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Abstract 

 

As an important subtask of video restoration, video super-resolution has attracted a lot of 

attention in the community as it can eventually promote a wide range of technologies, e.g., 

video quality enhancement, video compression, highly efficient video transmission system etc. 

Recent video super-resolution model with recurrent architecture achieves cutting-edge 

performance. It efficiently utilizes recurrent architecture with neural networks to gradually 

aggregate details from previously generated frames.  

Nevertheless, this method faces a serious drawback that it is sensitive to occlusion, blur, and 

large motion changes since it only takes the previously generated output as recurrent input for 

the super resolution model. This will lead to undesirable rapid information loss during the 

recurrently generating process, and performance will therefore be dramatically decreased. Our 

works focus on addressing the issue of rapid information loss in video super-resolution model 

with recurrent architecture. By producing attention maps through selective fusion module, the 

recurrent model can adaptively aggregate necessary details across all previously generated 

high-resolution (HR) frames according to their informativeness. The proposed method is 

demonstrated to be useful for preserving high frequency details collected progressively from 

each frame, while enable the model to discarding undesired noisy artifacts that wrongly and 

sequentially enhanced during the recurrent super-resolution process. This significantly 

improves the quality of the super resolution video. 

 

Keywords: Video super-resolution, selective fusion, video transmission system, recurrent 

networks 
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Chapter 1 Introduction 

1.1 Video super-resolution with deep learning 

Super-resolution (SR) aims at transferring low-resolution (LR) inputs to corresponding high-

resolution (HR) outputs. It is an inherently ill-posed problem since one single given input in 

the LR space can be mapped to multiple possible outputs in the HR space. Since HR images 

and videos contain more high-frequency spatial details, SR is widely applied in different fields, 

e.g. video quality enhancement, video compression, and video transmission system etc. 

According to the processing number of inputs, SR can be mainly classified into single image 

super-resolution (SISR) and multi-image super-resolution (MISR). Video super-resolution can 

be achieved by repeating the process of SISR (or MISR) and inferring every frame of a given 

video. Although SISR often shows an efficiently better performance than MISR, MISR is more 

frequently adopted in video super-resolution (VSR) task since it can utilize the temporal 

relevance between consecutive input LR frames, and it would be naturally prone to generate 

temporally consistent frames compared to conducting VSR in the SISR manner. 

Thanks to the rapid development of deep learning techniques in recent years, deep learning 

based SR outperformed traditional methods such as interpolation-based methods [1], [2], 

reconstruction-based methods [3], [4] and example-based methods [5], [6], etc. Deep learning 

based video super-resolution model learns the mapping between LR space and HR space in an 

end-to-end manner. Deep neural networks would automatically extract features and abstractions 

during the end-to-end training procedure in the SR task. It better solved the problem of 

indistinct definition of the mapping among highly sophisticated dataset than in traditional 

methods. Consequently, most of recent state-of-the-art SR models are based on deep learning 

techniques. 

Recent VSR work highlights using the temporal relevance by either taking multiple LR 

frames as inputs to generate successive HR frames (MISR) such as Kappeler et al. [7] and Tao 

et al. [8] (sometimes the number of input frames and scale are adaptive [9]) or adopting 

recurrent architecture to gradually aggregate necessary high frequency spatial details from 

previous generated frames such like FRVSR [10] and Haris et al. [11].  

In this thesis, we mainly explored the latter scheme for the reason that: with the advantage 

of re-using high-frequency details, it shows superiority over the methods which taking multiple 

frames to do inferring in both efficiency and accuracy, and showing more competitive 

performance in VSR quality.  
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1.2 Problem statement 

FRVSR [10] is a typical model adopting recurrent architecture for VSR. It is an end-to-end 

trainable VSR framework that takes the previously estimated output as the input for the next 

inference. The advantage of such recurrent architecture based VSR model is shown in two 

aspects, one is avoiding computational redundancy since it is able to re-use the high-frequency 

details during the inferring process, and the other is that the output frames are naturally of 

temporal consistency between neighboring frames with satisfying quality. 

However, it faces a serious drawback of rapid losing prior high-frequency details that 

collected from previously generated HR frames, because it merely and inflexibly takes one 

previously estimated HR frame as the recurrent input. As a result, it is sensitive to occlusion, 

blur, and motion changes, and the performance will therefore be largely limited.  

Moreover, the recurrent architecture based VSR with inflexible input scheme is unable to 

discard some unnecessary high-frequency details that previously produced, especially when the 

scene lasts for a long sequence of frames. These unsatisfactory details will be gradually 

reinforced during the recurrent inference process and further degrade the overall performance 

as demonstrated in Figure 1.1. 
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Figure 1. 1. Gradually reinforced undesirable details become noisy artifacts that degrade the 

overall performance (picture source: [31]) 

 

In this work, we focus on addressing the aforementioned issue by introducing a selective 

fusion module for appropriate locating and fusing necessary high-frequency spatial information 

to better reconstruct HR outputs. 

 

1.3 Thesis outline 

The outline of this thesis is organized as follows: 

Chapter 1: We describe the background of VSR with deep learning and the problem that needed 

to be solved in this work. Besides, the advantages and disadvantages of recurrent architecture 

based VSR are also presented in this chapter. 
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Chapter 2: We introduce the technologies related to this work, ranging from the classification 

of SR, the principle knowledge of CNN and the key issues concerning with the recurrent 

architecture based VSR models to the quality assessment metrics of SR results. Through 

analyzing the contributions, focuses and the limitations of previous recurrent architecture based 

VSR work, the potential benefits of our work have been shown. 

