
修 士 論 文 概 要 書
Master’s Thesis Summary

Date of submission: 01/25/2021
専攻名（専門分野）

Department
Computer Science

and Communications
Engineering

氏 名
Name Tao Wang

指 導
教 員
Advisor

渡辺 裕 印
Seal 研究指導名

Research guidance
Audiovisual
Information
Processing

学籍番号
Student ID

number

 CD
5119FG02-7

研究題目
Title A Lightweight Network Applying in The Edge-Cloud System for Real-Time Object Detection

1. Introduction
The pervasiveness of “Internet-of-Things” in daily

life has led to a recent surge in fog computing,
encompassing a collaboration of cloud computing and
edge intelligence. As a significant field of IoT,
real-time detection and classification have a huge
demand. Due to the gap of hardware performance
between mobile devices and cloud servers and the
increment of internet bandwidth and speed, the
cooperative approach of edge devices and cloud
servers would be an accessible orientation for
real-time tasks.

Based on the thought of mobile edge computing and
proposed edge and cloud cooperative approach, we
create an edge-cloud system named ECNet [1]. And in
the ECNet system, the network at edge side is the
most vital component. This thesis is mainly designing
a lightweight CNN network for edge side. By
introducing the residual unit and other fine-tuning
procedure, the network reach to an equilibrium which
means apart from single network performance, the
designed network can make the connection between
edge side and cloud side smoothly. Besides, we set a
series of offload determination in the system and
make further analysis.

2. Related Technologies

2.1 YOLO
YOLO [2] is one-stage object detection algorithm.

YOLO firstly divides the image into S×S grid units,
and each grid predicts the bounding box and
confidence score of the object, and then filters the
redundant bounding box based on the probability
distribution of the category. Compared with the
R-CNN series of two-stage object detection algorithms,
YOLO does not require intensive calculations before
and after ROI warping, which makes the algorithm
parameters smaller and make the processing of
calculation faster. The network structure of YOLOv2
is similar to GoogleNet [3] which is contained with
convolutional layers, max-pooling layers and fully
connected layer. The convolutional layer and
max-pooling layer in the network are used for feature
extraction, and the usage of fully connected layer is to
output category scores and the location of the target.

2.2 ResNet
In order to solve the optimization problem, a

residual network is proposed. In the residual network,
instead of letting the network directly fit the original
mapping, it fits the residual mapping. The residual
network adds some shortcut connections to the
forward network so that these connections will skip
some layers and pass the original data directly to the
subsequent layers. The newly added shortcut
connection will not increase the parameters and
complexity of the model.

There are two connection grogram of residual block
[4]. The one is the BasicBlock, which does not do the
upgradation, so the output dimension of the residual
structure is the same as the input dimension. Another
one is Bottleneck, which is used to reduce the number
of channel dimensions and increase speed.

3. Proposed Approach

3.1 ECNet
Based on the following guideline and the thought of

BranchyNet [5], we design a new edge-cloud system
aiming for objects detection task, named ECNet. As
shown in Figure 1, the general framework of ECNet is
mainly consists of edge operation and cloud operation.
Feature maps extracted from edge-side will be
transferred to cloud-side determined by offload
controller. ECNet combine a light weight neural
network on edge devices with a high-performance
network on cloud servers and compress input sensor
data, then offload it from edge side to cloud side
depending on the metric for the result of edge side.

Figure 1. General framework of ECNet

3.2 Network at edge side
We intend to design front part of both network

being same so that sensor data extracted from edge
side can directly apply in cloud side. So we have to
change the structure of the network at edge side.
However, this kind of distributed approach is
challenging for a number of considerations, including:
 The structure of DarkNet53 is built on numerous

residual block, and each of residual block
contains successive 3 × 3 and 1 × 1 convolutional
layers connected by one shortcut connection. This
structure is aiming to solve the degradation
problem on deep networks. Reconstructed front
part of edge-side network should avoid dividing
residual block to ensure its integrity.

 In detection tasks, YOLOv3 predicts boxes at 3
different scales. The cloud-side of ECNet extracts
features from those scales using a similar
concept as feature pyramid networks. It has good
performance on small objects that are to be
recognized by the detector. The location of
offloading feature map to cloud-side should be
before the layer where starting extracting
features.

 To limit computing cost and processing time at
edge-side, the depth of edge-side should not be
too large.

Guided by aforementioned considerations, the
structure of edge-cloud network is designed after
several times of trials and simulations.

4. Experiments and results
We set the receptive field as indicator that help us

abandon some low performance model quickly which
make our work more efficiently.

Figure 2. Receptive field growth of our network

Figure 2 shows the receptive field growth in our
finally decided network structure. The blue part
represents the amount of the receptive field after every
layers and the red arrow points the layer where the
system will do the operating of sensor data
compression and transmission.

Table 1. Performance on the 10 classes dataset
 Rank-1(%) Rank-5(%) Processing

Time(s/frame)
Our Network 68.5 81.8 0.013
Darknet19 (YOLO
v2) 64.3 76.4 0.006

Darknet53 (YOLO v3) 81.2 98.2 0.023

By testing on our 10 classes dataset, we can find
our designed network can improve the Top-1 accuracy
about 4% comparing with the DarkNet19 as Table 1
shows. But the price is that we have to scarify some
performance on processing time. By running on our
platform, the FPS our network can reach is about 77,
which is enable for our real applying scenario.

To add the algorithm of early-exit in the ECNet, we
consider the confidence score to measure how
confident the result we get at edge side network. By
setting different threshold, the performance of
network is significantly changing.

Figure 3. Accuracy of edge side network for varying

confidence threshold
5. Conclusion

We proposed ECNet, which is an edge-cloud
network system to make combination and connection
between lightweight network on mobile devices and
high-performance network on cloud servers, dealing
with the balance between performance and time cost
in the real-time detection tasks. Our main focus is on
the designation of the lightweight network and
offload algorithm and methods in system.

6. Reference
[1] L. Hu, T. Wang, H. Watanabe, S. Enomoto, X. Shi,
A. Sakamoto and T. Eda: “ECNet: A Fast, Accurate,
and Lightweight Edge-Cloud Network System Based
on Cascading Structure,” IEEE Global Conference on
Consumer Electronics (GCCE) 2020, pp.259-262, Sep.
2020.
[2] J. Redmon, S. Divvala, R. Girshick, and A.
Farhadi, “You only look once: Unified, real-time object
detection,” CVPR, 2016.
[3].K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” arXiv
preprint arXiv: 1512. 03385, 2015.
[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015.
[5] S. Teerapittayanon, B. McDanel, and H.-T. Kung,
“Branchynet: Fast inference via early exiting from
deep neural networks,” 2016 23rd ICPR. IEEE, 2016,
pp. 2464–2469.

A Lightweight Network Applying in The Edge-Cloud System for

Real-Time Object Detection

A Thesis Submitted to the Department of Computer Science and Communications
Engineering, the Graduate School of Fundamental Science and Engineering of Waseda

University in Partial Fulfillment of the Requirements for the Degree of Master of Engineering

Submission Date: January 25th, 2021

Tao WANG

 (5119FG02-7)

Advisor: Prof. Hiroshi Watanabe

Research guidance: Research on Audiovisual Information Processing

i

Acknowledgements

First of all, I am very grateful to my supervisor Prof. Hiroshi Watanabe for his enthusiastic

guidance and the continuous support not only in the research aspect but also in my daily life

and future career. Without Prof. Hiroshi Watanabe’s encouragement and help, it will be

impossible for me to smoothly complete master course and my research.

