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1. Introduction 
The task of synthesizing novel audio samples is a                 
relevant and challenging problem, that requires a             
generative system to be aware of information             
beyond what is contained in floating point arrays               
that abstracts real audio, such as frequency and               
phase information. Modern generative neural         
network architectures can synthesize such realistic           
audio by training them on carefully constructed,             
large scale datasets, such that they learn the inherent                 
characteristics of the data and become able to               
replicate by synthesis of novel samples. This             
replicative power generally is enabled with smart             
perceptual losses, powerful learned similarity         
metrics as well as the incredible generative power of                 
multi-scale hierarchical models and hardware         
accelerated paralleled training procedures. 
This thesis analyses the important components of             
modern neural networks for audio synthesis as well               
as other techniques that are required for the               
construction of specific datasets, specifically with           
neural classifiers and manifold data propagation           
methods. For the most part, techniques are             
discussed with a focus on short drum samples as                 
they offer a challenging subset of sounds that is quite                   
difficult to model. The thesis's main contribution             
harnesses the power of the variational autoencoder             
trained with perceptual losses to synthesize novel             
drum samples. 
2. Related Work 
Modern neural network architectures for audio           
synthesis adapt hierarchical multi-scale architecture         
that model sound either in the time or frequency                 
domain. Wavenet was one of the first models that                 
attempted to model audio fully auto-regressively,           
one sample at a time. This however leads to very                   
slow inference and generation of new audio, as each                 
sample depends on all previous samples. Succeeding             
models attempt to model the waveform completely             
in parallel with normalizing flow based models, such               
as WaveGlow. Yet other models like SING             
(Symbol-to-Instrument-Neural-Generator) show that     
simple convolutional neural networks are sufficient           
to generate high quality audio when trained with               
smart perceptual losses that involve the STFT and               

allow the comparison of frequency components in             
the generated vs. the target audio signal. 
Additionally, most modern neural networks require           
large amounts of organized training data, which is               
hard to acquire and even more difficult to organize                 
into a meaningful dataset. Neural classifiers and             
manifold learning techniques can help with           
arranging large amounts of data and turn it into a                   
balanced dataset. 
3. Methodology 
Because of its simplicity and outstanding results we               
adapt the SING auto-encoding architecture with the             
simple modification of inserting a re-parameterized           
sampling layer in between encoder and decoder to               
turn it into a variational autoencoder and train it                 
with a multi-scale perceptual STFT loss. We also               
discuss how we construct our dataset of drum               
sounds to train this model for which we make a                   
comparison of neural audio classifiers as well as               
proposing a label propagation method for the final               
dataset. Therefore, our main contributions are: 

● A perceptually trained VAE architecture         
capable of generating novel drum sounds. 

● A comparison of neural audio classifier’s           
performance. 

● A proposition for a label propagation method             
using manifold learning techniques and         
neural classifiers. 

4. Data 
We collect a large dataset consisting of 44000               
unlabeled drum samples, and annotate 4400 of them               
by hand, split into classes: Kick, Snare, Hat, Crash,                 
Ride, Clap, Shaker, Tom. Each of which has different                 
sonic characteristics. We also set aside a set of 160                   
samples for testing purposes. 
5. Experiments 
Our first experiment consists of comparing different             
neural networks for the task of classifying different               
drum sounds. We test simple convolutional baseline             
models that we train from scratch and compare               
them against larger pretrained models that we             
fine-tune on our small dataset. It is evident that                 
larger pre-trained networks outclass simpler         
networks trained from scratch, even if they aren’t               
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specifically devised for audio classification (Resnet),           
and that attention mechanisms overall boost the             
classification accuracy. 

Table 1: Comparison of Audio Classifiers 

We also compare different manifold learning           
techniques for the purpose of visualizing the dataset               
and propagating labels to unknown samples. Our             
experiment shows the this propagation method does             
not yield a significant accuracy,, and it is better to                   
merely utilize the neural classifier that obtains 87%               
accuracy.

 

Figure 1: Comparison of Audio Neighbour Graphs 
For our last experiment we train our proposed               
model and observe the synthesized drum samples.             
Our VAE is trained with a multi-scale Spectral               
Convergence as well as a Log-Scale STFT-magnitude             
loss to capture the spectral characteristics of the               
audio samples in the dataset. 

 
Figure 2: Proposed Neural Network Architecture 

6. Analysis 
We test our model by decoding randomly sampled               
latent vectors and observing the shape of the               
waveform as well as the corresponding           
spectrogram representation. It can be seen that the               
model imitates the sounds well, but can’t capture               

details very well, as well as the overall frequency                 
components that can occur in drum sounds.             
However the variety of sounds generated is limited               
and are overall noisier than real sounds. It is                 
probably a problem with balancing the           
reconstruction and regularization term of the loss             
function that the VAE is trained with. 

 
Figure 3: Real Samples vs. Samples generated with 

our model. 
7. Conclusion 
This research presents a method for the synthesis               
of drum sounds with VAEs trained with perceptual               
losses. We show that we can get meaningful               
results, and perform auxiliary analyses of methods             
that can be useful for the creation of a dataset.                   
Further investigation will consist into improving           
the model and it’s loss function. 
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Model  Accuracy  Precision  Recall  F1 

CNN Raw  0.52  0.47  0.52  0.49 

CNN Spec  0.61  0.73  0.61  0.59 

CNN Raw + Spec  0.74  0.74  0.74  0.74 

ResNet50  0.79  0.80  0.79  0.78 

ResNeSt50  0.86  0.86  0.86  0.86 

PANN CNN14  0.86  0.87  0.86  0.86 

PANN CNN14 \w 
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0.86  0.86  0.86  0.86 
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Abstract

The task of synthesizing novel audio samples is a relevant and challenging prob-

lem, that requires a generative system to be aware of information beyond what is

contained in floating point arrays that abstracts real audio, such as frequency and

phase information. Modern generative neural network architectures can synthesize

such realistic audio by training them on carefully constructed, large scale datasets,

such that they learn the inherent characteristics of the data and become able to rep-

licate by synthesis of novel samples. This replicative power generally is enabled with

smart perceptual losses, powerful learned similarity metrics as well as the incred-

ible generative power of multi-scale hierarchical models and hardware accelerated

paralleled training procedures.

This thesis analyses the important components of modern neural networks for audio

synthesis as well as other techniques that are required for the construction of specific

datasets, specifically with neural classifiers and manifold data propagation methods.

For the most part, techniques are discussed with a focus on short drum samples as

they offer a challenging subset of sounds that is quite difficult to model. The thesis’s

main contribution harnesses the power of the variational autoencoder trained with

perceptual losses to synthesize novel drum samples.
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Chapter 1

Introduction

1.1 On sound in the real world

Sound in the real world consists of intricate signals that are heavily loaded with

humanly intelligible semantic information. From speech to music, the human ear

is continuously consuming an incoming stream of different auditory signals which is

decoded into illustrative information.

One can close their eyes and listen to the sounds propagating from outside the

window. The brain can then know that there are certain events occurring, such as a

car passing by, or a number of kids playing in some playground. But not only can we

tell what events are occurring merely by listening, but one can also understand the

particularities of these events, such as what type of car is passing by, approximately

how fast it is passing by and equivalently how many children are currently rummaging

around in the playground.

