1 
 Convolutional 1024 3 × 3 
 Convolutional 512 1 × 1 
 Convolutional 1024 3 × 3 
 Convolutional 1000 1 × 1 
 Avgpool  Global 
 Softmax   

During the trial on reconstruction based on DarkNet19, we see the growth of receptive field 

as an indicator for our design. We firstly to watch the change receptive field to determine 

where to add the residual block and how to set parameter. After that, we will train the 

designed model and to see the result. Setting the receptive field as indicator can help us 

abandon some low performance model quickly which make our work more efficiently.  

Figure 4.3 shows the receptive field growth in our finally decided network structure. The 

blue part represents the amount of the receptive field after every layers and the red arrow 
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points the layer where the system will do the operating of sensor data compression and 

transmission. 

 

Figure 4.3 Receptive field growth of our network 

4.2.2. Performance evaluation and analysis 

After determining the network structure, we firstly pre-train the network with ImageNet 

dataset in 1000 classes. And then collect several classes aiming for the need of our task and 

do the further training. We use 10 classes dataset for experiment (10000 images for training 

and 3000 images for testing) and the result is shown in the following table. 

Table 4.2 Performance comparison on the 10 classes dataset 

 Rank-1(%) Rank-5(%) Processing Time(s/frame) 

Our Network 68.5 81.8 0.013 

Darknet19  64.3 76.4 0.006 

Darknet53  81.2 98.2 0.023 
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The data set we used is under complex environment so the detection task is hard for the 

network. Based on such preconditions, we can find our designed network can improve the 

Top-1 accuracy about 4% comparing with the DarkNet19. But the price is that we have to 

scarify some performance on processing time. By running on our platform, the FPS our 

network can reach is about 77, which is enable for our real applying scenario.  

Besides, our network has another merit is that the top layers before the first maxpooling 

layer keep the same structure with the DarkNet53 which is the backbone of the cloud side in 

the whole system. Using same structure means that they not only can share the weight of the 

top layers with each other but also simplify the procedure of sensor data transmission 

between edge side and cloud side in the whole system. 

4.2.3. Adaptive adjustment of network 

By validating and evaluating the performance of our designed network, we confirming that 

edge side network can meet our need. While the edge side network is serving for the whole 

system, so we should consider the algorithm of early-exit and the adaptive adjustment for 

different scenario. 

The main component of the early-exit point is the confidence score which can measure how 

confident the result we get at edge side network. How calculate the confidence score for the 

detection result as shown in formula 4.1.  

   𝑃𝑃𝑃𝑃 (class 𝑖𝑖 ∣  object ) ∗ 𝑃𝑃𝑃𝑃 ( object ) ∗ IOUpred 
truth = 𝑃𝑃𝑃𝑃 ( class 𝑖𝑖) ∗  IOU pred 

truth     (4.1) 

The confidence score includes two parts. One is the probability that the bounding box 

contains the target, and the other is the accuracy of the bounding box. Each detection cell will 

give the predicted category probability value, which represents the probability that the 

bounding box responsible for the cell belongs to which category. No matter how many 

bounding boxes a cell predicts, it only predicts one set of class probability values. 

By setting different threshold of confidence score, we can not only decide the amount of 
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offload in the system but also can influence the performance of the network. Figure 4.4 shows 

how confidence threshold affects performance of edge side network in task of object 

detection. We use Pascal VOC 2007/2012 as the train and validate dataset. Accuracy will 

smoothly descend with threshold of confidence score until threshold about 0.5 and then the 

accuracy will drop fast. 

 

Figure 4.4 Accuracy of edge side network for varying confidence threshold 

Through further analysis on different scenes, we find that setting of threshold of confidence 

score could have completely different result according to the task we are facing. Figure 4.5 

show the performance of detection under different scene. The images under different 

scenario is selected from Pascal VOC 2007/2012, we can divide it into simple scene and 

complex scene. In simple scene, setting threshold higher will avoid unsuited bounding box. 

Meanwhile, in complex scene we can recognize that setting threshold lower will remain many 

bounding box with low probability value but there are also some repeated bounding box. 
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Figure 4.5 Performance with changing threshold under different scene 

  From the above result and analysis, we learn the characteristic of the confidence score and 

its threshold. The changing performance with the different scenes matches with our task in 

real scenario very well. No matter in parking lot or market, the changes of cars or people flow 

is periodic. So the threshold of confidence score also can be set periodic following the variety 

of cars or people flow.  
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5. Conclusion  

We proposed ECNet, which is an edge-cloud network system to make combination and 

connection between lightweight network on mobile devices and high-performance network 

on cloud servers, dealing with the balance between performance and time cost in the real-

time detection tasks. Our main focus is on the designation of the lightweight network and 

offload algorithm and methods in system. 

Based on the constraint of computation power and the intercommunity between edge side 

and cloud side, we designed the network applying at edge devices and set an exit point for 

sensor data offloading. The result analysis and comparison on 10 classes’ dataset testify the 

performance of our network. Furthermore, the algorithm of early-exit also shown in the thesis 

and the potential of adaptive adjustment for different scenario. The proposed method is 

demonstrated to be able to fulfill the needs of real-time tasks at the edge side. And as a part 

of ECNet system, the early-exit algorithm can connect two sides successfully. 
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6. Appendix 

6.1. List of academic achievements  

International conference: 

L. Hu, T. Wang, H. Watanabe, S. Enomoto, X. Shi, A. Sakamoto and T. Eda: “ECNet: A Fast, 

Accurate, and Lightweight Edge-Cloud Network System Based on Cascading Structure,” IEEE 

Global Conference on Consumer Electronics (GCCE) 2020, pp.259-262, Sep. 2020. 

 

Domestic conference: 

T. Wang, L. Hu, H. Watanabe, S. Enomoto, X. Shi, A. Sakamoto, and T. Eda: “Exit-Point Setting 

in Edge-Cloud Solution for Object Detection,“ IEICE General Conference D-12-14, Mar. 2020 

L. Hu, T. Wang, Y. Zhou, H. Watanabe, S. Enomoto, X. Shi, A. Sakamoto, and T. Eda: “Transfer 

Rate Estimation in Edge-Cloud Neural Network Solution for Object Detection,“ IEICE General 

Conference D-11-20, Mar. 2020 
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