 

Chapter 3: We demonstrate the frameworks of the proposed selective fusion based VSR model 

with recurrent architecture. And we respectively introduce the details of the three stages: motion 

alignment, selective fusion and reconstruction stage for generating the current HR estimate, in 

which we explain the design principle and assumption of the selective fusion module. Besides, 

the reason leading to a very limited additional computation cost of the proposed method has 

been discussed in this chapter. 

 

Chapter 4: The experimental environment is introduced in this chapter. By training and inferring 

the recurrent architecture based VSR models with different settings on test dataset, we compare 

and analyze the evaluation results quantitatively, along with the illustrated qualitative results, 

we demonstrate the superiority of our proposed method and the effectiveness of the fusion 

principle. 

 

Chapter 5: Chapter 5 concludes this thesis.  
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Chapter 2 Related Technologies 

2.1 Super-resolution categories 

Super-resolution could mainly be classified into three categories, including interpolation-

based methods, reconstruction-based methods, and example-based methods. 

 

2.1.1 Interpolation-based methods 

Image interpolation is a widely used image processing technology that aims to resize digital 

images, and it is also the simplest and the most straightforward form of conducting super-

resolution (image upsampling).  

Although it is computationally efficient but of low accuracy compared to other super-

resolution methods, some of them are still adopted and performed an important role in deep 

learning based SR. Well-known interpolation-based methods include bicubic interpolation [1] 

and Lanczos resampling [2]. Bicubic interpolation is widely applied in building SR datasets by 

degrading HR images to their LR counterparts. 

There is a noticeable characteristic of interpolation-based methods that they could only resize 

the image resolution by interpolating with known image signals other than bringing extra 

information, which means they could not bring high frequency details that lead a LR image to 

a truly HR image. 

 

2.1.2 Reconstruction-based methods 

As the principle of super-resolution is to explore the mapping solutions between LR space 

and HR space, reconstruction-based SR methods such as [3], [4], [12] tried to utilize 

sophisticated prior knowledge to restrict the possible mapping solutions so that increasing the 

mapping accuracy. But reconstruction-based methods often suffer from the difficulty of 

applying to large datasets since large amount of similar image patches are needed and they are 

computationally expensive. 

 

2.1.3 Traditional learning-based methods 

Learning-based SR methods are also known as example-based methods. These methods take 

advantage of machine learning algorithms to learn the mapping solutions between the LR space 
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and HR space by analyzing the statistical relationships of training pairs such as the Markov 

random field based approach [5] and the random forest based approach [6]. 

It is notable that most previously researched learning-based SR methods often suffer from the 

shortcoming of machine learning techniques that it is necessary to formulate a series of robust 

handcrafted features which are suitable for a massive dataset. It would lead to a poor definition 

of the mapping solutions between the LR space and the HR space. 

 

 

2.1.4 Recent deep learning based method 

Deep learning models is able to extract the hierarchical features of images automatically in 

an end-to-end manner and then leverage them to achieve the purpose defined by objective 

functions (loss functions). Because of the superior robustness of these learning-based extracted 

abstractions, the highly efficient end-to-end learning process, and the development of hardware 

computing power, deep learning based SR models achieved state-of-the-art performance. 

 

2.2 Convolutional Neural Network 

Convolutional Neural Network (CNN) was the first introduced deep learning based model 

for SR by Dong et al. [13]. And it achieved state-of-the-art performance. Many subsequent 

researchers followed up with deeper neural networks of different types of architectures, loss 

functions and learning strategies, carrying the field into a new era. 

CNN is originally developed for image classification task. It is made up of neurons that have 

learnable weights and biases, which is the analogy of biological brain neurons. Every neuron 

receives some inputs and performs a dot product with an optionally followed non-linearity 

transformation. A CNN consists of a sequence of layers including convolutional layer, pooling 

layer and fully-connected layer. They transform one volume of activations (feature map) to 

another through a differentiable function. And the whole network will express a single 

differentiable score function for classification problem. 

The neurons in a layer of the CNN are arranged in 3 dimensions: width, height, and depth. 

They are of an important characteristic: local connectivity, it means that the different layers of 

neurons in CNN connect to only a certain local region of the input neurons (this certain local 

region is named receptive field of the neuron), which makes CNN different from ordinary 

neural networks (made of fully-connected layers). This characteristic solves the obstacle of 
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ordinary neural networks that they could hardly handle the full images as model’s inputs since 

the necessary learnable parameters (weights) will be too large to compute. 

Another important characteristic of CNN is parameter sharing, which means that a specific 

feature map (consists of a 3D-dimension activations) is obtained from dot product computation 

with one single fixed filter (or kernel). And this also dramatically decrease the learnable model 

parameters, leading CNN to be efficient enough to handle computer vision problem. 

 

Figure 2. 1. An example of 2-D convolution 

Convolution layer is the core component of CNN. Here we give an example of 2-D 

convolution. The size of convolutional kernel is the receptive field of the neuron in feature map. 

Every neuron in the feature map is computed by elementwise multiplying the input data (could 

be an image or the activations from previous layer) with the sequentially sliding convolutional 

kernel (the stride here is 1). 

 

2.3 Video super-resolution with deep learning 

We will then introduce the related technologies of deep learning based video super-resolution. 