In addition to this objective information one can also attribute subjective connota-

tions, for example, hearing the music blaring through the speakers of the passing

car, one can decide whether that music sounds good or bad, and in turn one could

also decide what type of person the listener is based on the choice of their music.

This is an astounding level of inference that machines have yet to achieve.

For the human ear and brain these tasks are trivial and are accomplished multiple

Ahmad Yunis Moussa (5119FG10) 1
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times every single day. For intelligent systems these tasks have only become tractable

very recently with the rise of trainable, hardware accelerated neural algorithms.

1.2 Problem Statement

Recent years have seen a surge in machine learning models devised for two main

purposes: classification and generation of data samples. The purpose of this thesis

is to offer a summary and analysis of these different methods with a special focus

on synthesis of short audio waveforms. More specifically we explore the components

that allow the composition of a dataset and the construction of a capable generative

neural network model.

Synthesis and/or generation of audio is extremely useful in the current world of

digital mediums such as music and video. Most Video has to be accompanied by

audio, which is usually what makes the video feel ’alive’. Before the wide-spread use

of modern computers and digital audio workstations, special artists were required

to accompany and record the sounds of a movie in real time, they were called foley

artists. Nowadays this can be done, to some degree by simply browsing a large bank

of pre-recorded sounds and inserting them at the correct position alongside the video

stream.

Recently, subscription based online marketplaces for these sounds are becoming in-

creasingly popular amongst professional as well as independent music producers.

These websites consist of large browsable databases of sounds that producers can

utilize for the creation of a musical product. In most cases, a large amount of time is

spent scouring these databases for the right sounds by artists and producers. Search-

ing for specific sounds is primarily based on entering specific keywords and tags which

will point to a certain subset of sounds. This prompts the exploration of models that

are capable of the synthesis of such sounds and inspection of their inner workings.

Ahmad Yunis Moussa (5119FG10) Introduction 2
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1.3 Contributions

The contributions of this thesis are as follows:

1. An exploratory audio-data analysis with manifold learning techniques, as well

as the proposal of an automatic label propagation that combines manifold

learning algorithms with neural classifiers.

2. A comparison of neural classifiers for the multi-class classification of drum

sounds.

3. An analysis of neural generative and discriminative models that have been

utilized for the synthesis of audio signals in recent years.

4. A system that is capable of synthesizing short drum sound waveforms in the

time domain, and learning a meaningful interpolatable latent space.

Ahmad Yunis Moussa (5119FG10) Introduction 3
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Part I

The Shape of Sound
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Chapter 2

Digital Audio

Before delving into the specifics of machine learning models that are capable of

generating realistic audio signals, it is beneficial to inspect how audio data is stored

on modern computers, in addition to the different forms that audio data can be

represented as.

2.1 Sampling Rate, Bit Depth and Nyquist The-
orem

Sound in the real world is a vibration that travels through the air to the human ear.

More specifically this vibration is a compression of particles in the space near and

around the ear, which causes a thin stretch of skin inside our ear, the ‘eardrum’,

to vibrate. This vibration triggers a signal to the brain which will be decoded

into semantic information. To capture an abstraction of these vibrations we have

designed microphones to operate in similar manner. A microphone generally consists

of a diaphragm that emits an electrical current via transduction when it is met

with a vibration from a sound wave. Intuitively, we can think about a microphone

as taking ‘snapshots’ of the amplitude of a signal at each point in time. And to

record sound in a faithful manner, these snapshots have to be taken at an incredibly

high rate. The rate at which these snapshots are taken is what we refer to as

the ’sample rate’ of the ultimately recorded audio signal. Which is essentially it’s

temporal resolution. Higher sample rates allow more dense signals, that contain

more information. Generally, the most popular sampling is 44.1khz (44100 samples

Ahmad Yunis Moussa (5119FG10) 5
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taken per second of audio), which historically was the original sample rate that was

chosen for the Compact Disc (CD) [33], and is still used until today in modern

audio workstation softwares. Different sampling rates are however possible. Another

reason for the choice of this sampling rate as a standard is that it satisfies the

Nyquist–Shannon sampling theorem [21], which specifies that the sampling rate of

a signal has to twice as much as the highest frequency component contained in that

signal to be able to accurately reconstruct it. Since human hearing generally only

reaches 20khz, the 44.1Khz standard is completely sufficient. Another important

parameter that dictates the quality of digital audio is bit depth. When sampling

rate is the temporal resolution of an audio signal along the x axis, bit depth is

the resolution of an audio signal along the y axis. A higher bit depth allows us to

capture the sound with a higher fidelity as it essentially specifies the resolution of

each individual sample taken, and how precisely we can place it on the y axis.

2.2 The Frequency Domain, Fourier Transform and
Spectrograms

Now, we have established a compact digital representation for audio signals that

is incredibly powerful. Real life sound can be stored as an array of floating point

numbers and played back to us by interpreting it with two parameters: sampling rate

and bit depth. However convenient this abstraction is, sound is not a simple as this.

Audio typically signals consist of a combination of different overlapping vibrations

at different intensities at different points in time, this makes an audio signal far from

just a 1 dimensional abstraction. The analysis of the energies present in a signal

could be incredibly helpful and indicative for downstream tasks such as classification

of different sound events. However, it seems impossible to retrieve these different

frequencies from a signal once it is stored as an sequence of numbers. It is similar

to trying to reconstruct the different fruits that went into the process of making a

smoothie.
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The fourier transform [7] however makes this possible. It is an ingenious algorithm

that allows the conversion between time domain and frequency domain:

X2π(ω) =
∞∑

n=−∞
x[n]e−iωn (2.1)

The above formula describes the discrete-time fourier transform. Intuitively we can

think of this formula as a machine that attempts to wrap a sequence of numbers

(that is our audio signal), around the origin of the complex plane. Winding the se-

quence around the graph at different rates and simultaneously observing the center

of mass, we can observe that at certain frequencies this center of mass will deviate

significantly from the origin. These deviations are essentially the composite frequen-

cies in our signal. Generally, for convenience and speed, we utilize the short term

fourier transform (STFT) [13] rather than the regular fast fourier transform (FFT),

which differs in that it is applied to consecutive slices of the input signal and not on

the signal in it’s entirety. This has the advantage that it allows us to visualize the

change of frequencies with time.

STFT{x[n]}(m,ω) ≡ X(m,ω) =
∞∑

n=−∞
x[n]w[n−m]e−jωn (2.2)

A spectrogram thus, visualizes the intesity of a given frequency at any given point

in time via the color component of the image. The brighter a certain spot the more

of that specific frequency is present. Generally we represent time on the x axis,

frequency on the y axis in log scale, and the color axis in Decibels (log scale of

amplitude).

2.3 Mel Spectrogram

Studies have shown that the perception of human hearing is much closer to a log-

arithmic scale than it is to a linear scale [38, 40]. For example, we can barely tell

the difference between the two frequencies 15000Hz and 15500Hz whereas it is very
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easy to distinguish between 500Hz and 1000Hz, even though the distance is the same

in both cases. The paper “A scale for the measurement of the psychological mag-

nitude pitch” introduces a scale such that equal distances in pitch sound perceptually

equally distant to the listener. This is done by applying a non-linear transformation

of the frequency scale (there are several popular formulas for this purpose). One

popular formula for this purpose is shown below:

m = 2595 log10

(
1 + f

700

)
(2.3)

However, there are different variations of this formula.