Then, I appreciate the joint research group members of NTT Software Innovation Center, Mr.

Takeharu Eda, Mr. Shohei Enomoto, Ms. Xu Shi, and Mr. Akira Sakamoto for the professional

research advices and inspirations in academic field they provided.

I would also want to express my gratitude to every members in Watanabe Lab who create

great atmosphere in our lab that let me feel relax and comfortable.

Finally, I am very thankful that my family support me constantly in my life and energetic

encouragements in my oversea years.

ii

Abstract

The pervasiveness of “Internet-of-Things” in daily life has led to a recent surge in fog

computing, encompassing a collaboration of cloud computing and edge intelligence. As a

significant field of IoT, real-time detection and classification have a huge demand. Due to the

gap of hardware performance between mobile devices and cloud servers and the increment

of internet bandwidth and speed, combination of edge devices and cloud servers would be an

accessible orientation for real-time tasks. We create an edge-cloud system named ECNet.

The network at edge side is the most vital component in ECNet, as the edge side part is

usually deployed on embedded computing boards or smartphones. We should consider not

only the balance between processing time and accuracy performance but also the versatility

with the network at cloud side. Our works focus on addressing these issues so that we

designed a lightweight CNN network for edge side. By introducing the residual unit and other

fine-tuning procedure, the network reach to an equilibrium which means apart from single

network performance, the designed network can make the connection between edge side and

cloud side smoothly. Besides, we set a series of offload determination in the system and make

further analysis.

Keywords: Real-time detection, edge-cloud system, ECNet, lightweight network, edge

computing

iii

List of contents
1. Introduction ... 1

1.1. Current demand of real-time detection .. 1

1.2. Problem statement .. 2

1.3. Thesis outline ... 3

2. Related Technologies ... 4

2.1. Classification and detection methods ... 4

2.1.1. Traditional objects detection algorithms .. 4

2.1.2. Objects detection based on deep learning... 6

2.2. You Only Look Once ... 7

2.2.1. Algorithm of YOLO .. 9

2.2.2. Architecture of YOLOv2 .. 10

2.2.3. Loss function .. 11

2.2.4. Non-Maximum Suppression ... 12

2.2.5. Bounding-box regression .. 13

2.3. ResNet ... 14

2.4. Metric .. 16

2.4.1. Precision and recall .. 16

2.4.2. mAP .. 17

2.4.3. FPS .. 18

3. Proposed Approach ... 19

3.1. ECNet ... 19

3.2. Network at edge side ... 20

3.2.1. Architecture .. 20

3.2.2. Loss function .. 22

iv

3.3. Inference design .. 23

4. Experiment and results .. 25

4.1. Implementation details ... 25

4.1.1. Experiment environments .. 25

4.1.2. Dataset for training and testing .. 25

4.2. Experiments and results analysis ... 27

4.2.1. Design of network and theoretical analysis ... 27

4.2.2. Performance evaluation and analysis ... 29

4.2.3. Adaptive adjustment of network ... 30

5. Conclusion ... 33

6. Appendix ... 34

6.1. List of academic achievements .. 34

Bibliography .. 35

v

List of Figures
Figure 2.1 Classification of Object Detection Algorithms .. 4

Figure 2.2 Schematic plot of detector ... 7

Figure 2.3 Characteristic dimension difference between YOLOv1 and YOLOv2 10

Figure 2.4 YOLO Network Structure .. 11

Figure 2.5 Comparison of NMS algorithm before and after screening 13

Figure 2.6 Bounding-box regression diagram .. 14

Figure 2.7 Residual Block Diagram .. 15

Figure 2.8 Structure of BasicBlock and Bottleneck .. 16

Figure 2.9 Evaluation of F1 Score, AUC and AP ... 18

Figure 3.1 General framework of ECNet .. 20

Figure 3.2 Flow of system inference .. 24

Figure 4.1 Samples from ImageNet Dataset .. 26

Figure 4.2 20 Classes in Pascal VOC 2007/2012 Dataset ... 27

Figure 4.3 Receptive field growth of our network ... 29

Figure 4.4 Accuracy of edge side network for varying confidence threshold 31

Figure 4.5 Performance with changing threshold under different scene 32

vi

List of Tables

Table 2.1 Confusion matrix example ... 17

Table 3.1 Architecture of designed network ... 21

Table 4.1 Architecture of Original DrakNet19 ... 28

Table 4.2 Performance comparison on the 10 classes dataset.. 29

1

1. Introduction

1.1. Current demand of real-time detection

With the deepening of deep learning research, the application fields of deep learning have

also been expanding in recent years, and it has become a series of powerful machine learning

models. Object detection [1] is also a research hotspot in the scientific research field in recent

years. The main work of this task is an important fusion in the field of artificial intelligence (AI),

which realizes the intelligence of robots or other platforms through various things and tasks.

Besides, object detection is related to computer vision and image processing, which processes

the detection of semantic target instances of a certain type (such as people, buildings or cars)

in digital images. And the detection fields mainly include face detection and pedestrian

detection. Robots and AI programs select and recognize targets from input information such

as video and camera images which can be used in multiple scenarios including component

recognition, edge detection, and appearance analysis from different angles. In a word, object

detection has huge needs in many fields of computer vision, including image retrieval and

video surveillance to unmanned driving fields.

Detection task can separate into 2 fields, real-time and off-time. The performance on off-

time person detection is pretty well and now is applying in real situation like the Takumi Eyes

system [2] which is developed by NTT Company, applying for detection and person

identification. Video recording will upload to cloud from the camera or transfer to the server

and then start to detect by the trained network.

The pervasiveness of “Internet-of-Things” [3] in daily life has led to a recent surge in fog

computing, encompassing a collaboration of cloud computing and edge intelligence. As a

significant field of IoT, real-time detection and classification have a huge demand. The range

of usage of real-time object recognition is including automatic driving, surveillance in public

area, big data collection, etc.

2

In this thesis, we mainly propose investigating system-level solution for object recognition

by combining edge and cloud network, which mainly focus on lightweight CNN network in the

edge side.

1.2. Problem statement

With the development of data transmission, edge and cloud cooperative approach for

object detection has been proposed [4]. Object recognition can be performed by many cloud

vision API services using deep learning. In this case, images are provided to cloud on the

Internet. On the other hand, object recognition at an edge becomes possible because of the

improvement of computation power on edge devices. And new neural network architecture

such as MobileNet [5], YOLO-tiny [6] for light hardware has been developed. The current state

of deep learning systems on edge devices still leaves an unsatisfactory result comparing with

cloud server mainly because of the gap of calculation power between edge devices and cloud

servers. It is prone to sacrifice either processing time or accuracy. Besides, the step of

offloading input sensor data to large models in the cloud will easily lead to associated

communication costs, latency issues and privacy concerns [7].