Although it is similar to SISR, there are several notable highlights specifically for VSR task. 

 

2.3.1 Fusion of multiple frames 

It is critical for VSR model to leverage the underlying temporal relevance between 

neighboring frames instead of treating them as a set of independent single images, and this 

important step is fusion. On the one hand, temporal relevance is potentially informative for 
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video processing to explore, on the other hand, treating frames as a set of independent images 

will easily lead to incoherent HR results which is undesirable for the video restoration task. 

Most early VSR works such as Kappeler et al. [7] and Tao et al. [8] utilize convolution layers 

to perform the fusion on multiple LR frames, which could be seen as an automatic feature 

extraction and integration of the whole frames involved. Recent trend of conducting fusion is 

to adopt networks with recurrent architecture to gradually fuse multiple frames and gather 

necessary information by receiving the previous HR output as the input for the next inference, 

which is much more efficient than previous fusing method since the high frequency details are 

able to be re-used in such models. 

And in this thesis, we will focus on the VSR with recurrent fusion architecture in order to 

alleviate its shortcomings as introduced in chapter 1.2 and improve the performance. 

 

2.3.2 VSR with recurrent fusion architecture 

There are two famous recurrent architecture based VSR models with different types of loss 

functions (objective functions): FRVSR [10] and TecoGAN [14]. We will briefly introduce 

them and focus on the technologies related to this thesis. 

 

2.3.2.1 Frame-Recurrent Video Super-Resolution (FRVSR) 

FRVSR is the first proposed end-to-end trainable VSR model that adopted the recurrent 

architecture, it efficiently uses the previously inferred HR estimate to super-resolve the 

subsequent frame. 

It is demonstrated that this frame-recurrent architecture naturally encourages the output 

frames to be temporally consistent, and the characteristic of re-using the high frequency details 

increases both the VSR performance and efficiency. 

 

2.3.2.1.1 Framework overview of FRVSR 

The framework overview and the losses involved in FRVSR are shown in Figure 2.2 and 

Figure 2.3 respectively. 

A learnable optical flow estimation network (FNet) receives current LR frame 𝐼𝑡
𝐿𝑅  and 

previous LR frame 𝐼𝑡−1
𝐿𝑅  as inputs. Then, it generates predicted flow maps 𝐹𝐿𝑅 so that provide 

the approximate reference for the subsequent warping the previous HR frame 𝐼𝑡−1
𝐻𝑅   to the 

current frame, following the procedure in [29]. This is a motion estimation process based on an 

assumption that the motion changes between neighboring HR frames are similar to the LR 
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version, which aims to provide more accurate information for inferring the next HR estimate, 

named alignment in VSR. The distance between warped previous LR frames and the current 

LR frame 𝐼𝑡
𝐿𝑅 is then used as loss to train FNet. 

After that, through a space-to-depth transformation [22] which extracts shifted low-

resolution grids from the input and places them into the channel dimension, the warped previous 

HR estimate along with the current LR frame are received as the inputs of the reconstruction 

network (SRNet), generating the estimated HR result 𝐼𝑡
𝑒𝑠𝑡 for the current frame. The distance 

between the estimate I𝑡
𝑒𝑠𝑡 and ground truth HR frame I𝑡

𝐻𝑅 is used as loss to train the SRNet. 

The training process of the two learnable models aim to minimize the following loss functions 

(in a way of 𝐿2 loss) respectively for FNet and SRNet to optimize the parameters: 

𝐿𝑓𝑙𝑜𝑤 = ‖𝑊𝑃(𝐼𝑡−1
𝐿𝑅 , 𝐹𝐿𝑅) − 𝐼𝑡

𝐿𝑅‖
2

2
                       (2.1) 

  𝐿𝑠𝑟 = ‖𝐼𝑡
𝑒𝑠𝑡 − 𝐼𝑡

𝐻𝑅‖2
2                            (2.2) 

After completing the training, this end-to-end model can directly infer VSR based on given 

LR input frames. 

 

 

Figure 2. 2. Framework overview of the FRVSR 
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2.3.2.1.2 Network details and related technologies of SRNet and FNet 

 

 

 

Figure 2. 3. Losses in FRVSR 

Figure 2. 4. The network architecture of SRNet 

Figure 2. 5. The network architecture of FNet 
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Figure 2.4 and Figure 2.5 illustrate the network architectures of SRNet and FNet, in which 

⨁  indicates the concatenation of the inputs in the channel dimension (depth), the number 

followed with Conv indicates the number of convolution kernels (filters), which also 

determined the number of output channels of the layer. Both networks are based on CNN, and 

they are trained jointly in FRVSR.  

There are two notable techniques that deserve to be discussed except for CNN in SRNet: one 

is transposed convolution layer, and the other is local residual learning. 

Transposed convolution layer is also known as deconvolution layer, it is also one of the 

upsampling techniques like interpolation-based methods. It learns to upsample the input feature 

maps to upscaled images in an end-to-end manner by performing an opposite version of 

convolution. Specifically, it predicts and upscales the targeted image resolution by zero-padding 

and performing convolution. Transposed convolution layer differs from the interpolation-based 

methods in that it would adaptively (after training) introduce extra information other than only 

manipulating the inputs’ own signals. 