2.4 Other Representations

There are a number of other spectrogram representations that are worth mentioning

here, one of them being the Rainbowgram. The rainbowgram was first introduced

in [6], where it represents "a CQT spectrogram with intensity of lines proportional

to the log magnitude of the power spectrum and color given by the derivative of the

phase" which results in a colorful and useful spectrogram representation suitable for

the representation of musical notes.

Another heavily used representation are Mel Frequency Cepstral Coefficients [27], in

short MFCCs. Cepstral coefficients, an anagram of the word spectral, are obtained

by applying the DFT to the DFT of a signal. The obtained information shows the

rate of change in the spectral bands, and is essentially a highly compressed version

of a mel spectrogram. It is generally useful for audio classification and recognition

task.
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Chapter 3

Spectrogram Inversion Methods

We will also briefly touch on methods to invert back from the frequency domain to

the time domain. This will become relevant later on throughout the thesis. Because

of incredible advances in image synthesis with neural networks, a number of models

have been devised for the synthesis of spectrogram images rather than the raw audio

waveform. This comes with a caveat: reconstruction of the exact waveform might

not always be possible depending on the chosen type of spectrogram representation.

When creating magnitude spectrograms we are able to visualize the different fre-

quencies that occur in a given signal, but with partial or complete loss of phase

information. Phase information indicates how frequencies are aligned in a given sig-

nal, and are necessary for exact reconstruction. This is generally known as the phase

reconstruction problem. A commonality with all currently existing algorithms that

solve this inversion problem is that there is no one optimal solution.

3.1 Griffin-Lim Algorithm (GLA)

Generally, if we were to have the phase information we could simply utilize the

inverse STFT to convert back to the time domain. However as we have already men-

tioned, the result of the STFT consists of two components: a real valued component

and a complex component. The complex component represents phase information.

In simpler terms, phase information indicates the overall alignment of frequencies

with time. Phase information being complex valued makes it difficult to work with

in modern neural network frameworks that can only deal with real numbers. This
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amounts to discarding phase information in most cases and attempting to recon-

struct it in some manner after the frequency component has been modeled by the

neural network. One of the most popular algorithms for phase reconstruction is

the Griffin-Lim algorithm [9]. It is an iterative procedure that continually converts

between frequency and time domain until it converges towards some kind of phase

information. The reconstruction quality is generally bad, and reconstruction speed

is slow.

The Griffin-Lim algorithm begins by assuming a random phase component and ap-

plying the inverse STFT to the initial frequency component and therandom phase

component. This ISTFT conversion results in a very bad signal in the time domain,

however, due to the redundancy of the STFT and it’s overlapping windowing func-

tion, if we apply the STFT on this signal we obtain a phase component that is better

than the random phase which we started with. If we replace the frequency component

with the initial frequencies and repeat this procedure of converting between frequency

and time domain, we usually end up with a relatively useful phase component.

3.2 Neural Network Based Waveform Estimation

A number of neural network based approaches have been devised, not specifically for

phase reconstruction, but estimation of the time domain signal from the magnitude

spectrogram. It’s a little bit different from phase reconstruction, since the resulting

neural network will be very domain specific depending on the training data, but

generally this approach is much faster, as computations can be done in parallel and

it is not based on a iterative procedure, merely a single forward pass through the

network.

These neural networks are essentially convolutional neural network that downsample,

reshape and flatten an input spectrogram to a waveform. One interesting architec-

ture, is based on applying multiple convolutional heads in parallel to the spectrogram

for the waveform synthesis [2]. Such that each convolutional head observes the spec-

trogram in a slightly different manner, and they aggregate the final waveform. We
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will encounter this type of multi-scale parallelism for waveform synthesis in more

detail in later sections.
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Part II

Related Work
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Chapter 4

Generative Architectures

Modern neural networks have allowed the synthesis of sounds with an unimaginable

quality in comparison to just a decade prior. Hardware acceleration with GPUs and

TPUs have additionally permitted a fast paced advancement in this domain, con-

sidering that models are already deployed in live applications, and not just ongoing

research projects. Before we dive into the specifics of our proposed method we should

first examine related works that touch upon the same topic. We examine a number

of related neural architectures, split into two sections. First we will have a look

at modern generative neural architectures, that enable audio synthesis, followed by

discriminative architectures (that usually make up the second half of GANs). We

make the assumption that the reader is well acquainted with the inner workings of

the fundamental building blocks of these architectures.

“Generative architectures” refer to a type of algorithm that is capable of creating

some arbitrary type of data (digital audio in our case). The term “architecture”

is generally adopted to describe the shape of the neural network that acts as the

generative model, similarly to an architect who designs buildings on a blueprint, the

modern machine learning engineer has full control over the number of parameters

that will ultimately constitute the final neural network model. Recent years have seen

a surge in different types of these generative neural network architectures, especially

in the image processing domain, but also to some extent in the audio processing

domain. Both fields share a great deal of similarities in that regard. Hence, in the

following section we examine some important neural network architectures that have
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emerged in recent years and their contributions towards the task of audio synthesis.

Each of the following sections discusses a specific family of similar methodologies.

4.1 Auto-Regressive Models

Auto-regressive models [34, 36, 39] tackle generative modeling at the finest scale.

The waveform is sequentially generated, one sample at a time, where each newly

generated sample depends on all previously generated samples. In this manner a

waveform can be represented as the product of the conditional probability of each

sample:

p(x) =
T∏
t=1

p (xt | x1, . . . , xt−1) (4.1)

These sequential generative models have achieved state of the art results in several

domains (refer to wavernn paper for citations here), yet their serial sampling signific-

antly slows down the inference process, as the time resolution of audio is incerdibly

large (thousands of samples per second). Much research has therefore gone into their

speed up as well as the exploration of alternative strategies.

4.1.1 Wavenet

One of the first models that attempted the generation of raw audio with inarguably

astonishing results was Wavenet [34]. The model is ‘fully probabilistic and autore-

gressive’ such that each predicted sample is conditioned on all previous samples.

Wavent’s architecture is intricately designed and was based by a preceding architec-

ture called PixelCNN [35] for the image generation task, which generates images one

pixel at a time.

Wavenet consists of multiple stacks of dilated causal convolutions. Causal convolu-

tions are equivalent to masked convolutions in the image domain [26], which simply

means that the kernel of the convolution does not have access to all of its inputs.

A causal convolution however masks all future time steps to the input convolution,

Ahmad Yunis Moussa (5119FG10) Generative Architectures 14



Master Thesis

this is done to prevent having the model access to the samples that it has yet to gen-

erate. Dilated convolutions [42] are convolutions that have a large stretched kernel

that has the advantage of having a much larger receptive field, without observing

all inputs that lay within it. Stacking these convolutions allows for an exponentially

large receptive field, which is necessary for dense temporal data like audio, without

increasing the number of operations required. The dilated convolution mechanism

is re-used in several other papers that attempt the synthesis of audio.