To solve insufficient calculation power of edge side, the thought of mobile edge computing

[8] has been applied. Mobile edge computing is a cloud server running at the edge of a mobile

network and complete some tasks that could not be achieved by traditional network on edge

side. Besides, the edge side can preprocess data and extract feature that we need. Edge

computing allows more computing tasks to take place on the decentralized nodes at the edge

of networks. Many applications which are delay sensitive and mission-critical can leverage

edge devices to reduce the time delay or even to meet the need of real-time detection and

online decision.

3

1.3. Thesis outline

The outline of this thesis is organized as follows:

Chapter 1: We describe the background of real-time objects detection and with deep learning

and the problem that needed to be solved in this work. Besides, some challenges and

problems existing in the field of real-time objects detection at this stage have been pointed

out, and we propose the innovation points of specific application scenarios based on the edge-

cloud system.

Chapter 2: We introduce the technologies related to this work, ranging from the current

research status in the field of target detection, the summary of the research on several types

of target detection algorithms, the principle knowledge of CNN and the residual network

algorithms. Through analyzing the contributions, focuses and the limitations of previous

detection networks, the potential benefits of our work have been shown.

Chapter 3: We demonstrate the whole edge-cloud system which is designed for real-time tasks.

To satisfy the demand of performance and other details in whole system, we design a new

network which is going to be applied in edge side and introduce the framework of the new

network. Besides, the inference design in the system has been discussed in this chapter.

Chapter 4: The experimental environment is introduced in this chapter. By training the

designed network on test dataset, the evaluation results be analyzed and be compared with

other network, along with the illustrated results, we demonstrate the superiority of our

proposed method in the field of accuracy and time effectiveness.

Chapter 5: In this chapter we conclude this thesis.

4

2. Related Technologies

2.1. Classification and detection methods

As an important branch of computer vision, objects detection has developed rapidly in the

fields of video and image recognition. In recent years, due to the substantial increase in

hardware CPU and GPU computing power, deep learning has developed rapidly, the results

obtained by traditional target detection methods are slowly overtaken by target detection

based on deep learning algorithms, and the detection based on deep leaning algorithms

achieve better results. So nowadays, the mainstream objects detection methods can be

divided into the following two categories: traditional objects detection algorithms and objects

detection algorithms based on deep learning. Figure 2.1 shows a brief overview of objects

detection algorithms.

Figure 2.1 Classification of Object Detection Algorithms

2.1.1. Traditional objects detection algorithms

Traditional target detection methods [9, 10] mostly use the following steps: 1) Identifying

the target on the image and filter out the target area; 2) Extracting the target features of the

candidate area; 3) Using the classifier such as support vector machines [11] to classify the

candidate target in the last step. Following is the detailed operations and characteristics of

5

each steps.

1) Region selection

In a given picture, the position of the target object in the picture appears randomly, and the

size of the target is undeterminable. Therefore, the selection of candidate regions requires the

use of sliding windows with different aspect ratios to scan the image, resulting in many

irrelevant sliding windows which cause that in high time complexity for the region selection

process, and subsequent effects on the recognition efficiency of the entire model. To solve this

problem, a sliding window with a fixed aspect ratio is usually used, but the detection effect of

multiple categories in the image is reduced, and the target position cannot be selected much

accurately.

2) Feature extraction

Feature extraction uses SIFT [12], HOG [9] or DPM [13, 14] operators. However, in actual

images, the shapes of detection targets are diverse. Besides, the lighting conditions are

complex and the background is ever-changing. These complex conditions cause that it is

difficult for traditional operators to adapt to the real scenario, resulting in poor performance

on feature extraction. If the feature is not extracted well, the classification effect of the

subsequent classifier will be unqualified.

3) Classifiers

In this step, every classes in the graph will have their own corresponding classifier and will

be trained separately. The classifier can be Linear SVM or Adaboost [15]. The features

extracted from each candidate region will pass to each classifier, and comprehensively judge

for classification.

Generally, the main problems affecting the efficiency of traditional target detection

algorithms are region selection and feature extraction. The region selection strategy based on

sliding windows is not targeted, leading to window redundancy. Besides, traditional operators

are difficult to adapt to changes in diversity of targets’ size. These problems lead to the

traditional target detection algorithm need more time on region selection with low accuracy.

6

What’s more, the system has poor recognition robustness for multi-category object features.

2.1.2. Objects detection based on deep learning

Objects detection algorithms based on deep learning can be divided into two parts. One is

the R-CNN series of algorithms which is based on candidate target regions like R-CNN[16]，

Fast R-CNN[17] and Faster R-CNN[18]. They need to use selective search [19] or EdgeBoxes [20]

to determine region proposal, and then do classification and regression. The continuous

evolution of objects detection algorithms has shifted from dense sliding window-based

methods like DPM to region proposal methods. The method of region proposal can effectively

reduce the number of candidate bounding box. By achieving a more complex learning

mechanism than sliding windows, the algorithm can improve the performance of accuracy on

objects detection. Since CNNs won the championship in ILSVRC2012 [21], convolutional neural

networks have been widely used in target detection models in recent years.

R-CNN applied CNNs to the bottom-up region filtering generated by selective search. R-CNN

generates 2000 region of interest (ROI) through selective search, and extract features

separately through CNN so that the network significantly improved the detection accuracy. In

the final stage, R-CNN uses a support vector machine classifier to classify and predict the target.

In order to obtain better performance, linear regression is also used to fine-tune the position

and size of the detection bounding box. Since the R-CNN model has achieved amazing results,

many new ideas have been implemented on CNN, such as the SPP-Net [22], Fast R-CNN and

Faster R-CNN. The accuracy of objects recognition and processing speed of the above methods

have been rapidly improved, and the fastest recognition speed can reach 15fps. The

continuous improvement of the Fast R-CNN makes the detection task more accurate and faster.

Although these methods use thousands of region of interest to reduce the space of the target

area that the image needs to search, the detection speed still cannot meet the requirements

of real-time target detection.

Compared with the two-stage detection model, the one-stage detection model of the YOLO

7

[23] series and the SSD [24] series has realized real-time detection due to its simple structure

and faster detection algorithm as Figure 2.2 shows.

Figure 2.2 Schematic plot for (a) one-stage detector and (b) two-stage detector

2.2. You Only Look Once

In 2016, one-stage detection algorithm YOLO with a simple network structure has been

proposed. YOLO firstly divides the image into S×S grid units, and each grid predicts the

bounding box and confidence score of the object, and then filters the redundant bounding box

based on the probability distribution of the category. Compared with the R-CNN series of two-

stage detection algorithms, YOLO does not require intensive calculations before and after ROI

8

warping, which makes the algorithm parameters smaller and make the processing of

calculation faster. Based on YOLO, YOLOv2[25] proposed a new backbone network Darknet-19

that reduced the computational cost by 80% compared to VGG16 network, and added several

batch normalization layers after each convolutional layer to speed up the operation of

convergence aiming to improving the speed of network training. Besides, the anchor

mechanism is applied in the YOLOv2, and the K-means clustering algorithm is used to

determine the number and size of anchors, which significantly improves the recall rate, but its

positioning of the bounding box is still inaccurate. Compared with YOLO, YOLOv2 achieves 21.6%

mAP in the MS COCO [26] dataset with faster speed.