According to the analysis of ResNet [15], with the depth of the whole network increases, a 

learning degradation problem will occur which impede the training. And this issue could be 

largely alleviated by introducing some shortcuts between layers and optionally learning the 

residuals between the final targeted output and the input (appropriate for image translation tasks 

such as SR). The local residual learning is to locally add several shortcuts between the middle 

layers of the deep neural networks, which benefits the learning procedure by improving the 

learning efficiency. 

On the other hand, FNet simply followed an encoder-decoder style architecture based on 

CNN. It is not necessary to follow exactly the same structures they adopted since they took the 

balance between result quality and model complexity when constructing these architectures. It 

is free to substitute any specific networks with similar functions for them. In fact, recently there 

are many methods with more complex optical flow estimation such as [16], [17], [18], pre-

trained neural networks based perceptual loss functions such as [26], [27], and GAN 

discriminators such as [23], [24], [28] for substitution. 

 

2.3.2.2 TecoGAN and Ping-Pong (PP) loss 

In TecoGAN, the authors intentionally keep the generator part the same with FRVSR to 

demonstrate the benefits brought by their proposed spatio-temporal discriminator module, 

which is based on Generative Adversarial Networks [30] (GANs, could be seen as learnable 

loss functions that get joint training with generator and supervise the generated outputs), aiming 

at generating perceptually realistic HR outputs. 
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We would though focus on another main contribution they proposed: Ping-Pong (PP) loss. 

The authors also noticed one of the drawbacks brought by the recurrent architecture mentioned 

in chapter 1.2: the accumulating noisy artifacts frame by frame. And this issue is also discovered 

in a variety of recurrent architectures. Their solution is to introduce a bi-directional loss function 

to supervise the long-term consistency, the overview of the PP loss is shown below in Figure 

2.6. 

It is necessary to first duplicate the input frame sequence in order to make it become a 

symmetric Ping-Pong sequence (where Ping refers to the forward pass and Pong refers to the 

backward pass). By doing this, a symmetric Ping-Pong sequence of the HR output from the 

frame-recurrent generator (FRVSR) could be obtained. Similar concept is used in robotic 

control algorithms [25]. Finally, as removing the noisy artifacts accumulated along with frames 

is desirable, as well as the output results should be perfectly symmetric, they trained the 

networks with those extended PP sequences and constrain the generated outputs to be 

symmetric by introducing a loss function during the training: 

𝐿𝑝𝑝 = ∑ ‖𝐼𝑡
𝐻𝑅 − 𝐼𝑡

𝐻𝑅′‖2
2𝑛−1

𝑡=1                           (2.3) 

Although the PP loss successfully removes the easily accumulated artifacts in recurrent 

architecture based VSR, it spent twice training and inferring cost directly because the inference 

data needs to be doubled.  

And most importantly, the solution they considered is to directly suppress this effect, instead 

of exploring the fundamental cause behind this problem induced by the recurrent architecture. 

Consequently, the PP loss could only solve one of the shortcomings brought by recurrent 

architecture at the cost of doubled training and inference expense, other limitations, such as 

rapid losing high frequency details that are desired to be preserved longer, still remain to be 

solved. 
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Figure 2. 6. The overview of PP loss proposed in TecoGAN 

 

The VSR models with different fusion schemes introduced above are explicitly fusing the 

frames without considering spatial informativeness that adaptive to different locations and 

frames. In this thesis, we would take the spatial informativeness into account and propose 

selective fusion for solving the problem brought by the recurrent architecture in VSR. Since we 

choose to fix the problem through analyzing the fundamental cause, it is feasible for us to 

largely alleviate all the shortcomings it would induce at the same time. Besides, we will 

demonstrate the extra computation cost that proposed method produce is very limited compared 

to the solution of PP loss in TecoGAN. 
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2.4 Quality assessment of SR 

Quality assessment in SR means to evaluate the objective visual attributes or subjective 

perceptual feedbacks of estimated HR images or videos. Although different assessment 

methods could be inconsistent to each other, they would respectively represent some specific 

aspects of the generated outputs. Since the subjective assessment based on human perception 

is inefficient and of unstable accuracy, we choose to evaluate the results with computation based 

assessing methods. 

According to [19], the objective quality assessment methods are mainly divided into three 

types: full-reference methods which comparing with reference images, reduced-reference 

methods which comparing with extracted features, and no-reference methods without any 

reference images. In deep learning based SR tasks, there usually exists LR-HR training pairs 

and test dataset for easily obtaining the reference data, so performing full-reference methods is 

appropriate for SR since it is efficient and of computation based accurate assessing results. Next 

we will introduce the full-reference assessment methods we adopted. 

 

2.4.1 Peak Signal-to-Noise Ratio (PSNR) 

Peak signal-to-noise ratio is widely used for quality assessment in image/video restoration 

tasks which measure the distortion extent of the target image compared to the reference. PSNR 

is defined by the maximum pixel value and the mean squared error (MSE) between the ground 

truth image and the corresponding reconstructed image. 

Given the ground truth image 𝐼  with the pixel number of 𝑁 , and its corresponding 

reconstructed image 𝐼, the PSNR between 𝐼 and 𝐼 is defined as follows: 

PSNR = 10 log10(
𝑀2

1

𝑁
∑ (𝐼(𝑖)−𝐼(𝑖))2𝑁

𝑖=1

)                      (2.4) 

where 𝑀 equals to the maximum pixel value of the image, for example, when images are using 

8-bit representations, 𝑀  equals to 255 which is the maximum value of pixels. As we can 

observe that the PSNR only concerns with pixel level difference between the reconstructed 

image and the ground truth, it is often inconsistent with perceptual assessments. Nevertheless, 

it still accurately reveals the inherent performance in a fair way that provides metrics for 

literature comparisons, and there is no absolute perceptual evaluation metric. As the result, 

PSNR is still the most widely used evaluation metric for SR. 
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2.4.2 Structural Similarity (SSIM) 

SSIM considers the human visual system characteristic of adapting to object structures, it is 

used to measure the structural similarity through luminance, contrast and structures. 