4.1.2 SampleRNN

In a similar manner to wavenet, SampleRNN models raw audio in an autoregressive

manner and generates one sample at a time during inference [24], but instead of

utilizing stacked convolutional layers it does so by utilizing layered recurrent neural

networks, which it calls modules. Each layer of SampleRNN performs at a different

level of abstraction of the waveform: higher layer modules operate on large frames

of the waveform, whereas layers down the stack operate on incrementally smaller

frames, down to the sample level. In this regard high level modules create condi-

tioning vectors for lower level modules. Like wavenet this hierarchical architecture

works very well for capturing long term as well as short term temporal dependencies

and structure of the waveform.

4.1.3 MelNet

Melnet also generates audio in an auto-regressive manner, but this time in the fre-

quency domain rather than the time domain [39]. This is done by generating high

resolution spectrograms in a similar manner to PixelCNN [35], but with a fully recur-

rent architecture rather than a convolutional network, which is due to spectrograms

not being invariant to translation. Crudely, the generation of the spectrogram is

done via two recurrent stacks: a time-delayed stack and a frequency delayed stack.

These two stacks essentially allow the model to capture information on global scale

as well as on a local scale. The time-delayed stack consists of three RNNs that make
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passes over the spectrogram by observing consecutive frequency frames (a slice of

the spectrogram) from left to right, top to bottom and bottom up, and their out-

puts will be combined and passed on to the frequency-delayed stack, which in turn

generates the next frequency frames element by element and is conditioned on the

output of the time-delayed stack. In this manner the frequency-delayed stack models

local frequency details whereas the time-delayed stack assists the former by feeding

it prior frequency information.

4.1.4 WaveRNN

WaveRNN improves the slow sampling speed of wavenet by exploiting hardware

parallelism and proposes batched sample prediction via means of subscaling [14].

Subscaling essentially consists of re-ordering the waveform, by batching each B-th

element of the waveform into B substensors. During the computation of a new

sample, the model has then access to all samples in the current sub-tensor as well

as all the already computed samples in the previous subtensors, which essentially

creates a trade off between the causality of the model and it’s parallelism.

4.2 Non-Autoregressive and Flow Based Models

Normalizing flows have recently made become a popular alternative to existing gen-

erative models, and can be considered as a different category of generative neural

networks [31, 30, 36]. The goal of these models is the conversion of simple probability

distributions into more complex distributions by means of invertible and differenti-

able mappings. In the case of audio, flow based models will generally synthesize

sound from a simple distribution like white noise.

4.2.1 Parallel Wavenet

An alternative method to speeding up the original wavenet model without loss of

quality. Parallel Wavenet attempts probability density distillation with a teacher-

student framework [36], which simply means that a fully trained wavenet model will
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be used to teach a simpler and faster model to generate results with similar quality.

During training, the student network, which is a flow based model and can synthesize

the waveform in parallel, is given as input a signal that consists of white noise and is

tasked with the generation of the target signal. This generated waveform will then

be passed to the teacher wavenet which is tasked with scoring it and signaling the

student network how well it performed. We then iteratively improve the student

network by reducing the Kullback leibler divergence between the distribution of

the student network and the teacher network. Even though inference is sped up

tremendously, training this type of model has to be done in two stages (individual

training for the teacher and the student) which is incredibly time consuming.

4.2.2 WaveGlow and WaveFlow

WaveGlow andWaveFlow are another type of normalizing flow based neural networks

that synthesize realistic speech, but do so without utilizing a teacher network and

show that the auto-regressive flows are unnecessary [31, 30]. Both show that it is

sufficient to train the flow based model with maximum likelihood to capture all

modes of the data which makes the training procedure much simpler

4.3 GAN based Models

GANs [8] have seen incredible results in image synthesis and have also made their

way to enhance audio synthesis. Training a Generative Adversarial Networks [9]

demands two neural networks to be trained concurrently. Where the two networks

consist of a generative model that attempts to generate new data by up-sampling a

latent code x=Gen(z), and a discriminator that attempts to classify the generated

samples as real or fake, such that y=Dis(x)[0,1]. This objective can be formalized as

follows:

LGAN = log(Dis(x)) + log(1−Dis(Gen(z))) (4.2)
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GANs train the discriminator and generator separately, such that the discriminator

is trained to classify real and fake data each training step, and will be frozen during

the gradient update of the generator network. Training GANs is notoriously difficult

and unstable such that many modifications have been proposed for the stabilization

of this procedure [32]. One famous problem of GANs is mode collapse, where the

generator memorizes a number of examples from the training dataset, which it cycles

through to fool the discriminator. The discriminator is essentially powerless and

does not have the capacity to mitigate this problem as it is not explicitly trained to

maximize the variety of generated samples. This is still an ongoing problem.

4.3.1 WaveGAN

One of the first papers to attempt unsupervised audio synthesis in an adversarial

manner [5]. It adapts the famous DCGAN architecture to generate short audio clips

of one second in length. They propose the generation of spectrograms with a model

they call ‘SpecGAN’, as well as raw audio waveforms by flattening the DCGAN into

a one dimensional equivalent architecture coined ‘WaveGAN’. Another novelty of this

paper is the introduction of the ‘Phase Shuffling’ technique which is implemented

in the discriminator of their architecture. We will cover this in the discriminative

models section.

4.3.2 MelGAN

Current state of the art techniques decompose the synthesis of human speech into two

stages: synthesis of an intermediate representation, conversion of that intermediate

representation into raw audio. Generally these intermediate representations consist

of low resolution spectrogram representations. MelGAN’s [19] generator focuses on

the inversion of an input representation into raw audio. It does so by upsampling

the representation through transposed convolutions and stacks of residual convolu-

tional blocks. One important novelty of MelGAN is it’s multi-scale discriminator

architecture, which will be discussed in detail in a later section.
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4.3.3 Parallel WaveGAN

Parallel WaveGAN, similarly to MelGAN is purposefully designed for speech syn-

thesis from speech features [41]. Parallel WaveGAN trains it’s wavenet generator

via an adversarial objective and an auxiliary multi-scale STFT loss. This is again

to sidestep the distillation process proposed in parallel wavenet. The novel compon-

ent of this model is the loss function that is utilized and also follows a multi-scale

scheme. We talk about this auxiliary STFT loss in detail in the next chapter.

4.3.4 HiFi-GAN

HiFiGAN, similarly to MelGAN attempts the generation of speech from an inter-

mediate representation [17]. It does so by introducing a novel component called

MRF module. The Multi-Receptive Field Fusion module improves on the MelGAN

architecture by running the input through several residual blocks in parallel, each of

which has different kernel sizes and dilation rates.

4.4 SING (Symbol-to-Instrument-Neural-Synthesizer)

SING tackles the synthesis of musical notes with a simple convolutional auto-encoder

that is trained in two stages [3]. In the first stage the autoencoder is trained to

reconstruct musical notes from NSynth dataset, then in the second stage we train

a recurrent unit to imitate the latent code generated by the encoder when given

a number of parameters that describe the encoded waveform. The RNN will be

plugged in front of the decoder, in place of the encoder, which can be discarded.

In this manner we can convert a number of high level symbols into a waveform.

This shows that a carefully designed simple convolutional decoder can be powerful

enough to generate high quality waveforms of short length waveforms, when trained

with perceptual losses. This is impressive and shows that for the synthesis of certain

types of audio signals, like musical notes, it might in fact be sufficient to utilize a

simpler model. Because of these impressive results and the simple architecture, we
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choose to adopt it’s architecture for our own proposed model architecture, with a

number of modifications.
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Chapter 5

Loss Functions for Audio

5.1 Loss Functions

In this section we examine different types of loss functions that can be utilized to

train models for the generation of waveforms. We briefly discuss why strict element-

wise losses , like L1 and L2 loss, are quickly becoming obsolete in light of perceptual

losses which are tailored to simulate human perception to some degree.