YOLOv3 [27] proposed less floating-point operations and new backbone network Darknet-

53 which use convolutional layers to achieve image scale changes and introduces a residual

structure to improve detection accuracy. When predicting the anchor box, the confidence and

the coordinates are predicted separately, instead of directly predicting the bounding box

coordinates and confidence through the network regression in YOLOv2. In addition, drawing

on the idea of feature pyramid and predicting on three scales, the detection rate of small

targets can be improved to a certain extent. YOLOv3 has improved 11.4% mAP on the MS COCO

data set with fewer parameters.

In 2020, YOLOv4 [28] was proposed as an efficient and powerful target detection model.

CSP Darknet53 [29], which can better balance the input network resolution, number of

convolutional layers, and parameters, was selected as the backbone network. SPP[22] module

is added in the network, which uses four pooling layers of different scales to operate on

features, thereby significantly increasing the receptive field without affecting the running

speed and getting more context features. Thanks to the SPP module, the detection

performance is improved by fusing three features of different scales. In addition, YOLOv4 uses

the Mosaic data enhancement method, self-confrontation training method, cross mini-batch

normalization method, point-oriented attention module and other improved tuning methods

to further improve the detection accuracy. YOLOv4 obtained 43.5% mAP at 65 frames per

second on the MS COCO data set, which is 10.5% higher than YOLOv3 mAP.

9

2.2.1. Algorithm of YOLO

YOLO divides the picture into S×S areas. Note that the concept of this area is different from

the area where the picture is divided into N areas mentioned above and thrown into the

detector. The area mentioned above is really cropping the picture, or cutting a certain part of

the picture into the detector, and the division area here is only a logical division. The division

is reflected in the last fully connected layer of YOLO, which is the prediction made by YOLO for

each picture.

The predicted vector is a vector of length S×S× (B×5+C). Where S is the number of grids

divided, generally S=7; B is the number of frames predicted by each grid, generally B=2; C is

the number of categories related to your actual problem, but it should be noted that we should

use the background as one category is considered.

S×S×C category information indicates what category each grid may belong to; S×S×B

confidence levels indicate the confidence level of B boxes in each grid. After YOLO predicts,

generally only the confidence level is above 0.5 the boxes will be retained. Of course, this

threshold can also be adjusted manually. S×S×B×4 pieces of position information, the 4 pieces

of position information are (x, y, w, h), where x, y are the center points of the box. We multiply

the conditional class probabilities and the individual box confidence predictions,

 Pr(Class𝑖𝑖 ∣∣ Object) ∗ Pr(Object) ∗ IOUpred
truth = Pr(Class𝑖𝑖) ∗ IOUpred

truth (2.1)

which gives each candidate box a certain confidence scores on class perspective. These scores

contain the meaning not only degree of how well the class we predicted in box fits to the real

object in the image but also the probability of this class appearing in the box.

In YOLOV2, the model introduces the K-means clustering algorithm to filter out the most

suitable candidate bounding box, and the K-means algorithm can be used to predict the length

and width of the detection boxes. In order to reduce the error of the Euclidean distance in K-

means on the position of the target candidate boxes, the intersection and union ratio (IOU) is

set as the measurement standard:

10

d(box, centroids) = 1 − IOU(box, centroids) (2.2)

YOLO will output of 7×7×30 features at last, and each cell corresponds to 1×1×30. In one

cell, the first 10 features mainly contain coordinates of 2 bounding boxes, and the last 20

represent the probability that the cell belongs to 20 categories under the assumption that it

contains objects. Figure 2.3 is the diagram of feature dimension.

Figure 2.3 Characteristic dimension difference between YOLOv1 and YOLOv2

2.2.2. Architecture of YOLOv2

The network structure of YOLOv2 is similar to GoogleNet [30] which is contained with

convolutional layers, max-pooling layers and fully connected layer. The convolutional layer and

max-pooling layer in the network are used for feature extraction, and the usage of fully

connected layer is to output category scores and the location of the target. The network

structure is shown in Figure 2.4. The network system can read images of any size and feed

11

them back to the network. The input image is divided into 7×7 grids and for each grid, and the

network will do prediction and output 3 bounding boxes with object category classifications.

Figure 2.4 YOLO Network Structure

2.2.3. Loss function

In YOLO, we use multi-part loss function for training. There are 3 parts in the multi-part loss

function: the loss for calculating the confidence error of the background, the loss for

calculating the coordinate error of anchor boxes and prediction boxes and the total loss of

each part of the prediction box with the ground truth.

𝜆𝜆coord ∑  𝑆𝑆2
𝑖𝑖=0 ∑  𝐵𝐵

𝑗𝑗=0 𝟙𝟙𝑖𝑖𝑗𝑗
obj [(𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2]

+𝜆𝜆coord ∑  𝑆𝑆2
𝑖𝑖=0 ∑  𝐵𝐵

𝑗𝑗=0 𝟙𝟙𝑖𝑖𝑗𝑗
obj ���𝑤𝑤𝑖𝑖 − �𝑤𝑤�𝑖𝑖�

2
+ ��ℎ𝑖𝑖 − �ℎ�𝑖𝑖�

2

�

+∑  𝑆𝑆2
𝑖𝑖=0 ∑  𝐵𝐵

𝑗𝑗=0 𝟙𝟙𝑖𝑖𝑗𝑗
obj �𝐶𝐶𝑖𝑖 − �̂�𝐶𝑖𝑖�

2

+𝜆𝜆noobj ∑  𝑆𝑆2
𝑖𝑖=0 ∑  𝐵𝐵

𝑗𝑗=0 𝟙𝟙𝑖𝑖𝑗𝑗
noobj �𝐶𝐶𝑖𝑖 − �̂�𝐶𝑖𝑖�

2

+∑  𝑆𝑆2
𝑖𝑖=0 𝟙𝟙𝑖𝑖

obj ∑  𝑐𝑐∈ classes (𝑝𝑝𝑖𝑖(𝑐𝑐) − �̂�𝑝𝑖𝑖(𝑐𝑐))2

 (2.3)

In the third part, the loss between ground truth and prediction boxes can further separate

into 3 parts. One is coordinate loss, firstly we determine which cell the center point falls on,

12

and then calculate the IOU value of the 5 a prior boxes and the ground truth of this cell. Second

part is confidence loss. We add a weight coefficient in the processing of calculating loss, when

it is 1, the loss is the true IOU value of the prediction frame and ground truth. And the final

one is the classification loss.

2.2.4. Non-Maximum Suppression

Non-Max Suppression [31] means that the detection results of each candidate frame are

compared, the maximum value is retained, and other repeated regions are screened and

removed, thereby leaving the target candidate region with the best effect. In the target

detection model, many rough candidate results can be obtained through detection, but it is

obviously unrealistic to adjust these rough results one by one. Therefore, these results need

to be filtered out, and the most accurate case can be selected from them, and then the

screening subsequent results are adjusted to improve model efficiency.