Given the ground truth image 𝐼 with the pixel number of 𝑁, the luminance and contrast are 

respectively estimated as the mean and standard deviation of the image intensity as follows: 

𝜇𝐼 =
1

𝑁
∑ 𝐼(𝑖)𝑁

𝑖=1                             (2.5) 

𝜎𝐼 = √
1

𝑁−1
∑ (𝐼(𝑖) − 𝜇𝐼)2𝑁

𝑖=1                          (2.6) 

where 𝐼(𝑖) indicates the intensity of the 𝑖-th pixel of image  𝐼, and the SSIM between the 

ground truth image 𝐼 and the reconstructed image 𝐼 could be calculated by: 

SSIM(𝐼, 𝐼) =
(2𝜇𝐼𝜇𝐼̃+𝑐1)(2𝜎𝐼𝐼̃+𝑐2)

(𝜇𝐼
2+𝜇

𝐼̃
2+𝑐1)(𝜎𝐼

2+𝜎
𝐼̃
2+𝑐2)

                      (2.7) 

where 𝜎𝐼𝐼 =
1

𝑁−1
∑ (𝐼(𝑖) − 𝜇𝐼)(𝐼(𝑖) − 𝜇𝐼)𝑁

𝑖=1  is the covariance between 𝐼 and 𝐼, c1 and c2 

are constants for stabilizing. 

It is notable that although SSIM is also a full-reference metric like PSNR, but it differs from 

PSNR in that PSNR estimates the absolute errors between the ground truth and the 

reconstructed images, and on the other hand, SSIM is based on a perception model which 

incorporates the prior knowledge of the structural information and perceptual phenomena such 

as luminance masking and contrast masking, hence it better reflects the perceptual quality and 

is also widely used in assessing the SR model. 
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Chapter 3 Proposed Approach 

By incorporating the proposed selective fusion into the recurrent architecture based VSR 

model, there are several architectural improvements need to be applied. We will introduce them 

in detail and further discuss the framework of selective fusion module and the design principle 

behind it. 

 

3.1 Framework of proposed method based VSR with recurrent 

architecture 

 

Figure 3. 1. Framework overview of the proposed method 

 

Figure 3.1 illustrates an overview of the video super-solution model with recurrent 

architecture and selective fusion module, where the FNet and SRNet are still the deep learning 

based model with learnable parameters. The whole model is still an end-to-end model that 

conducts joint training. The most notable difference between FRVSR and the proposed method 

in architecture is that it is necessary for most of the modules in the proposed method to process 
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multiple frames or features arranged in channel dimension since the model as a whole is no 

more manipulating only one previous estimated frame. We divide the model into three main 

stages: motion alignment stage, selective fusion stage and reconstruction stage, and respectively 

introduce them in detail. 

3.1.1 Motion alignment stage 

In this stage, our main goal is to accurately align informative details as much as possible that 

would be potentially beneficial for the reconstruction module. Specifically, we need to warp 

the motions of previously generated outputs based on an assumption that the motion changes 

between neighboring frames of HR space are similar to the motion changes between their 

corresponding LR version. And this sort of motion changes is able to be expressed by the optical 

flow maps between two neighboring frames. 

As the first step, the optical flow maps between LR frame 𝐼𝑡
𝐿𝑅 and previous LR frames 𝐼𝑡−1

𝐿𝑅 , 

𝐼𝑡−2
𝐿𝑅 ,…𝐼𝑡−𝑖

𝐿𝑅  in a given video sequence could be estimated by the trained FNet in order, where 

𝑖  equals to the maximum number of previously generated HR frames when inferring the 

targeted output 𝐼𝑡
𝑒𝑠𝑡. Then normalized flow maps are given by: 

{𝐹𝑡−1
𝐿𝑅 , 𝐹𝑡−2

𝐿𝑅 , . . . , 𝐹𝑡−𝑖
𝐿𝑅 = 𝐹𝑁𝑒𝑡(𝐼𝑡

𝐿𝑅 , 𝐼𝑡−𝑖
𝐿𝑅 )  ∈  [−1,1]𝐻×𝑊×2}           (3.1) 

where 𝐻 × 𝑊 × 2 denotes the value of three channels (height, weight, and depth) of LR video 

frame. The generated flow maps represent the predicted movements of each pixels in 𝐼𝑡−1
𝐿𝑅 , 

𝐼𝑡−2
𝐿𝑅 ,…𝐼𝑡−𝑖

𝐿𝑅  with reference to current LR frame 𝐼𝑡
𝐿𝑅. 