5.2 Element wise losses are not just bad but det-
rimental

Utilizing an element wise absolute distance metric as a loss function discards many

aspects that constitute sound in the real world. Audio stored as an array of floating

point numbers is an abstraction of real sound, and applying an element wise loss to

this vector generally yields a loss that is sufficient for exact reconstruction, but is

agnostic to other information such as frequency. For example, element wise losses

penalize small shifts of the waveform tremendously, and are agnostic to presence or

absence of specific frequencies. A convenient ablation study can be found in [19] on

the effect of different loss functions.
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5.3 Perceptual Losses

Since absolute distance metrics might be detrimental to the optimization problem,

these problematic aspects of element wise losses led to the utilization of more intricate

and perceptually informative losses in recent generative audio models. Ideally we

would want to utilize a loss function that can mimic the way that the human ear can

perceive sound in the real world. One way of doing so, would be the inspection of

the spectral components of a generated waveform and comparing them to the target

waveform and computing an error based on the difference of present spectral energy.

We have already covered how to convert from the time domain to the frequency

domain, in this section we cover a number of methods that attempt to extract an

informative loss from the comparison of generated and target waveform.

5.3.1 Spectral Convergence Loss

This loss is used in [2, 41]. Intuitively this loss penalizes spectral components at a

large scale due to the nature of the frobenius norm. This can be critical in early

stages of training when the generated waveforms are still crude. This loss can be

simply calculated as follows:

‖STFT(s)| − | STFT(ŝ) |‖F/‖| STFT(s) |‖F (5.1)

The exact origin of this loss’s first application in machine learning is a bit difficult

to pinpoint.

5.3.2 Log-scale STFT-magnitude Loss

Implemented in [3, 2]. Computing the difference of the spectral components on a

log scale permits this loss to shift it’s attention to small scale differences. This

allows the carving out of fine details of the waveform in later stages of training. It’s

computation is as follows:
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‖ log(| STFT(s)|+ ε)− log(| STFT(ŝ)|+ ε)‖1 (5.2)

Additionally, since the STFT is a parametric function, where the most critical para-

meters are the length of the FFT, the window size and the hop size of the window.

Different values for these parameters will yield different spectrograms, albeit rep-

resenting the same signal. Applying the Spectral convergence loss and the log-scale

STFT-magnitude loss with different parameters for the STFT allows us to construct

a multi scale loss that observes and compares the frequency components in the gen-

erated and target waveform at different scales [41], which might overall enhance the

quality of the generated waveform.

5.4 Problems with generated waveforms

When we closely inspect images generated by neural networks, we often see repeating

patterns that occur on a pixel level of the image, such that every other pixel has

brighter and dimmer color values, similar to the pattern we see on a checkerboard.

These artifacts arise from the nature of the operations in a deconvolutional neural

network that employs transposed convolutions. These artifacts are not desirable

in digital images and several solutions have been designed to alleviate this problem

(need citations here). Discriminators in GANs can generally reject images presenting

these artifacts, as they do not occur in regular images. When generating audio, these

artifacts appear as recurring periodicities that manifest themselves as pitched noise

[5], that can theoretically occur in real audio recordings. The discriminator might

not be able to single out such frequencies and discriminate against, or alternatively

might be able to notice that all generated fake waveforms do present a specific high

pitched frequency, rendering the discriminators task trivial. Which in turn leads to

a GAN failure mode.
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Chapter 6

Discriminative Architectures

In addition to perceptual losses, and in light of the problems of generated waveforms

with deconvolutional networks, a number of different discriminative architectures

have been developed for the improved discrimination of generated waveforms in GAN

based models [5, 19, 17].

6.1 Phase Shuffle

Because of the occurrence of pitched noise artifacts in generated waveforms, the dis-

criminator can learn a trivial policy to reject them, by simply observing the presence

of said noise. This inhibits the overall training of the GAN, as the discriminator

stops yielding an informative criteria to the generator. WaveGAN proposes to solve

this by implementing a ‘phase shuffling’ operation in the discriminator [5], which

simply randomly shifts the entire output feature map in the intermediate layers of

the discriminator, and pads them with reflection padding. This essentially manifests

as a perturbation to the phase of the input signal, such that discriminator essentially

starts ignoring phase information and finds other informative and discriminative fea-

tures. This naturally makes the discriminator’s task more difficult, but encourages

it to give the same result for the same waveform even if it has a different phase (even

if it is shifted by some amount of samples).
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6.2 Multi-Scale Discriminator

Rather than utilising one discriminator that is fed the entire generated waveform,

we utilize multiple discriminators each of which accepts a slightly different version

of the same waveform [19]. For example, if we were to utilize 3 discriminators, the

second and third discriminator could be fed downsampled and smoothed versions

of the generated waveform. Which makes it such that these discriminators only

have access to low frequency components of the waveform and are biased to learn

discriminative features based only on these frequencies. This encourages an inductive

bias and pushes the discriminators to learn features beyond what is present in the

target data.

6.3 Multi-Period Discriminator

Similarly to the multi-scale discriminator scheme, HiFi-GAN devises a group of dis-

criminators to inspect the waveform in different ways [17]. We construct these dis-

criminators such that they accept as input arrays of equally spaced samples from

the input waveform at a given period p. This is achieved by reshaping the input

waveform (a 1 dimensional array), and cutting it up into p sized chunks. We take

each chunk, transpose it and stack them into a 2dimensional tensor, with dimension

p x L/3 where L is the original length of the waveform. The discriminator in this

case will consist of 2 dimensional convolutional layers, and convolutional kernels will

be restricted to a width of 1 such that they can inspect each pattern by itself. This

again encourages an inductive bias to detect different periodic patterns in the input

waveform. Conveniently HiFiGAN makes an ablation study on the effectiveness of

MSD and MPD.
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6.4 Markovian Discriminator and Window Based
Objective

Instead of outputting a binary value, we truncate the discriminator’s tail and output

a matrix of probabilities. In the case of images, such a discriminator would classify

NxN patches of the input image as real or fake, and would be run convolutional

across the image [12, 19]. This essentially models the image as a random markov

field. In the case of audio this NxN patch becomes a slice of length N and has been

shown to be equally successful in the audio domain (melnet). A regular discriminator

would learn to distinguish between distributions of complete waveforms, the patch

discriminator would learn to distinguish between small chunks of the waveform,

additionally we can construct the discriminator in such a way that it observes large,

overlapping chunks of the waveform and in that way observes coherency and high

frequency structure over the waveform.

6.5 Feature Matching Loss

This technique is introduced as a ‘regularizing objective’ for the generator [32].

Rather than training the generator to fool the discriminator in a binary manner,

we train the generator to produce data samples that induce discriminator activa-

tions that match the activations of the discriminator for real data samples.
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Part III

Dataset
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Chapter 7

Audio Classifiers

For our proposed label propagation technique we require a separate classification

model that can run in the background. Depending on the type of representation we

choose for the audio data, we can approach this classification task in several different

ways:

1. Raw Audio: training a convolutional neural network from scratch or fine

tuning PANNs (pre-trained audio neural networks) [18].