Algorithm1 Non-Max Suppression

1: procedure NMS(B, c)

2: Bnms ← ∅

3： for bi ∈ B do

4: discard ← False

5: for bj ∈ B do

6: if same(bi, bj) > λnms then

7: if score(c, bj) > score(c, bi) then

8: discard ← False

9: if not discard then

10: Bnms ← Bnms ∪ bi

11: return Bnms

As shown in the Figure 2.5, sort according to the classification probability of the classifiers

13

of these boxes for the area where is a dog : A<B<C<D<E.

Then we take out the E detection box with the highest probability and calculate the

intersection ratio of A, B, C and E respectively. The algorithm will compare with the previously

set threshold after calculation. If the IOU is greater than the set threshold, keep the current

corresponding, if the detection frame is less than the set threshold, remove the corresponding

detection frame, such as the B frame and the maximum probability E frame for storage.

Second round we select D from the remaining detection boxes of A, C, D, and then repeat

the above steps, respectively use the A, C box and the detection box D to calculate the

intersection ratio, keep the greater than the threshold. We can remove the bounding box less

than threshold and save D as the second reserved detection frame, and continue to iterate to

find all remaining detection box.

Figure 2.5 Comparison of NMS algorithm before and after screening

2.2.5. Bounding-box regression

We can find that the IOU intersection ratio between the red box (proposal) and the target

marker box (ground truth) detected by the algorithm in the model is less than 0.5, which is

lower than the set threshold of 0.5 as shown in Figure 2.7. Therefore, this detection frame

cannot be used as the target detection result and we need to fine-tune the proposal and make

it closer to the annotation window of ground truth.

14

Figure 2.6 Bounding-box regression diagram

In Figure 2.6, red box represents the original proposal, green box represents the ground

truth. Our ultimate goal is to make proposal and ground truth as close as possible. The

optimization goal can be expressed as formula 2.4.

 𝑊𝑊∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
𝑊𝑊�∗

 ∑  𝑁𝑁
𝑖𝑖 �𝑡𝑡∗𝑖𝑖 −𝑊𝑊�∗𝑇𝑇𝜙𝜙5�𝑃𝑃𝑖𝑖��

2
+ 𝜆𝜆∥∥𝑊𝑊�∗∥∥

2
 (2.4)

To achieve this goal, the normal method is translating the center point firstly, and then doing

scale scaling.

2.3. ResNet

Deep convolutional networks have made a series of breakthroughs in image classification

tasks and it integrates three-level features and classifiers of low, medium and high through a

multi-layer end-to-end approach, and the number of these features can also be increased by

stacking the number of layers. As the number of network layers increases, problems in the

procedure of training become more prominent. The more significant problem is the

disappearance/exploding of gradients, which will affect convergence at the beginning network

training. On the premise that the deep network can converge, as the network depth increases,

the accuracy rate begins to saturate or even drop, which is called the network degradation.

Because of this problem, increasing the number of layers on a given network will increase the

15

training error.

The degradation of the network shows that not all systems are easy to optimize. Under

extreme conditions, if all the added layers are direct copies of the previous layer, the training

error of the deep network should be the same as that of the shallow network. Therefore, the

main problem that cause the network degradation is still an optimization problem.

In order to solve the optimization problem, a residual network is proposed. In the residual

network, instead of letting the network directly fit the original mapping, it fits the residual

mapping. The residual network adds some shortcut connections to the forward network so

that these connections will skip some layers and pass the original data directly to the

subsequent layers. The newly added shortcut connection will not increase the parameters and

complexity of the model.

Kaiming He proposed a brand-new network called Deep Residual Network [32], which

allows the network to deepen as much as possible, and introduced a new structure as Figure

2.8 shows.

Figure 2.7 Residual Block Diagram

ResNet proposes two types of mappings: one is identity mapping, which refers to the curve

in Figure 2.7, and the other is residual mapping, which refers to the part except the curve.

16

Based on the structure, we know the final output is y = F(x) + x. To solve the problem that

accuracy is decreasing as the network deepens, ResNet provides two options. If the network

has given acceptable output, the residual mapping will be decreased to 0 when we continue

to deepen the network, which means that the network is always in the optimal state in theory,

and the performance of the network will not decrease as the depth of network increases.

There are two connection grogram of ResNet which are shown in Figure 2.8. Left one is the

BasicBlock, which is designed for ResNet-18 and ResNet-34. BasicBlock does not do the

upgradation, so the output dimension of the residual structure is the same as the input

dimension. And right one is Bottleneck, which is used on ResNet-50/101/152. The purpose of

using Bottleneck is to reduce the number of channel dimensions and increase speed.

Figure 2.8 Structure of BasicBlock and Bottleneck

2.4. Metric

2.4.1. Precision and recall

Normally, a good classifier requires a combination of precision and recall to evaluate it. We

usually use the degree of precision, recall and F1 score as the basic data to judge the

performance of a network.

17

Table 2.1 Confusion matrix example

 Predicted

 Negative Positive

Actual
Negative True Negative False Positive

Positive False Negative True Positive

True Positive (TP): detected that the target is this category and matches the real category

classification;

False Positive (FP): detected that the target is this category and the classification situation

is different from the real category;

False Negative (FN): detected that the target is not this category and the classification

situation is different from the real category;

True Negative (TN): detected that the target is not this category and matches the real

category classification.

The following parameters are usually used in detection task:

Precision = TP
 TP + FP

= TP
 num of predicted Positive

 (2.5)

Recall = TP
 TP + FN

= TP
 num of actual Positive

 (2.6)

F1 score = 2·P ·R
 P+R

 (2.7)

2.4.2. mAP

mAP (mean average precision) is used for measuring the recognition accuracy in target

detection. In multiple categories of object detection, each category can draw a curve based on

recall and precision, AP is the area under the curve, and mAP is the average of multiple

18

categories of AP

Figure 2.9 Evaluation of F1 Score, AUC and AP

2.4.3. FPS

In addition to the performance of accuracy, another important performance indicator of the

target detection algorithm is speed. Only high speed of detection can achieve the goal of real-

time detection, which is extremely important for some application scenarios. A common

indicator for evaluating speed is frame per second (FPS), which is the number of pictures that

can be processed per second. The time required to process a picture can also be used to

evaluate the detection speed, which means that the shorter the processing time, the faster

the speed.

19

3. Proposed Approach

Taking the thought of BranchyNet [33] and other edge computing system as reference, we

incorporate the proposed residual block into network at edge side. So there are several

architectural improvements need to be applied. We will introduce them in detail and further

discuss the framework of real-time detection system and the design principle behind it.

3.1. ECNet

Edge and cloud cooperative approach for object detection has been proposed. The current

state of deep learning systems on edge devices leaves an unsatisfactory result mainly because

of the gap of calculation power between edge devices and cloud servers. It is prone to sacrifice

either processing time or accuracy. Besides, the step of offloading input sensor data to large

models in the cloud will easily lead to associated communication costs, latency issues and

privacy concerns.