According to the previously mentioned assumption, we are going to utilize the upscaled LR 

flow maps to similarly predict the motion changes for warping the HR frames. By applying 

bilinear interpolation, we are able to efficiently obtain the corresponding HR flow maps: 

{𝐹𝑡−1
𝐻𝑅 , 𝐹𝑡−2

𝐻𝑅 , . . . , 𝐹𝑡−𝑖
𝐻𝑅 = 𝑈𝑃(𝐹𝑡−𝑖

𝐿𝑅 )  ∈  [−1,1]𝑠𝐻×𝑠𝑊×2}           (3.2) 

in which 𝑠 denotes the scaling factor which is an inherent variable that decide the upscaling 

size of SR models (𝑠 = 4 for this work).  

Then the alignment stage could be completed through warping the previously estimated HR 

frames 𝐼𝑡−1
𝑒𝑠𝑡 , 𝐼𝑡−2

𝑒𝑠𝑡 ,…𝐼𝑡−𝑖
𝑒𝑠𝑡 to current frame 𝐼𝑡

𝑒𝑠𝑡: 

{𝐼𝑡−1
𝑒𝑠𝑡 , 𝐼𝑡−2

𝑒𝑠𝑡 , . . . , 𝐼𝑡−𝑖
𝑒𝑠𝑡 = 𝑊𝑃(𝐼𝑡−𝑖

𝑒𝑠𝑡 , 𝐹𝑡−𝑖
𝐻𝑅) }                  (3.3) 
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3.1.2 Selective fusion stage 

 

Figure 3. 2. The selective fusion module 

 

The framework of proposed selective fusion module is shown in Figure 3.2. Inspired by the 

assumption in alignment stage that utilized the universal characteristics between LR and HR 

sequences to bring underlying beneficial information, we also aimed to further explore the 

characteristics of LR videos that correlated with the reconstructed HR counterparts.  

The module is designed based on an assumption that the warped previously generated HR 

frames/regions with the more successful warping should have been more informative for 

reconstruction.  

Suppose obstacles that impede the warping process, for example, occlusions and blurs have 

occurred between two neighboring frames, it would be not possible for the pixels of some 

certain influenced regions of previous frames to be accurately assigned a position in current 

frame, which represents those regions are of poor alignment results and less informativeness. 

If we could exclude these poorly aligned regions through a selective screening performing on 

all the warped previously estimated HR frames 𝐼𝑡−1
𝑒𝑠𝑡 , 𝐼𝑡−2

𝑒𝑠𝑡 , . . . , 𝐼𝑡−𝑖
𝑒𝑠𝑡, we are able to gather the 

most informative regions among them, and fuse them into one single frame used for 

reconstructing the current HR estimate. 

By feeding the warped previous LR frames 𝐼𝑡−1
𝐿𝑅 , 𝐼𝑡−2

𝐿𝑅 ,…𝐼𝑡−𝑖
𝐿𝑅  (with reference to the current 

LR frame 𝐼𝑡
𝐿𝑅) and the current LR frame 𝐼𝑡

𝐿𝑅 once again into the FNet, a set of optical flow 

maps 𝑂𝐹𝑡−1
𝐿𝑅 , 𝑂𝐹𝑡−2

𝐿𝑅 ,…𝑂𝐹𝑡−𝑖
𝐿𝑅  could be obtained. Since there exists a ground truth LR current 

frame for examination, these flow maps are able to reflect the warping (alignment) quality of 

certain regions of the warped previous LR frames: regions with lower distances of 𝑂𝐹𝐿𝑅 are 

expected to be better aligned and thus informative. Then we are able to locate informative 

regions in the warped previous LR frames 𝐼𝑡−1
𝐿𝑅  , 𝐼𝑡−2

𝐿𝑅  ,…𝐼𝑡−𝑖
𝐿𝑅   and produce binary attention 
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maps (a group of matrices) 𝐴𝑀𝑡−1
𝐿𝑅  , AM𝑡−2

𝐿𝑅  , ⋯ AM𝑡−𝑖
𝐿𝑅  , where “1” indicates the location of 

minimum optical flow distance. 

Next, according to the similarity between LR and HR video sequences, we can instruct the 

fusing process of multiple warped previously estimated HR frames based on the generated 

attention maps, which constructs the whole selective fusion stage. The whole stage generates a 

fused frame that adaptively aggregated the high frequency details that are of more value for 

reconstructing the current HR frame, it could be expressed as follows: 

𝐼𝑠𝑓 = 𝑆𝐹(∑ 𝐼𝑡−𝑖
𝑒𝑠𝑡𝑡

𝑖=1 , ∑ 𝑊𝑃(𝐼𝑡−𝑖
𝐿𝑅 , 𝐹𝑡−𝑖

𝐿𝑅 )𝑡
𝑖=1 , 𝐼𝑡

𝐿𝑅)                (3.4) 

 

3.1.3 Reconstruction stage 

With a space-to-depth transformation, the fused frame 𝐼𝑠𝑓 and the current LR frame 𝐼𝑡
𝐿𝑅 

are fed into SRNet, generating the current HR estimate 𝐼𝑡
𝑒𝑠𝑡. The final output of this model can 

be expressed as follows: 

𝐼𝑡
𝑒𝑠𝑡 = 𝑆𝑅𝑁𝑒𝑡(𝐼𝑡

𝐿𝑅 ⊕ 𝑆𝑠(𝑆𝐹(∑ 𝐼𝑡−𝑖
𝑒𝑠𝑡𝑡

𝑖=1 , ∑ 𝑊𝑃(𝐼𝑡−𝑖
𝐿𝑅 , 𝐹𝑡−𝑖

𝐿𝑅 )𝑡
𝑖=1 , 𝐼𝑡

𝐿𝑅)))        (3.5) 