2. Spectrogram Representation: treating the spectrogram as an image we

can fine tune state of the art pre-trained image classification networks such as

ResNeSt50 [10].

3. MFCC: for compressed representations we can utilize traditional classification

methods and are maybe the go-to feature representation when it comes to audio

classification.

The purpose of this classifier is to train it on a small dataset that is annotated by

hand and make it capable of generalizing to new examples with a high accuracy such

that we can annotate the rest of the data dump that we have collected. Which also

makes it important to choose a number of different classes that we will split our

data into. Most audio samples that we collected have already been named after the

specific drum sound that they represent, which allows us to create a small dataset

that constitutes of 8 distinct classes:
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1. Kick

2. Snare

3. Hat

4. Crash

5. Ride

6. Clap

7. Shaker

8. Tom

In this sense, the classifier will output a one hot vector that indicates the type of

the sound that we are dealing with making it a multi-class classification task. The

problem of classifying drum sounds specifically has been studied in depth in a number

of publications (cite paper) on which we also base our chosen classes on.

7.1 Baseline Models

We propose three simple models as base line that we train from scratch:

1. Convolutional Neural Network that accepts the raw waveform

2. CNN that accepts the spectrogram representation

3. CNN that accepts both

7.2 Transfer Learning

Transfer learning is reusing a neural network that has been trained on some task

for a new similar task [29]. For example, if we’re creating a classifier to recognize

different types of vehicles, it might be beneficial to utilize a neural network that has

already been trained to recognize various real world objects to a certain degree of

accuracy, and train it for the new task. In this manner, a pre-trained neural network
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already has some understanding of different types objects and can generalize easier

to the new task rather than training it from scratch. In many cases the new task

is less difficult than the original task. Popular neural network architectures in this

regard are pre-trained imagenets and resnets, trained on the imagenet dataset [4]

containing 1000 different classes. To apply transfer learning, we generally append a

new trainable layer to the pre-trained neural network because most often the output

dimensions and specifications differ from the original task. Here we have the choice

of freezing the original weights of the pretrained model or allowing their gradient

updates. Choosing to freeze those weights, the only trainable weights become those

of the appended layer/s. This is called fine-tuning a neural network and in many

cases works very well. Since Audio signals can be represented in a plethora of ways,

this opens up many different neural networks that we can utilize for transfer learning.

We list and evaluate some of the architectures in this section.

7.2.1 Pre-trained Image Classifiers

Repurposing image classification models for audio classification tasks is not an en-

tirely new concept, but hasn’t been studied in depth yet. One recent paper explores

this venue: “Rethinking CNN models for audio classification”. Thus, since audio

signals can be represented as spectrogram images, these image classifiers are a per-

fectly viable method for their classification [28]. Which at first thought might be

problematic as these models are trained on natural images where the main purpose is

the detection, localization and classification of specific objects in the image whereas

they are being applied to a completely different type of representation. However, it

has been shown that these pretrained models do generalize well to spectrograms, as

they can recognize and locate specific frequency slopes and shapes that indicate the

occurrence of some audio events. We explore how well this can be applied to the

classification of drum sounds.
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7.2.2 Pre-trained ResNeSt50 (ResNet architecture with split

attention)

Attention mechanisms have become increasingly popular, leading to tremendous

breakthroughs in the NLP field most notably utilized within the transformer ar-

chitecture. Attention mechanisms have also made their way into other fields like

computer vision such that already powerful models like Resnet have been redesigned

with these mechanisms incorporated. We also apply one such model to the drum

sound classification task [43].

7.2.3 PANN (Pre-Trained Audio Neural Networks)

PANNs are also CNNs that have been specifically pre-trained on audio tasks and

are an equivalently strong contender to be used for new audio classification tasks

[18]. One small modification that we apply is the reduction of dropout rate in the

last embedding layer from 0.5 to 0.2. Since our dataset is already quite small we do

not require any additional amount of regularization, and reducing the dropout rate

allows for better performance.

7.3 Comparison

For this comparative experiment we create a small handmade dataset consisting of

roughly 4400 drum sounds split evenly among the aforementioned number of classes.

We also set apart a small test set of 160 drum sounds (20 for each class). The

following table summarizes the results.
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Model Accuracy Precision Recall F1-Score
CNN Raw 0.52 0.47 0.52 0.49
CNN Spec 0.61 0.73 0.61 0.59
CNN Raw + Spec 0.74 0.74 0.74 0.74
ResNet50 0.79 0.80 0.79 0.78
ResNeSt50 0.86 0.86 0.86 0.86
PANN CNN14 0.86 0.87 0.86 0.86

Table 7.1: We compare the performance of different types of classifiers on the drum
sounds recognition task. We can observe that the pre-trained models perform much
better in general.

Figure 7.1: Confusion matrices of the different classification models. Pretrained
models are much more precise than other alternatives.
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Chapter 8

Manifold Learning for Audio Data

8.1 Assisted Data Annotation Method

Before we delve into the training specifications of our neural network, we describe

how we construct our dataset and we propose a set of steps for a semi supervised

and automatic label propagation technique to new data samples. The purpose of

this algorithm is the annotation of the unlabeled data samples in the large data

dump that we scraped from the internet, from a smaller subset of already annotated

data. The entire dataset consists of 44000 data samples, of which only one tenth is

annotated by hand. Large amounts of good quality training data are a cornerstone

of modern deep learning architectures and are becoming more and more necessary

to train large scale neural models. This is why AI assisted data annotation and

exploration tools can be extremely powerful. And in our case, the objective task

revolves around constructing a meaningful latent space and a strong decoder that

can interpret latent codes into raw audio. In the next couple of subsections we detail

the necessary techniques involved that build the backbone of our algorithm.

8.2 Manifold Learning

Manifold learning can be described as non-linear dimensionality reduction that pro-

jects high dimensional data onto some lower dimensional surface (a manifold). Gen-

erally it is applied to visualize and represent datasets that consist of high dimensional
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data samples in a lower dimensional space. Dimensionality in this case, refers to the

number of attributes (variables/coordinates) that are required to represent a certain

kind of data. For example, as discussed earlier, audio is stored as an array of floating

point numbers on disk, and depending on the sampling rate and the length of this

audio file, we can determine its dimensionality. However, it is impossible to repres-

ent said audio file on a plot, we can hardly imagine things in 4 dimensions. Often

though, this high dimensionality happens to be very redundant, where the set of

defining features is generally much smaller than the overall dimensionality. A mani-

fold learning algorithm solves this by representing our high dimensional data sample

simply by a 2D or 3D point on a plot. Additionally, it reflects and captures the

differences and the structure that arises in our high dimensional dataset by distance

on the low dimensional point plot. More simply, the more different two items in the

dataset are, the further apart they will be on the point plot, and vice versa, the more

similar they are, the closer they will end up. How this high dimensional similarity

and likeness is determined depends on the algorithm utilized as well as the features

that we compute it on, in addition to how well the method is at preserving local and

global structure. We inspect two such algorithms in the remainder of this section: t-

distributed Stochastic Neighbour Embedding and Uniform Manifold Approximation

and Projection

8.3 t-distributed Stochastic Neighbor Embedding
(t-SNE)

t-SNE [37] operates by creating two distributions, one over the high dimensional

dataset and another in a lower dimension and then attempts to make both a close

as possible. Constructing these probability distributions is done by converting the

Euclidian distances between high dimensional data samples into conditional probab-

ilities. In simpler terms, we span a distribution over each data sample and find all

samples that fall under this distribution In comparison to other techniques such as

PCA, t-SNE greatly preserves local structure, and can also incidentally learn some
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of the global structure of the data, however without any guarantee that it represents

the actual global structure in the real data.

