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Abstract. The process of creating a meaningful and perceptually pleas-
ing color palette is an incredibly difficult task for the inexperienced prac-
titioner. In this paper we show that the Variational Auto Encoder can be
a powerful creative tool for the generation of novel color palettes as well
as their extraction from visual mediums. Our proposed model is capable
of extracting meaningful color palettes from images, and simultaneously
learns an internal representation which allows for the sampling of novel
color palettes without any additional input.
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1 Introduction

Color palettes are an important part of every designer’s workflow. The interac-
tion between different colors in a palette generally dictates the overall mood of
a digital artwork. Practice allows one to build an intuition for selecting colors
that “go well together” in a perceptually pleasing manner, yet it is incredibly
difficult to explain why certain colors fit well together, the more so formalizing
this intuition into algorithmic rules. To this end, we examine the possibilities of
implicitly learning these rules with a neural network.

Even though classifying a palette as ‘visually pleasing’ is highly subjective,
the human eye is naturally drawn to certain patterns and logically arranged
sets of colors. Color palettes assembled by humans usually have a very distinct
structure according to the rules of color theory.
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Fig. 1. Given an input image our model can generate multiple coherent color palettes.

Even though this imposes preliminary guidelines on the selection of colors
that make up a good color palette, this task becomes more difficult when it has
to be matched to certain types of visual media such as images, photographs,
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digital artworks, posters, etc. Not only do the colors have to be meaningful with
regard to each other, but also with regard to the source medium.

Even though convenient tools exist to make these color selections, it is un-
likely that an inexperienced practitioner will be able to make a good selection. In
the next section we briefly discuss some algorithms that are capable of creating
a color palette from a digital image

2 Related Work

The high difficulty of extracting a nice color palette from a digital medium gave
rise to many websites and online services to algorithmically generate such a
color palette from an image. Arguably, the most popular algorithms utilized are
Median Cut [8] and Modified Median Cut Quantization (MMCQ) [1].

Closely related to MC are clustering algorithms. This broad family of algo-
rithms is widely used for the color quantization of digital images, which attempts
at reducing the number of different colors in an image, and represent the orig-
inal image with a reduced palette, subsequently enabling efficient compression.
However, this reduced palette is usually optimal for quantization but not very
attractive as a stand-alone palette. Normally, the majority of 3 dimensional clus-
tering algorithms can be used for this purpose. Popular examples are: k-means
clustering [13] and Oct-tree quantization [5].

Other deep learning methods that have been tangentially applied in this re-
gard are, most notably: Colormind, which attempts at performing color infill
with Conditional Adversarial Networks, PaletteNet [4] which attempts to recol-
orize an image with a given palette, as well as Text2Color [3] which attempts to
generate color palettes from a given sentence using deep learning. None of which
attempt the generation of a color palette from a given image.

3 Proposed Model Architecture

3.1 Variational Auto Encoder

At it’s core, our proposed model consists of a Variational Auto Encoder [11].
VAEs have been proven to be powerful generative deep learning models in mul-
tiple different domains (insert citations here) as well as the construction of pow-
erful interpolatable latent spaces. VAEs learn the parameters of a probability
distribution over the input data space. VAEs are trained not only via a re-
construction term but additionally with a regularization term, which essentially
enforces structure in the latent space, such that similar data samples are encoded
as neighbouring points in the latent space. Conventional auto-encoders give no
guarantee on the interpretability and structure of the latent space, whereas VAEs
guarantee that any randomly sampled latent vector will produce a meaningful
data sample.

In technical terms, the input data to the encoder is designated by x, the
intermediate latent vector by z and it’s weights and biases by 6. Thus, the en-
coding neural network can then be represented by gp(z|z). Equivalently, the
decoder can be represented by py(z|z), where it’s input is the latent vector z
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Fig. 2. The overall architecture of the proposed variational autoencoder consists mainly
of three parts. A convolutional encoder, an intermediary sampling layer that allows us
to generate the latent codes and a bidirectional LSTM decoder which will utilize the
latent code to generate a color palette.

with weights and biases ¢. To measure how accurately the decoder has recon-
structed the expected output we utilize the log-likelihood logp¢ additionally the
loss function contains a regularizing term that specifies how much information
was lost between gg(z|x) and p(z). In variational inference this amounts to the
evidence lower bound function (ELBO):

—Eengo(zle) log pg (x| 2)] + KL (g0 (2 | ) [Ip(2)) (1)

Due to sampling the latent vector, obtaining the gradient through the ELBO
is not possible. This problem can be avoided by the re-parametrization trick with
the specification that p(z) is a standard normal distribution with mean zero and
variance one:

e~N(O,I),z=p+00¢ (2)
3.2 Proposed Model Architecture
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Fig. 3. We inspect the output of the first two convolutional feature maps when running
an input image through the encoder (5 and 10 filters respectively). The feature map
activations show that differently colored areas are recognized.

