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Abstract

We discussed the anime characters’ full body illustrations generation methods

based on generative adversarial networks (GANs). This research is expected to be

applied in the field of animation and game, synthesized images that can be used as

game material to significantly reduce production costs or provide new design inspira-

tion for professional character designers.

To smoothly create the generative model, firstly, we make a new dataset. This

dataset contains 12,000 high-quality images of game characters, providing a guarantee

for subsequent experiments. Secondly, we investigate several GANs and selected

StyleGAN as our experimental benchmark. We train 3 models of StyleGAN. Among

them, the best model can generate high quality standing pictures with a resolution

of 512 × 512 and an FID of 5.02.

By further analyzing the latent space of our generated model, we find that Style-

GAN can effectively separate the characteristics of anime characters. It can perform

feature mixing and feature transformation through latent code interpolation. This

property provides a lot of interesting possibilities, such as keeping the character’s

clothing unchanged, and controlling character’s actions to make simple animations.

Key words: GANs, StyleGAN, image generation, style transform, high-resolution,

latent code
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Chapter 1

Introduction

1.1 Background

With the rise of the third artificial intelligence boom, artificial intelligence applica-

tions based on machine learning and neural networks have demonstrated their strong

influence in various fields. Especially in the field of computer vision, face recognition,

target detection, and image segmentation algorithms based on machine learning have

been quite improved and gradually tend to human level. [19, 23–25] Now, they have

shown their remarkable economic value in all walks of life.

On the other hand, researchs on image generation is much more difficult. They

are less successfully used in business right now. Image generation models use neural

network to learn the image distribution in huge data, ultimately synthesize images

similar to the original data. In machine learning, image generation is a regression

task, which is much more difficult than a discrimination task, because the generative

model must output richer information based on a smaller input.

Image generation models can be roughly divided into two categories, unsupervised

models and supervised models.

The unsupervised image generation model is more general, it only cares whether

the generated image is similar to samples in the dataset, and does not care about its

classification, so it is difficult to control. An unsupervised image generation model

likes a Gaussian pseudo-random number generator. Although a specific output cor-
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responds to a determined input random seed, we do not know the physical meaning

of the random seed. We can not effectively control the output of the model; we can

only choose the pictures we want from a large number of messy results. It can be

said that the unsupervised image generation model is a crazy artist with unlimited

creative power but arrogant. Generally, applications of unsupervised models are rel-

atively limited, considered for artistic creation or data enhancement. Although there

was an artificial intelligence work called Edmond de Belamy that was auctioned at a

striking price of $432,500, most generative models are still synthesizing faces or other

simple objectives, and rarely create truly valuable art works.

In contrast, supervised models are easier to use. We add various conditions when

training the model to ensure that it can achieve our requirements in practical uti-

lization. Unlike training unsupervised models, training supervised models requires

labeling datasets, which can be text information or paired pictures. For example, we

can use a paired line draw and original painting to train an automatic colorization

model. Supervised models are more widely used, such as segmentation, mapping,

image repair, super-resolution, Style Transform, etc.

Generative adversarial networks (GANs) [4] are now the mainstream technology in

image generation technology. Since GANs were proposed by Ian Goodfellow in 2014,

it has received more and more attention from academia and industry. With the rapid

development of GAN in theory and model, it has more and more in-depth applications

in computer vision, natural language processing, human-computer interaction, and

continues to extend to other fields. In recent years, GAN has made great progress

in image generation, and some advanced models have been able to generate realistic

high-resolution images.

Traditional 2D games or animation productions in Japan require a lot of manual

labor and material resources. Well-trained character designers often require years of

professional education. Even so, a successful character design often takes weeks or

even months. The market price of a professional character design is often more than

100,000 yen.

A finished product of character design is generally a drawing of a character in a
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standing pose without background (hereinafter called the standing painting). Using

GANs to generate character full body standing painting is a very potential research.

The generated standing paintings can be directly used as materials in games, reducing

the production cost of animations or games. Moreover, one game maker can create a

novel game even if he does not know art knowledges. On the other hand, creators may

be able to get inspirations from the huge generated images to create new illustrations.

Beginners in character design can also simply obtain training materials.

1.2 Research Objectives

Now, GANs [4] has achieved success in many fields, many images generated by

GANs are hard to distinguish by human eyes. But it still failed to create standing

painting.