8.4 UniformManifold Approximation and Projec-
tion (UMAP)

UMAP [23] can be considered as t-SNE’s more powerful successor. And similarly to

t-SNE, it arranges high dimensional data on a low dimensional graph and is generally

preferred over t-SNE due to it’s faster computation speed with larger datasets. It is

also speculated to retain more global structure. UMAP in comparison to t-SNE also

allows control over the shape of the graph with several parameters as opposed to the

single perplexity parameter in t-SNE. Additionally, UMAP also accepts labels and

can perform semi-supervised clustering of samples.

8.5 Manifold Comparison on Audio Dataset

Both t-SNE and UMAP are equivalently viable for our purposes (generally we prefer

the faster implementation). The shape of the constructed neighbour graph is im-

portant for the remainder of this shape. We combine the previously discussed neural

network classifiers with manifold learning techniques for the automatic propagation

of annotations and assisted annotation on partially annotated datasets. By creat-

ing the UMAP of a dataset of partially labeled points we can observe the shape of

the dataset from a low dimensional point of view. When done for audio files, we

can hear that the closeby data points are generally grouped by similar perceptual

qualities. In our case, kick drum sounds will generally be grouped tightly together

and slowly transition into a different class. Naturally some overlap can occur in

many cases when it is not very clear what type of sound it is. Even human listeners

might struggle to classify such data well. Since neighbouring points are perceptually

similar, it could be useful to use the labels of nearby labeled points for the labeling

of unlabeled points. In this manner we would aggregate the labels of a number of

nearby points and obtain a tentative classification. In the previous section we have
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already discussed modern neural network classifiers and achieved a top accuracy of

87% on our small dataset, which will be very difficult to surpass. The essential differ-

ence between this section and the previous, is that we are using the topology of the

neighbour graph to infer information about a data sample, rather than classifying

the data sample itself.

Figure 8.1: Comparison of Neighbour Graphs of our audio dataset constructed with
UMAP and t-SNE for different feature representations.

8.6 Automatic Label Propagation

Our approach of propagating the labels to unlabeled examples consists of querying a

point from the neighbour graph, querying the k nearest points with a KDTree, finding

the already labeled points amongst them, summing the result and applying a softmax

to normalize the result. This opens up a number of questions for experimentation:

1. What ratio of labeled to unlabeled data works best: The more neigh-

boring labeled data is around a data point, the better the propagated label

should be.

2. Which graph has the best topology for this purpose?: UMAP or TSNE?

2D or 3D? Which features should you compute it on?

3. Can we use unlabeled points for inference?: Since we have a very strong
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classifier, maybe we can increase the performance further by running it on

nearby unlabeled points and also factoring them into the result. In this case,

what weight should be assigned to ground truth and predicted labels?

Also mention proximity bubble.

Neighbours 3 6 12
Split Ratio 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
MFCC 0.1451 0.1560 0.1424 0.1401 0.1218 0.1261 0.1514 0.1281 0.1412 0.1376 0.1234 0.1175 0.1273 0.1231 0.1241
Spec 0.1383 0.1384 0.1371 0.1355 0.1444 0.1352 0.1232 0.1507 0.1299 0.1173 0.1334 0.1237 0.1122 0.1299 0.1489

Table 8.1: Results for the proposed data propagation method with different data
splits and different number of considered neighbours. Overall the numbers indicate
that the method does not work very well, regardless of the parameter configuration
used. It also shows that the ratio of labeled to unlabeled data does have an effect
and that less extreme splits work better overall.

We conduct a number of experiments, where we split the dataset with different ratios

and then compute the UMAP based on MFCCs and Spectrograms. Then for each

unlabeled point we fetch the k nearest labeled neighbours and average their labels. As

the table shows this naive method yields more than disappointing results. This might

be due to the fact that some classes are very intertwined in low dimensional space.

For example, if we refer to the earlier UMAP visualizations (where we didn’t provide

labels) we can see that hats and shakers always have overlapping areas. Maybe

better results could be achieved if we utilize a dimensionality reduction technique

that achieves a better inter class separation. One interesting observation though is

that the ratio of labeled to unlabeled points affects the propagation accuracy.

Neighbours 3 6 12
Split Ratio 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
Spec 0.1307 0.1209 0.1371 0.1276 0.1557 0.1320 0.126 0.1454 0.1638 0.1286 0.1279 0.1147 0.125 0.1288 0.1444

Table 8.2: Results for the proposed data propagation method with a backend classi-
fication model. Overall the performance is not improved and neighbour information
seems to generally not be very useful for the classification of new points. In this
experiment we only use spectrogram features as the ResNeSt50 can not be used on
MFCCs.

We perform another experiment where we split the dataset by a certain ratio into

labeled points and unlabeled points and train the ResNeSt50 classifier on the labeled

data points. In this manner, for each unlabeled data point we fetch the nearby labeled
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data points as well as the unlabeled ones, then run the classifier on the unlabeled

points and average all results. This does not improve the results and is most likely

due to the aforementioned problems. Overall this indicates that we are better off

by simply using the classification model to annotate new data samples and that the

topology of the neighbor graph has a drastic effect on the accuracy of propagated

labels. Maybe there is something else that needs to be considered to improve and

make this method succesful.
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Part IV

Proposed Method
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Chapter 9

Proposed Neural Architecture

9.1 Variational Auto Encoders - VAEs

In this section we describe our proposed neural network architecture in detail. The

main difference in our model in comparison to other research that has gone into the

synthesis of drum samples, is that current approaches generally attempt to model

spectrograms rather raw audio [1, 25]. Modeling spectrograms entails a waveform

estimation procedure which we side-step by directly generating the waveform.

9.1.1 VAE Objective

Our proposed architecture is essentially a Variational Auto Encoder [15]. Regular

autoencoders generally compress data into a lower dimensional representation in an

unsupervised manner. This compression is achieved with an encoding neural network

that transforms the input data into a latent representation. Meaningful latent codes

are learnt by iteratively compressing data then reconstructing the original data with

a decoding architecture (which accepts the latent code as an input). Albeit, actual

data compression often not being the main goal but rather the reduction of the

dimensions of the input space.

Conventional auto-encoders do not guarantee the construction of a meaningful and

interpolatable latent space. This means that decoding a randomly created latent

vector will most likely produce a garbage data sample. This is the key difference
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between Auto-Encoders and Variational Auto Encoders. VAEs attempt to learn the

input data space as a probability distribution rather than a mapping into a lower

dimension. Therefore VAEs are trained differently from regular auto-encoders, with

an additional regularization term that enforces structure in the latent space beside

the reconstruction term. The regularization term attempts to cluster similar en-

coded data samples into neighbouring regions in the latent sapce. In this manner,

the VAE’s decoder guarantees that any randomly sampled latent vector will produce

a meaningful data sample. In this regard, VAEs have been proven to be powerful

generative deep learning models for the construction of meaningful and rich inter-

polatable latent spaces.