Utilizing a convolutional encoder makes strong assumptions about the shape
of the input to our model. Even though the detection and localization of specific
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objects is not the main goal in our case, we care for the color of pixels as well as
the amount and number of different colors that could occur. Extracted high level
features in our case might be blobs of color of different sizes and color gradients
running throughout different parts of the image. Figure 3 shows the feature maps
extracted from the first and second convolutional layers in our encoder.

We also make a strong assumption that a digital color palette is a sequence
of numbers that have a strong correlation between each other. To this end,
we utilize a bidirectional GRU [2] to generate the output sequence of colors.
We choose the GRU over an LSTM [10] for a number of reasons: the GRU
exposes the entire hidden state, we find that this is beneficial, is suitable for
modelling short sequences, and thirdly, is overall computationally more efficient.
We observe the success of the GRU in [3]. Additionally, we opt for a bidirectional
unit, as the colors in a palette have a correlation in both forward and backward
parsing order. In this manner the encoder will generate a hidden state z from the
input image which will be passed to the RNN decoder. The decoder consumes
the latent code to generate a sequence of colors x = {x1, x2, x3, x4, x5} where
each item in this sequence is a 3 dimensional vector which specifies the color
component values of the color. A complete overview of the architecture can be
observed in figure 1.
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Fig. 4. We extend our initial architecture and append two discriminators. One that
learns how well the color palette fits to the input image, and another that learns to
evaluate the palette itself. An auxiliary noise vector allows us to generate differing color
palettes for the same latent vector when interpolated.

We propose a variation of our model that is trained adversarially. This type
of architecture was previously introduced in [12]. Instead of utilizing a distance
metric for the reconstruction term we use a learned similarity metric.
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Generative Adversarial Networks [6] consist of two neural networks that are
pitted against each other. A generator that attempts to generate novel data
samples by up-sampling a latent vector x = Gen(z), and a discriminator that
attempts to classify generated samples as real or fake, such that y = Dis(z)e[0, 1]
and formally this objective can be stated as follows:

Leax = log(Dis(x)) +log(1 — Dis(Gen(z))) 3)

Similarly to discriminating between real and generated images, our discrimi-
nator has to learn a meaningful similarity metric that is capable of setting apart
real color palettes from fake ones. We also propose a secondary discriminator
that not only receives a color palette but also the input image that was fed to
the encoder. It’s purpose is to fuse image and palette and classify this com-
bined representation as real or fake. Only discriminating the generated palette
as real or fake is not informative enough to train a strong generator capable of
generating palettes that have a meaningful relationship towards the input image.

In a similar manner to [12], to train this adversarial model we replace the
VAE reconstruction loss term with a Gaussian Observation Model, such that:

p (Disi(z) | z) = N (Disi(x) | Disi(z),I) (4)
Where Dis; is the hidden representation of the I-th layer of the Discriminator,

Z is the generated data sample, and I the identity covariance. The loss term is
thus:

Liine = —Eq(za) logp (Disi(x) | 2)] (5)

And the final criterion becomes:
L= Lprio’r + Eﬁiiksel + EGANI + El?iilfez + ACGAN2 (6)

Where Lgan1 and Lgane are the respective terms for each of the two discrim-
inators.

We follow the exact training regime detailed in the [12], except that we train
the two discriminators with Mean Squared Error instead of Binary Crossentropy
as proposed in Least Squares GANs [14]. Additionally, we perform one sided label
smoothing, train both generator and discriminators with the Adam optimizer,
using a learning rate of 0.0005 for the generator and 0.002 for the discriminators,
according to the Two timescale update rule [9], with a betal value of 0.5. These
changes incur a stable training procedure.

4 DATASET

To train our model we require pairs of images and their corresponding palettes.
It is possible to create the dataset by taking an arbitrary number of images and
computing the corresponding palettes with the quantization algorithms men-
tioned in section 2. Even though this would allow us to create an extensive
dataset, the computed palettes do not satisfy the properties that we discussed
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earlier. An alternative would be utilizing websites that allow the creation of a
palette from a given image, but it is not transparent what type of algorithm is
used to obtain the palette, and thus refrain from utilizing them. For our pur-
poses we collect a dataset where the colors of each palette have been selected
and arranged manually by a person. Two websites that offer such palettes are
ColorPalettes ! and DesignSeeds ? (used in [4]).