To address these problems, it is nature to consider an edge-cloud system which combine a

light weight neural network on edge devices with a high-performance network on cloud

servers and compress input sensor data, then offload it from edge side to cloud side depending

on the metric for the result of edge side. The light weight model at an edge device can quickly

output feature extraction, and also complete the judgement if the model is confident. The

sensor data which are not fulfilling the metric will send to cloud side to do further processing

and final classification or detection. This approach has the benefit of low communication costs

compared to continuous offloading input to the cloud and can achieve higher accuracy

compared to a simple model on device. Additionally, since sensor data which has been feature

extracted and compression from the edge device model are sent instead of raw image data,

the system could provide lower need of network bandwidth and better privacy protection.

Based on the following guideline and the thought of BranchyNet, we design a new edge-

cloud system aiming for objects detection task, named ECNet [36]. As shown in Figure 3.1, the

20

general framework of ECNet is mainly consists of edge operation and cloud operation. Feature

maps extracted from edge-side will be transferred to cloud-side determined by offload

controller.

Figure 3.1 General framework of ECNet [36]

3.2. Network at edge side

3.2.1. Architecture

In the initial construction of the edge-cloud system. The edge side is applied Darknet19 and

the cloud side will leverage DarkNet53 as backbone, planning setting exit point at edge side.

After the compression the sensor data will transfer to cloud side. Owing to the different

structure of both side network, sensor data extracted at the exit point of edge side could not

be directly employed in further processing. Therefore we intend to reconstruct front part of

both network being same so that sensor data extracted from edge side can directly apply in

cloud side. So we have to change the structure of network. However, this kind of distributed

approach is challenging for a number of considerations, including:

 Residual block in Darknet53. In structure of DarkNet53 is built on numerous residual

block and each of residual block contains successive 3 × 3 and 1 × 1 convolutional layers

one shortcut connection. This structure is aiming to solve the degradation problem on

network which has deep structure. Reconstructed front part of network should avoid

dividing residual block to ensure its integrity.

21

 In detection tasks, YOLOv3 predicts boxes at 3 different scales. Cloud network extracts

features from those scales using a similar concept to feature pyramid networks. It has

good performance on small objects that are to be recognized by the detector. The location

of offloading sensor data to cloud side should before the layer where extracting features.

 Simplify the structure to limit computing cost and processing time at edge side.

Table 3.1 Architecture of designed network

 Type Filters Size/Stride

 Convolutional 32 3 × 3
 Convolutional 64 3 × 3 / 2

1×

Convolutional 32 1 × 1
Convolutional 64 3 × 3
Residual

 Convolutional 128 3 × 3 / 2

2×
Convolutional 64 1 × 1
Convolutional 128 3 × 3
Residual

 Maxpool 2 × 2 / 2
 Convolutional 256 3 × 3

 Convolutional 128 1 × 1

 Convolutional 256 3 × 3

 Maxpool 2 × 2 / 2

 Convolutional 512 3 × 3

 Convolutional 256 1 × 1

 Convolutional 512 3 × 3

 Convolutional 256 1 × 1

 Convolutional 512 3 × 3

 Maxpool 2 × 2 / 2

 Convolutional 1024 3 × 3

 Convolutional 512 1 × 1

 Convolutional 1024 3 × 3

 Convolutional 512 1 × 1

 Convolutional 1024 3 × 3

 Convolutional 1000 1 × 1
 Avgpool Global

 Softmax

22

Guided by aforementioned considerations, the structure of edge-cloud network is decided

as Table 3.1 shows after several times trials and comparison.

3.2.2. Loss function

In the target detection task, the network needs to predict the class score of the object and

the position of the bounding box. Therefore, the total loss losstotal is composed of category

cost lossclass and bounding box expenditure lossIOU, as shown in formula 3.1. The category

loss is the difference between the category probability that network classified and the ground

truth. The loss of the bounding box is calculated by the intersection set (IOU) between the

predicted box and the ground truth box.

losstotal = lossclass + lossIOU (3.1)

The influence of these parts on the overall detection effect depends on the degree of their

contribution, so a weight parameter needs to be added for fine-tuning. The position error in

target detection has a relatively large influence factor, so the position error weight is generally

set to 5. Formula 3.2 is the loss of target detection in the thesis. The scale parameter is used

to adjust the weight of different costs. The total loss is the sum of the S × S grid loss. The loss

of each grid is composed of the object existence loss of N grids, the cost of class C, and the

IOU loss of the best prediction box. Note that only when the object target exists in the grid,

the loss function will penalize the class classification error by adding the class loss and the best

IOU loss.

 Cost = ∑  𝑆𝑆∗𝑆𝑆
𝑚𝑚=0 {∑  𝑁𝑁

𝑛𝑛=0 noobject scale ∗ 𝑃𝑃object,𝑛𝑛
2

+𝑚𝑚sObj ∗ {−noobject scale ∗ 𝑃𝑃object,best prediction
2

+objectobject ∗ �1 − 𝑃𝑃object, best predict
�
2

+ �1 − IOUbestpredict�
2

+∑  𝑐𝑐
𝑖𝑖=0 � class_scale ∗ �𝑃𝑃class,𝑖𝑖 − 𝑃𝑃truth,𝑖𝑖���

 (3.2)

In formula 3.2, S is the grid size, and N is the number of bounding boxes predicted in one

grid. C is the number of target categories. The parameters of non-target existence ratio, target

23

ratio and category ratio are used to adjust the weight of each part of the cost. 𝑃𝑃object,𝑛𝑛 is the

probability that the target exists in n networks and m bounding boxes. The isObj indicates

whether the target object exists in the current bounding box. 𝑃𝑃object,best prediction
 is the best

intersection and union ratio (IOU) of 𝑃𝑃object,𝑛𝑛 in n grid boxes. IOUbestpredict is the best

intersection ratio between the true bounding box and the predicted bounding box in m grid.

It is the probability parameter that predicts whether the target category i exists, and the

probability that there is a target object of category i in the image, that is, 0 or 1. 𝑃𝑃class,𝑖𝑖 is the

probability parameter for predicting whether the target category i exists, and 𝑃𝑃truth,𝑖𝑖 is the

probability of whether there is a target object of category i in the image or not .

3.3. Inference design

We add metric to judge whether the feature map should transfer from exit point or not and

we call it confidence score. Confidence score is mainly based on entropy of the output at the

end of edge network. If the score high than the threshold we set, which means the output is

not acceptable. Then the feature map will transfer to the cloud side and do further operation.

If the confidence score is under the line of threshold, which means the output is good enough

for the whole system. So the system will directly output the result without enabling the cloud

side.

Besides, we apply the technology of quantization and compression into the system for

loosing the offload burden. Firstly the system will saving feature map as binary file which can

greatly reduce the storage cost. After transfer the binary file the system will read the file and

do the dequantization on feature map data.

24

Figure 3.2 Flow of system inference

25

4. Experiment and results

4.1. Implementation details

4.1.1. Experiment environments

The ECNet edge-cloud system for real-time objects detection is implemented in PyTorch

1.3.1. The platform we train and evaluate the models is Nvidia GeForce GTX 2070 SUPER GPU

with 8G memory and AMD 3600 CPU. And the experiments are conducted under the OS of

Windows.

4.1.2. Dataset for training and testing

In order to verify the effectiveness of the model and the ability of target detection, we use

two datasets in this experiment. The datasets we used are ImageNet [34] dataset and Pascal

VOC 2007/2012 [35].