 

3.2 Training objectives 

  The whole model is still end-to-end trainable. In the training stage, we aim to minimize the 

following loss functions to optimize the learnable parameters in FNet and SRNet: 

𝐿𝑓𝑙𝑜𝑤 = ∑ ‖𝑊𝑃(𝐼𝑡−𝑖
𝐿𝑅 , 𝐹𝑡−𝑖

𝐿𝑅 ) − 𝐼𝑡
𝐿𝑅‖

2

2𝑡
𝑖=1                       (3.6) 

𝐿𝑠𝑟 = ‖𝐼𝑡
𝑒𝑠𝑡 − 𝐼𝑡

𝐻𝑅‖2
2                             (3.7) 

3.3 Issue about extra computation cost 

It seems that introducing quite a lot additional processing of multiple frames will largely 

increase the computational complexity. However, in fact, most of the introduced additional 

procedures such as the bilinear upscaling and warping are performed at very limited 

computation cost. On the other hand, additional procedures with complex computations such 

as calculating through FNet and SRNet are all conducted in LR space, which also leads to very 

limited additional cost. As the consequence, the proposed selective fusion based VSR with 

recurrent architecture only introduce a little additional computation cost with reference to 

traditional scheme in FRVSR. 

We will demonstrate the detailed comparisons of inference time in the next chapter. 
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Chapter 4 Experiments and results 

We independently train and infer the recurrent architecture based VSR models with three 

different settings: traditional scheme (FRVSR), with average fusion, and with selective fusion. 

The superiority of our proposed method would be demonstrated by analyzing both the 

quantitative and qualitative results. 

 

4.1 Average fusion for comparison 

To investigate the effectiveness of the design principle of our proposed selective fusion 

module, except for comparing the proposed scheme with traditional FRVSR as the reference, 

we additionally trained another model with the average fusion scheme to exclude other factors 

that might influence the fairness of the experiments such as more sufficient training dataset for 

FNet. 

In average fusion scheme, the whole model architecture stays unchanged compared to the 

proposed selective fusion scheme. Multiple previously warped estimates 𝐼𝑡−1
𝑒𝑠𝑡 , 𝐼𝑡−2

𝑒𝑠𝑡 , . . . , 𝐼𝑡−𝑖
𝑒𝑠𝑡 

are also utilized and fused into a single frame. The difference is that those multiple frames are 

simply performed universal elementwise addition and average with reference to the channel 

dimension. 

 

4.2 Implementation details 

4.2.1 Experimental environments 

The recurrent architecture based VSR model with selective fusion is implemented in 

TensorFlow 1.13. We train and evaluate the models with different settings on a Nvidia GeForce 

GTX 1080Ti GPU with 11G memory. The experiments are conducted under the OS of Ubuntu 

18.04. 

 

4.2.2 Dataset for training and testing 

In order to obtain the dataset for training and testing, 250 HR video clips from vimeo.com 

are collected, in which each clip consists of 120 HR frames. Then the ground truth HR frames 

can be obtained by down-sampling the collected raw frames by a factor of 2. The corresponding 

LR frames are produced by applying down-sampling every 4-th pixel for super-resolution 

scaling factor 𝑠 = 4 and Gaussian blur with a standard deviation 𝜎 = 1.5. 
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Ground truth HR frames are cropped into training patches of spatial size 128 × 128 and 

corresponding LR patches are therefore cropped into 32 × 32. Batch size is set to be 4, while 

each sample in the batch is composed of 10 consecutive cropped frame pairs, which means one 

batch contains 40 cropped frame pairs. Through applying Xavier initialization [20] to the 

learnable networks and training them utilizing the Adam optimizer [21] with a fixed learning 

rate of 10−4. The entire training process consists of 200k batches. 

Another 10 HR-LR video clips which also collected from vimeo.com are used for the testing 

dataset of quantitative evaluation. 

 

4.3 Experiments and results analysis 

4.3.1 Quantitative evaluation and analysis 

Table 4. 1. PSNR evaluation (dB) 

 

 

Traditional scheme 

(FRVSR) 

VSR with average 

fusion 

VSR with selective 

fusion 

Video clip 1 26.6363 26.5836 26.8030 

Video clip 2 26.4544 26.4990 26.7456 

Video clip 3 28.4751 29.1327 29.7333 

Video clip 4 29.6128 29.3145 29.8711 

Video clip 5 25.1272 25.0542 25.1501 

Video clip 6 24.7346 24.7317 25.0341 

Video clip 7 25.7143 25.6234 25.7337 

Video clip 8 25.8559 25.8690 25.8638 

Video clip 9 26.4753 26.3891 26.7131 

Video clip 10 26.7029 26.4923 26.7364 

Average PSNR 26.5789 26.5690 26.8384 
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Table 4. 2. SSIM evaluation 

 

 

Traditional scheme 

(FRVSR) 

VSR with average 

fusion 

VSR with selective 

fusion 

Video clip 1 0.8773 0.8739 0.8883 

Video clip 2 0.8806 0.8845 0.8878 

Video clip 3 0.8550 0.8508 0.8797 

Video clip 4 0.8650 0.8722 0.8835 

Video clip 5 0.8563 0.8509 0.8686 

Video clip 6 0.8431 0.8460 0.8537 

Video clip 7 0.8704 0.8769 0.8779 

Video clip 8 0.8661 0.8583 0.8699 

Video clip 9 0.8792 0.8756 0.8891 

Video clip 10 0.8894 0.8808 0.8897 

Average SSIM 0.8682 0.8670 0.8788 

 

We inferred the trained models with different three settings and respectively evaluated PSNR 

and SSIM of their outputs on different testing video clips, the results are respectively shown in 

Table 4.1 and Table 4.2. 