In a similar manner to PaletteNet [4] we scrape Design Seeds for a total of
3200 images, and ColorPalettes for a total of 4000 images. The caveat is that
images on ColorPalettes are accompanied by palettes that contain 5 colors rather
than 6 in DesignSeeds. This causes a problem when we try to combine both
datasets. We randomly drop one of the 4 intermediate colors in the DesignSeeds
Dataset. We also convert images and corresponding palettes to the CIE LAB
color space[7] and normalize the pixel values to a [0,1] range.
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Fig. 5. The regular VAE generates plausible palettes but does not generalize well to
new data. Sampling random noise for the auxiliary vector in the adversarial model
allows for the generation of multiple plausible palettes for the same image.

We conduct a number of experiments to test our model qualitatively by encoding
new images, and generate color palettes from them. Additionally, we explore the
learned latent space of each of the two models. Examples of palettes extracted
form images can be seen in fig. 5. The VAE produces a plausible palette but
does not generalize well to new data. The adversarial model leverages this by
being able to generate a slew of palettes from which one can choose.

Secondly, to test the learned latent space we perform interpolation on some
latent vectors for both models. Figure 6 shows the results. We generate two
random latent codes from a normal distribution with mean zero and variance
one, and interpolate them linearly [?]. Interpolations show a smooth transition
from one palette to another, with several meaningful intermediary palettes and
exemplify that a meaningful latent space has been learned. The adversarial vari-
ant also allows the interpolation along two axes which are the latent code and
the auxiliary noise vector. We observe that the auxiliary noise vector generally
controls the brightness of the decoded palette.

A nice property which allows us to control the colorfulness of sampled colors
is simply by increasing the sampling interval of the latent code. Samples drawn

! https://colorpalettes.net/
2 https://www.design-seeds.com/



Color Palette VAE 7

[ [ B | = = smosm osm osm osmw e e EE W EE W mmow Latent
| S —p—— S ——

[ m [ T T Ty ne———— I ——————— | |

= ==...u.-.-.-.-.- N ——
[ o B B B | USSR S|

et

 SEE SEE S NS S EE . N W yecror 2

Fig. 6. Our model presents a continuous latent space that is interpolat-able. We sample
random latent vectors and decode them and their interpolations. The addition of an
auxiliary noise vector alongside the sampled/encoded latent vector in the adversarial
model allows us to interpolate between the two of them to generate fine variations of
the same palette. We found that interpolating the noise vector while keeping the latent
vector fixed resulted in change of variation of the decoded color palette.

from an interval that is tighter around the mean have duller colors and are more
likely to make meaningful palette, whereas samples drawn from a gradually larger
interval are more colorful.

6 EVALUATION

Qualitative evaluation of our model is difficult, but can be leveraged by subjective
inspection of the generated results. We conduct two surveys with 12 participants
to evaluate the quality of the generated palettes based on two criteria: how well
they fit to a given input image, and how coherent they are by themselves. Table

1 shows the results.

Table 1. Average Mean Opinion Score assigned to the generated palettes based on how
well the a given palette fits to the input image as well as how coherent each palette is

individually.
MOS (1 to 5)
Score Human| VAE| VAE-GAN
Fittingness| 4.514 | 3.168 1.82
Prettiness | 4.008 | 3.514 3.34

In the first survey we presented the surveyee with an image and three palettes.
One being a palette created by a person (palette from test set) and the two other
being the palettes generated by our two models. The objective was to rate each
palette with a score from 1 to 5, which indicates how much the palette fits to
given image. We select 10 images at random from the test set and run our models
on them to generate the palettes. Additionally, the surveyee is not told which
color palette is from what origin. Both survey results unsurprisingly indicate
that the ground truth palettes are superior in either aspect. This is because
color accuracy is non-negotiable for the discriminating human observer.

7 CONCLUSION

In this paper we presented two deep learning models that can generate novel
color palettes from given images, as well as generate them at random from a
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learned latent space. We also showed that this latent space is meaningful and
continuous and can be sampled in a number of different ways.

For an expert it might take several minutes to create a color palette from a
random image, whereas the proposed framework can suggest several tentative
color palettes in an instant. Beyond this, utilizing a dataset consisting of color
palettes that were handcrafted by individuals, a deep learning approach is ca-
pable of capturing aspects of the human decision process. This is impossible to
mimic with a hand-engineered algorithm.
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