○1 E A ImageNet

The ImageNet image dataset started in 2009, followed by the 7th ImageNet Challenge based

on the ImageNet dataset. From 2017, ImageNet dataset has been maintained by Kaggle. It is

a large-scale visualization database for the research of visual object recognition task. More

than 14 million image URLs are manually annotated by ImageNet to indicate objects in the

picture and more than one million images is providing bounding boxes. Besides, ImageNet

contains more than 20,000 categories.

26

Figure 4.1 Samples from ImageNet Dataset [34]

A○2 E A Pascal VOC 2007/2012

The Pascal VOC dataset is an important foundation of the Pascal VOC Challenge, which

promotes the development of image classification and object detection. The dataset used in

the thesis is from the Pascal VOC 2007 and 2012 Challenges, which contain 9963 images and

11125 images in 20 categories.

27

Figure 4.2 20 Classes in Pascal VOC 2007/2012 Dataset [35]

4.2. Experiments and results analysis

4.2.1. Design of network and theoretical analysis

Because of the total algorithm and framework of the edge-cloud system, the design of network

at edge side guideline which means the network should not only meet the need of the

compatibility with the cloud side and early exist mechanism but also have a relatively

satisfactory performance on processing time and accuracy.

Based on the above guideline, we choose the darknet19 as the backbone, the structure of

darknet19 is following. And then we add residual block into the layer and make a huge change

at top layers.

28

Table 4.1 Architecture of Original DrakNet19

 Type Filters Size/Stride

 Convolutional 32 3 × 3
 Maxpool 2 × 2 / 2

 Convolutional 64 3 × 3

 Maxpool 2 × 2 / 2

 Convolutional 128 3 × 3

 Convolutional 64 1 × 1

 Convolutional 128 3 × 3

 Maxpool 2 × 2 / 2
 Convolutional 256 3 × 3
 Convolutional 128 1 × 1
 Convolutional 256 3 × 3
 Maxpool 2 × 2 / 2
 Convolutional 512 3 × 3
 Convolutional 256 1 × 1
 Convolutional 512 3 × 3
 Convolutional 256 1 × 1
 Convolutional 512 3 × 3
 Maxpool 2 × 2 / 2
 Convolutional 1024 3 × 3
 Convolutional 512 1 × 1
 Convolutional 1024 3 × 3
 Convolutional 512 1 × 1
 Convolutional 1024 3 × 3
 Convolutional 1000 1 × 1
 Avgpool Global
 Softmax

During the trial on reconstruction based on DarkNet19, we see the growth of receptive field

as an indicator for our design. We firstly to watch the change receptive field to determine

where to add the residual block and how to set parameter. After that, we will train the

designed model and to see the result. Setting the receptive field as indicator can help us

abandon some low performance model quickly which make our work more efficiently.

Figure 4.3 shows the receptive field growth in our finally decided network structure. The

blue part represents the amount of the receptive field after every layers and the red arrow

29

points the layer where the system will do the operating of sensor data compression and

transmission.

Figure 4.3 Receptive field growth of our network

4.2.2. Performance evaluation and analysis

After determining the network structure, we firstly pre-train the network with ImageNet

dataset in 1000 classes. And then collect several classes aiming for the need of our task and

do the further training. We use 10 classes dataset for experiment (10000 images for training

and 3000 images for testing) and the result is shown in the following table.

Table 4.2 Performance comparison on the 10 classes dataset

 Rank-1(%) Rank-5(%) Processing Time(s/frame)

Our Network 68.5 81.8 0.013

Darknet19 64.3 76.4 0.006

Darknet53 81.2 98.2 0.023

30

The data set we used is under complex environment so the detection task is hard for the

network. Based on such preconditions, we can find our designed network can improve the

Top-1 accuracy about 4% comparing with the DarkNet19. But the price is that we have to

scarify some performance on processing time. By running on our platform, the FPS our

network can reach is about 77, which is enable for our real applying scenario.

Besides, our network has another merit is that the top layers before the first maxpooling

layer keep the same structure with the DarkNet53 which is the backbone of the cloud side in

the whole system. Using same structure means that they not only can share the weight of the

top layers with each other but also simplify the procedure of sensor data transmission

between edge side and cloud side in the whole system.

4.2.3. Adaptive adjustment of network

By validating and evaluating the performance of our designed network, we confirming that

edge side network can meet our need. While the edge side network is serving for the whole

system, so we should consider the algorithm of early-exit and the adaptive adjustment for

different scenario.

The main component of the early-exit point is the confidence score which can measure how

confident the result we get at edge side network. How calculate the confidence score for the

detection result as shown in formula 4.1.

 𝑃𝑃𝑃𝑃 (class 𝑖𝑖 ∣ object) ∗ 𝑃𝑃𝑃𝑃 (object) ∗ IOUpred
truth = 𝑃𝑃𝑃𝑃 (class 𝑖𝑖) ∗ IOU pred

truth (4.1)

The confidence score includes two parts. One is the probability that the bounding box

contains the target, and the other is the accuracy of the bounding box. Each detection cell will

give the predicted category probability value, which represents the probability that the

bounding box responsible for the cell belongs to which category. No matter how many

bounding boxes a cell predicts, it only predicts one set of class probability values.

By setting different threshold of confidence score, we can not only decide the amount of

31

offload in the system but also can influence the performance of the network. Figure 4.4 shows

how confidence threshold affects performance of edge side network in task of object

detection. We use Pascal VOC 2007/2012 as the train and validate dataset. Accuracy will

smoothly descend with threshold of confidence score until threshold about 0.5 and then the

accuracy will drop fast.

Figure 4.4 Accuracy of edge side network for varying confidence threshold

Through further analysis on different scenes, we find that setting of threshold of confidence

score could have completely different result according to the task we are facing. Figure 4.5

show the performance of detection under different scene. The images under different

scenario is selected from Pascal VOC 2007/2012, we can divide it into simple scene and

complex scene. In simple scene, setting threshold higher will avoid unsuited bounding box.

Meanwhile, in complex scene we can recognize that setting threshold lower will remain many

bounding box with low probability value but there are also some repeated bounding box.

32

Figure 4.5 Performance with changing threshold under different scene

 From the above result and analysis, we learn the characteristic of the confidence score and

its threshold. The changing performance with the different scenes matches with our task in

real scenario very well. No matter in parking lot or market, the changes of cars or people flow

is periodic. So the threshold of confidence score also can be set periodic following the variety

of cars or people flow.

33

5. Conclusion

We proposed ECNet, which is an edge-cloud network system to make combination and

connection between lightweight network on mobile devices and high-performance network

on cloud servers, dealing with the balance between performance and time cost in the real-

time detection tasks. Our main focus is on the designation of the lightweight network and

offload algorithm and methods in system.

Based on the constraint of computation power and the intercommunity between edge side

and cloud side, we designed the network applying at edge devices and set an exit point for

sensor data offloading. The result analysis and comparison on 10 classes’ dataset testify the

performance of our network. Furthermore, the algorithm of early-exit also shown in the thesis

and the potential of adaptive adjustment for different scenario. The proposed method is

demonstrated to be able to fulfill the needs of real-time tasks at the edge side. And as a part

of ECNet system, the early-exit algorithm can connect two sides successfully.