As we can see in both tables, our proposed recurrent architecture based VSR model with 

selective fusion outperforms the other two settings in every testing samples. The average quality 

of inferred videos has increased by 0.2595 dB in PSNR and 0.0106 in SSIM compared to 

traditional setting (FRVSR). The results can demonstrate the effectiveness of the design 

principle of our proposed selective fusion in the capability of efficiently fusing information. 

And on the other hand, the model with average fusion fails to compete the traditional scheme 

in any index, since it is possible that distant frame will introduce unnecessary and even wrong 

information aggregating for generating current estimate, and lead to degraded performance. 
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Table 4. 3. Inference time evaluation 

 
Traditional scheme 

(FRVSR) 

VSR with average 

fusion 

VSR with selective 

fusion 

Average inference 

time (ms/frame) 
153.9 155.7 155.9 

 

The evaluation results of inference time of different settings are shown in Table 4.3. As we 

supposed in chapter 3, proposed method is proved to be efficient enough that it only brings a 

little additional computation cost compared to the traditional scheme. Without introducing any 

extra parameters of the learnable models, the increased computation of FNet is efficiently 

conducted in LR space and can even further enhance the training process in a way similar to 

performing data-augmentation (frames that originally distant from 𝐼𝑡
𝐿𝑅 are also received as 

training samples), which implicitly upgrades the robustness of FNet. 

 

4.3.2 Qualitative evaluation and analysis 

Qualitative evaluation is conducted through inferring the models of different settings with a 

120-frame video clip from a license open movie “Tears of Steel” [31] that allowed to be 

demonstrated. Table 4.4 shows the quantitative evaluation results on this particular video clip 

for different settings. 

 

Table 4. 4. Quantitative results for “Tears of Steel” 

 Traditional scheme 

(FRVSR) 

VSR with average 

fusion 

VSR with selective 

fusion 

PSNR (dB) 28.0922 27.0896 35.0070 

SSIM 0.8993 0.8876 0.9639 

 

The results of our proposed method largely surpass other settings in both PSNR and SSIM. 

It is possibly because a severe effect of gradually enhanced noisy artifacts occurs in the 

traditional scheme for this particular video clip as we could observe in the last frame of the 

generated outputs with different settings shown in Figure 4.1.  
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The last generated frame of traditional scheme aggregates the most severe artifacts with the 

largest area. The model tries to sharpen the details to lower the loss while being incapable of 

retrieving better input information or discarding undesirable noise, since it over relies on one 

single fixed previously generated estimate during a long recurrent process, which seriously 

limits the performance.  

The recurrent architecture based VSR model with average fusion slightly alleviates this 

undesirable effect simply since it averages the poorly informative details with other better 

informative regions, hence it still produces those sequentially strengthened noisy artifacts. 

The proposed model with selective fusion correctly and efficiently removes these undesirable 

stains and gives a clean estimated HR sequence with satisfying SR quality, it reflects that our 

proposed method is able to effectively retrieve and fuse the information in need among the 

previously generated estimates that are beneficial for inferring the next HR frame. It is also the 

proof that our designed fusion principle, which concerning the fundamental cause of the 

shortcomings brought by recurrent architecture in VSR models, is effective.  

More results of cropped patches are shown in Figure 4.2. It is illustrated that the gradually 

enhanced noisy artifacts in traditional scheme have been perfectly removed in proposed method, 

which clearly demonstrate the superiority of our proposed method in visual performance. 

 

 

 

 

Figure 4. 1. Comparison of the last frame of the generated outputs with different settings (picture 

source: [31]) 
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Figure 4. 2. Detailed inference results of cropped patches (picture source: [31]) 
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Chapter 5 Conclusion 

 

We proposed selective fusion for addressing the followed shortcomings induced by recruiting 

recurrent architecture in video super-resolution model such as the rapid information loss and 

sequentially strengthened noisy artifacts which largely limits the performance of generated 

outputs. 

Based on the designing assumption that the warped previously generated HR frames/regions 

with the more successful warping should have been more informative for reconstruction, and 

without changing the scale and dimensions of the inputs of Super-Resolution Network (SRNet), 

the selective fusion module efficiently and successfully gathers and fuses informative details 

from previous generated HR estimates according to their informativeness, instead of simply 

relying on one single previous generated HR frame. The proposed method is demonstrated to 

be able to improve video super-resolution performance while introducing neglectable additional 

computation cost. 
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Chapter 6 Appendix 

6.1 List of academic achievements 

International conference: 

Z. Gong, T. Hori, H. Watanabe, T. Ikai, T. Chujoh, E. Sasaki, and N. Ito: “A Selective Fusion 

Module for Video Super Resolution with Recurrent Architecture,” International Workshop on 

Advanced Image Technology, IWAIT 2020, No.43, Jan. 2020 

 

Domestic conference: 

Z. Gong and H. Watanabe : “An Evaluation of The Impact of Dataset Bias in Pretrained VGG 

Network on The Performance of Neural Network Based Style Transfer,”  IEICE General 

Conference, BS-4-19, Mar. 2019 
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