More pragmatically, the input to the encoder can be nominated as x, the interme-

diate latent vector by z and it’s weights and biases by θ. The encoder can then

be represented by qθ(z|x) and the decoder by pφ(x|z), where it’s input is the latent

vector z with weights and biases φ. To measure how accurately the decoder has

reconstructed the expected output we utilize the log-likelihood logpφ as well as the

regularizing term that specifies how much information was lost between qθ(z|x) and

p(z). This loss function is called the evidence lower bound function in variational

inference and can be formalized as follows:

− Ez∼qθ(z|x) [log pφ(x | z)] +KL (qθ(z | x)‖p(z)) (9.1)

Due to the sampling operation in the latent dimension, obtaining the gradient

through the ELBO is not feasible. This can be side-stepped by using a re-parametrization

trick where p(z) is a standard normal distribution with mean zero and variance one:

ε ∼ N (0, I), z = µ+ σ � ε (9.2)

Much research has gone into the development of variations and different versions
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of the ELBO loss function [16], however for the purposes of our model we find the

vanilla one sufficient.

9.1.2 Proposed VAE Architecture

We experiment with different encoding and decoding architectures, and ultimately

settle for an architecture that is based on the SING auto-encoder architecture. We

have already discussed the SING architecture earlier. The quality of SING’s gen-

erated samples is astounding, for the relatively simple architecture and decide to

implement the model with a number of modifications. We insert a sampling layer in

between the encoder and decoder such that it becomes a VAE. Additionally, to train

the model, we adapt the multi-scale STFT loss as proposed in Parallel WaveGAN,

which is comprised of three differently parametrized STFT operations. However we

do not use the Spectral Convergence, solely the formula suggested in the SING pa-

per. The keras framework makes it easy to implement, as the STFT function has to

be fully differentiable for the gradient to travel backwards and update the weights of

the VAE. Naturally, to train the variational auto-encoder we also require a regulariz-

ation term which is the Kullback Leibler Divergence. The overall objective function

can be observed in (reference formula here). The overall detailed architecture can

be observed in figure 9.1.

Figure 9.1: The overall Architectur
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9.1.3 VAE Results

1. Random Sampling: we sample random vectors from a gaussian distribution

and run them through the decoder to observe the generated result.

2. Interpolating Latent Vectors: we sample two random vectors from a gaus-

sian distributions and create intermediary vectors via linear interpolation.

3. Reconstruction of Waveforms: we observe the reconstruction quality of

encoded samples.
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Figure 9.2: Real Samples vs Samples generated from the VAE. Generally, it seems
that the sounds the VAE generates are different interpolations between the training
samples but lack in clarity and detail, and are noisier than real samples when we
observe the spectrogram representations. However, the STFT loss enables the model
to capture important high and low frequency components.
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Figure 9.3: Interpolations generated by the VAE model. Generally the interpolations
are smooth.

Figure 9.4: Reconstructed drum hits. We suspect that blanacing the reconstruction
vs regularization term has a significant effect on the tradeoff between quality of the
samples and the smoothness of the latent space. Maybe some modification to the
ELBO loss function could yield better results.
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9.2 VAE + GAN experiment

9.2.1 GAN Objective

Initially we tried to utilize a model and training strategy similar to the one proposed

in [20]. However we have failed to reach convergence with that architecture on our

dataset. We assume that this is due to the discriminator not being able to discern

between the initial noise that is generated by the generator from the drum samples

in the dataset. The discriminator quickly collapses to zero loss and the GAN is in

failure mode. To alleviate this we propose the use of an auxiliary discriminator,

however, it is unclear if it is actually contributing to the improvement of the overall

model.

In our architecture we create a generator that shares weights with the decoder of the

variational autoencoder and which can be updated by the discriminator. We thus

train the GAN and VAE in an alternating manner and present the results.

9.2.2 GAN enhanced Results

Figure 9.5: Samples generated from the VAE GAN. The samples look quite different
from the simple VAE but audibly we don’t find much imporvement or difference
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Figure 9.6: Interpolations generated by the VAE GAN model.

Figure 9.7: Reconstructed drum hits with the VAE GAN model.
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9.3 Discussion and Observations

Training GANs is notoriously difficult, and we run into several difficulties. We found

that RMSprop shows the best results the soonest into a training session. We used

a learning rate of 4e-4 for the generator and discriminator and utilize the least

squares gan objective [22]. The largest difficulty we encountered was finding a set

up of parameters that actually gave reasonable results early on during training (we

don’t see any significant difference utilizing [11]). Nonetheless, we fail to obtain

convergence on the regular VAEGAN model. The reason for this could be that for

the STFT loss to succeed in the GAN setting, there has to be a strong conditioning

factor like the mel features in TTS systems [19, 41, 17]. Generally in text to speech

systems we condition on these features and try to construct realistic voice, in this

manner it is reasonable to utilize the STFT loss, as we are guiding the network to

learn a clear 1-to-1 mapping from conditioning feature to raw audio. However, in the

case drum sounds that might be very noisy at times, it is not clear if the STFT can

contribute when used as auxiliary loss alongside the discriminator. In most cases,

we end up with mode collapse when we utilize the STFT loss as an auxiliary loss.
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Part V

Conclusion
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Chapter 10

Conclusions

In this thesis we present an extensive introduction and analysis of modern techniques

that can be utilized for audio processing in a machine learning context. These

techniques range from different feature representations, to audio classification, as well

as manifold learning and dimensionality reduction of audio samples for representing

them on a 2D graph. Finally we conclude with a neural network model that allows

the synthesis of novel sounds. We apply these methods with a special focus on drum

sounds, as they represent a challenging subset of real world sounds.

Two important deductions that we can draw from the analysis of related work, is

that multi-scale architectures are becoming increasingly more popular. Examining

the frequency components of a waveform as a spectrogram representation at different

scales allows the inspection of long and short term features, which is crucial for

classification and also for the synthesis of novel sounds. Modern models therefore

adapt hierarchical and multi-scale architectures for the synthesis of raw waveforms as

well as spectrogram representations. Synthesis in the frequency domain and inversion

to the time domain is also not a problem anymore with neural network powered

inversion systems, which opens up many possibilities for the creative synthesis of

spectrograms.

The development of these powerful methods also demands the construction of mean-

ingful and large datasets that cover multiple modes and aggregate different types

of sounds. The development of tools that allow the construction of such a large
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scale dataset is therefore crucial for the advancement of future endeavors in audio

synthesis. We believe that manifold learning techniques, in combination with intel-

ligent classifiers as well as human judgement could be an intelligent step in the right

direction.

As far as the synthesis of drum samples, it is a relevant and challenging starting

point to test the performance of different methods, but is a problem that still requires

further investigation. Because of their noisy nature certain models might struggle

more than others when trained to synthesize these kinds of sounds. However, even

though the existence of perceptual losses that involve a conversion to the frequency

domain, and their alleviation of some of the past problems of waveform synthesis

with convolutional neural networks, we think that it is possible to further improve

loss functions and make them evermore closer to human perception. At some point

we hope to fully step away from losses in the traditional sense and fully embrace

powerful learned metrics similar to discriminators in GANs, naturally without the

drawbacks that they incur.
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