Most image generation models are made for human face generation. Human face

generation is a relatively simple task. Representative open-source human face datasets

include CelebA [28], CelebA-HQ [13] and FFHQ [14]. They all strictly limit the

position and orientation of the face, even the positions of the eyes, nose and mouth

are mostly fixed. It is not difficult to learn by an advanced neural network. On the

contrary, the mainstream illustration dataset is Danbooru2017. The pictures’ quality

in the dataset is very unstable, which contain professional illustrations and novice

line drafts. Background and number of characters in one picture is also uncertain.

Moreover, characters in one standing painting are rich in movements, the heights and

actions of characters are changeful, the proportion also variable, which bring great

difficulty to make a new dataset.

Human face pictures are recognizable from the resolution of 64×64. However,

standing paintings need larger area to display character’s whole body, which’s resolu-

tion less than 256×256 are difficult to identify. Traditional generative models need to

face many problems such as unstabled training and mode collapse. They merely syn-

thesize images above 200×200. Advanced high-resolution generation models require

huge calculation time and memory.
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This article is dedicated to using advanced GANs to generate high-quality full-

body standing painting, and explore the application of synthesized standing. There-

fore, we have the following 4 objectives.

1. Verify that GANs can effectivelyh synthesize illustrations and find a available

matric to evaluate the quality of illustrations.

2. In order to graduate the feasibility of subsequent experiments, we will create a

new standing painting dataset.

3. Evaluate mainstream models to find the most suitable method for this research.

4. Analyze the experimental results and explore new applications.

1.3 Outline

Chapter 1: The Introduction of this paper. In this chapter, the background and

objectives will be introduced.

Chapter 2: Previous works of this paper. In this chapter, several classical GANs

will be introduced. It also introduced 2 kinds of typical metrics.

Chapter 3: The preparative experiment. We ensured that GANs can effectively

synthesize illustrations with an self-built dataset of anime character’ faces. Moreover,

we verify the feasibility of FID in evaluating illustrations.

Chapter 4: The main chapter of this paper, try to synthesize full body stand-

ing painting by a advanced generative model. Moreover, explore the application of

standing painting generation.

Chapter 5: Conclusion and Future Work is shown in this chapter.

Appendix: The Appendix of this paper. Some extra pictures and codes will be

shared in this chapter.
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Chapter 2

Previous Work

2.1 GANs

GANs, this new member of machine learning is already flourishing. As of June

this year, there are currently at least 400 papers or variants of GANs.

Researchs on GANs can be divided into two lines. One is the theoretical line. It

studies mathematically how to solve the instability and mode collapse of GANs, or re-

explains it from different angles such as information theory and energy-based models.

The second is the application line, dedicated to applying GAN to the field of computer

vision, using GAN for image generation (e.g. specified image synthesis, text to image,

image to image, video) and applying GAN to NLP or other fields. [9, 16, 33, 34] The

use of GAN for image generation and conversion is currently the most studied, and

research in this field has proved the great potential in image synthesis.

2.1.1 Vanilla GAN

Vanilla GAN proposed a new framework for estimating generative models via an

adversarial process. [4] It used two networks, a generative network called generator

(G) and a discriminative network called discriminator (D). The G used to capture date

distribution, this network can synthesize data from a given noise (can be considered

as random seeds). The D used to estimate whether the sample from the graining data
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Figure 2-1: General Structure of GANs

rather G.

The loss function of vanilla GAN is Equation 2.1 and Equation 2.2. 𝑥 means real

images, 𝑧 is habitually called as latent code (generally a uniform noise or a normal

noise). The 𝐺(𝑧) means generated images.

The discriminative loss tries to reduce itself by increasing 𝐷(𝑥) and decreasing

𝐷(𝐺(𝑧)). The generative noise is just the opposite. We can think that D provides G

with a dynamic loss function.

𝐿𝐺𝐴𝑁
𝐷 = 𝐸[𝑙𝑜𝑔(𝐷(𝑥))] + 𝐸[𝑙𝑜𝑔(1 −𝐷(𝐺(𝑧)))] (2.1)

𝐿𝐺𝐴𝑁
𝐺 = 𝐸[𝑙𝑜𝑔(𝐷(𝐺(𝑧)))] (2.2)

The two networks are advancing in the competition. The training continues, and

the data obtained by the generating network becomes more and more perfect. This

approach is a pioneering work to improve the performance of generative model.

12



2.1.2 DCGAN

The main contribution of the paper is to provide a good network topology for

GAN training. DCGAN is a big improvement after vanilla GAN, it bridged the

gap between CNN (Convolutional Neural Networks) and GANs. [18, 22] The main

improvement is in the network structure. It proposed and evaluated a set of constrains

on the architectural topology of convolutional GANs. This work clearly improved the

performance of the vanilla GAN and made it easier to train.