34

6. Appendix

6.1. List of academic achievements

International conference:

L. Hu, T. Wang, H. Watanabe, S. Enomoto, X. Shi, A. Sakamoto and T. Eda: “ECNet: A Fast,

Accurate, and Lightweight Edge-Cloud Network System Based on Cascading Structure,” IEEE

Global Conference on Consumer Electronics (GCCE) 2020, pp.259-262, Sep. 2020.

Domestic conference:

T. Wang, L. Hu, H. Watanabe, S. Enomoto, X. Shi, A. Sakamoto, and T. Eda: “Exit-Point Setting

in Edge-Cloud Solution for Object Detection,“ IEICE General Conference D-12-14, Mar. 2020

L. Hu, T. Wang, Y. Zhou, H. Watanabe, S. Enomoto, X. Shi, A. Sakamoto, and T. Eda: “Transfer

Rate Estimation in Edge-Cloud Neural Network Solution for Object Detection,“ IEICE General

Conference D-11-20, Mar. 2020

35

Bibliography
[1] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selective search for object

recognition,” International Journal of Computer Vision (IJCV), 2013.

[2] Takumi eye, https://www.ntt.com/content/dam/nttcom/hq/jp/about-us/press-
releases/pdf/2017/0712.pdf.

[3] P.P. Ray, “Internet of Robotic Things: Concept, Technologies, and Challenges,” IEEE Access,
4 (2016) 9489-9500.

[4] H. Choi, and I.V. Bajic: “Deep Feature Compression for Collaborative Object Detection,”
IEEE International Conference on Image Processing (ICIP2018) WP. P6.8, Oct. 2018.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision
applications,” arXiv preprint arXiv:1704.04861, 2017.

[6] I. Khokhlov, E. Davydenko, I. Osokin, I. Ryakin, A. Babaev, V. Litvinenko, R. Gorbachev. “Tiny-
YOLO object detection supplemented with geometrical data,” 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring), 2020.

[7] S. P. Chinchali, E. Cidon, E. Pergament, T. Chu, and S. Katti, “Neural networks meet physical
networks: Distributed inference between edge devices and the cloud,” in Proc. ACM
Workshop on Hot Topics in Networks, pp. 50–56, ACM, 2018.

[8] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation
offloading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[9] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detection,” CVPR,
pages I: 886–893, 2005.

[10] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004

[11] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector machines,”
IEEE Intelligent Systems and their applications, vol. 13, no. 4, pp. 18–28, 1998.

[12] Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. “International
Journal of Computer Vision,” 2004, 60(2):91---110.

[13] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, D. Ramanan, “Object detection with
discriminatively trained part-based models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI) 32 (9) (2010) 1627–1645.

36

[14] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL Visual
Object Classes (VOC) Challenge,” IJCV, 2010.

[15] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical view of
boosting,” Annals of Statistics, 28(2):337–407, 2000.

[16] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object
detection and semantic segmentation,” CVPR, 2014, pp. 580–587

[17] R. Girshick, “Fast R-CNN,” in IEEE International Conference on Computer Vision (ICCV),
2015.

[18] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards realtime object detection with
region proposal networks,” in NIPS, 2015.

[19] J.R. Uijlings, K.E. van de Sande, T. Gevers, and A. Smeulders, “Selective search for object
recognition,” IJCV, vol. 104, no. 2, pp. 154–171, 2013.

[20] C. Zitnick and P. Dollar, “Edge boxes: Locating object proposals from edges,” ECCV, 2014,
pp. 391–405.

[21] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classification with deep
convolutional neural networks,” NIPS, 2012, pp. 1097–1105.

[22] K. He, Zhang X, Ren S, et al., “Spatial pyramid pooling in deep convolutional networks for
visual recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2015, 37(9): 1904–1916.

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” CVPR, 2016.

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and Reed S.E., “SSD: Single shot multibox
detector, [C]” CoRR, abs/1512.02325, 2016.

[25] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” IEEE Conference on
Computer Vision and Pattern Recognition, 2017: 7263–7271.

[26] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick,
“Microsoft coco: Common objects in context,” European conference on computer vision,
pages 740–755. Springer, 2014.

[27] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:
1804. 02767, 2018.

[28] A. Bochkovskiy, C. Wang, and H. Liao, “Yolov4: Optimal speed and accuracy of object
detection,” arXiv preprint arXiv: 2004. 10934, 2020.

37

[29] C. Wang, H. Liao, I. Yeh, Y. Wu, P. Chen, and J. Hsieh, “CSPNet: A new backbone that can
enhance learning capability of CNN,” CVPR Workshop, 2020. 2, 7.

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.
Rabinovich, “Going deeper with convolutions,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–9, 2015.

[31] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis, “Improving Object Detection with One
Line of Code,” arXiv e-prints, Apr. 2017.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv
preprint arXiv: 1512. 03385, 2015.

[33] S. Teerapittayanon, B. McDanel, and H.-T. Kug, “Branchynet: Fast inference via early exiting
from deep neural networks,” 2016 23rd International Conference on Pattern Recognition
(ICPR). IEEE, 2016, pp. 2464–2469.

[34] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and F. Li, “Imagenet large scale visual
recognition competition 2012,” ILSVRC2012, 2012.

[35] M. Everingham and J. Winn, “The pascal visual object classes challenge 2011 (voc 2011)
development kit. Pattern Analysis, Statistical Model ling and Computational Learning,
“Tech. Rep (2011)

[36] L. Hu, T. Wang, H. Watanabe, S. Enomoto, X. Shi, A. Sakamoto and T. Eda: “ECNet: A Fast,
Accurate, and Lightweight Edge-Cloud Network System Based on Cascading Structure,”
IEEE Global Conference on Consumer Electronics (GCCE) 2020, pp.259-262, Sep. 2020.

	1. Introduction
	1.1. Current demand of real-time detection
	1.2. Problem statement
	1.3. Thesis outline

	2. Related Technologies
	2.1. Classification and detection methods
	2.1.1. Traditional objects detection algorithms
	2.1.2. Objects detection based on deep learning

	2.2. You Only Look Once
	2.2.1. Algorithm of YOLO
	2.2.2. Architecture of YOLOv2
	2.2.3. Loss function
	2.2.4. Non-Maximum Suppression
	2.2.5. Bounding-box regression

	2.3. ResNet
	2.4. Metric
	2.4.1. Precision and recall
	2.4.2. mAP
	2.4.3. FPS

	3. Proposed Approach
	3.1. ECNet
	3.2. Network at edge side
	3.2.1. Architecture
	3.2.2. Loss function

	3.3. Inference design

	4. Experiment and results
	4.1. Implementation details
	4.1.1. Experiment environments
	4.1.2. Dataset for training and testing

	4.2. Experiments and results analysis
	4.2.1. Design of network and theoretical analysis
	4.2.2. Performance evaluation and analysis
	4.2.3. Adaptive adjustment of network

	5. Conclusion
	6. Appendix
	6.1. List of academic achievements

	Bibliography