DCGAN’s network structure is shown as Figure 3-1. Compared with the vanilla

GAN, DCGAN almost completely uses convolutional layers instead connected layers.

And the discriminator’s structure is almost symmetrical to the generator. The entire

network does not have a pooling layer. In fact, it uses deconvolution (fractionally-

strided convolution) layers instead of upsampling layers to increase the stability of

training.

So far, the network structure of DCGAN is still widely used. DCGAN greatly

improves the stability of GAN training and the quality of generated results.

2.1.3 WGAN

WGAN proposed a new training method and proved it can converge finally. [1]

That is mean training WGANs does not require maintaining a careful balance in

training of the discriminator and the generator; and does not require a careful design

of the network architecture either.

Unlike DCGAN, WGAN mainly improves vanilla GAN from refining its loss func-

tion. Even on the full connected layer, WGAN’s method can obtain better perfor-

mance results. WGAN’s improvements to GAN mainly include 2 points. Firstly,

removing the last sigmoid layer of discriminator. Then, The loss of the generator and

discriminator does not need to be logarithmic. The loss function of vanilla GAN is

Equation 2.3 and Equation 2.4.
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𝐿𝑊𝐺𝐴𝑁
𝐷 = 𝐸[𝐷(𝑥)] − 𝐸[𝐷(𝐺(𝑧)] (2.3)

𝐿𝑊𝐺𝐴𝑁
𝐺 = 𝐸[𝐷(𝐺(𝑧))] (2.4)

WGAN’ implementation seems to be quite easy, but it is very meaningful. WGAN

theoretically gives the reason for the instability of GAN training, that is, cross en-

tropy (Jensen-Shannon divergence) is not suitable for measuring the distance between

uncorrelated distributions. To solve this problem, it uses Wasserstein distance to

measure the difference between generated data distribution and the ground truth dis-

tribution. This approach theoretically solves the problem of unstable training and

collapse mode. Leading to more diverse generated result.

2.1.4 WGAN-GP

WGAN-GP fixed some potential problem of WGAN, improved continuity limit

conditions. [5] A new Lipchitz continuity limitation method gradient-penalty is pro-

posed to solve the problem of gradient explosion and gradient disappears. Compared

with the standard WGAN, WGAN-GP enables stable training of a wide variety of

GAN architectures with almost no hyperparameter tuning. It has faster convergence

speed than standard WGAN and can generate higher quality samples. The loss func-

tion of WGAN-GP is shown by Equation 2.5, Equation 2.6 and Equation 2.7

𝐿
𝑊𝐺𝐴𝑁_𝐺𝑃
𝐷 = 𝐸[𝐷(𝑥)] − 𝐸[𝐷(𝐺(𝑧)] + 𝐺𝑃 (2.5)

𝐿
𝑊𝐺𝐴𝑁_𝐺𝑃
𝐺 = 𝐸[𝐷(𝐺(𝑧))] (2.6)

𝐺𝑃 = 𝜆𝐸[(|∇𝐷(𝛼𝑥− (1 − 𝛼𝐺(𝑧)))| − 1)2] (2.7)
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2.1.5 MakeGirlsMoe

MakeGirlsMoe is a successful application by GANs to generate face icon of Japanese

anime character. This article combines several advanced methods. They used a DRA-

GAN [17] based ACGAN [21] which is one kind of conditional GAN [20]. As for the

dataset, they obtain 42,000 pictures of characters in a Japanese games sales website.

And they used a deeplearning based automatic classification method to label char-

acter’s attributes. In this way, user can control several attributes (e.g. hair color,

eye color, eye color, expression) to create own character’s face icon. This article is

very instructive for us. We learned they data collection method, and expanded its

application scope to achieve full-body character generation.

2.2 Metrics

Evaluating the quality of generative models has always been a very difficult task.

Because we want the distribution of the generated images to be similar to the dataset

and have variable attributes. The exact same picture is not acceptable. Therefore,

traditional matrics like PSNR and SSIM cannot be used. Some early researchs used

human study to evaluate generative models, which is inefficient and inaccurate.

2.2.1 IS

Inception Score (IS) [30] used entropy to measure the diversity of images. Entropy

can be viewed as one kind of randomness. Generally, a value with higly predictable

has low entropy. On the contrary, highly unpredictable value’s entropy is higher.

𝑦 means label and 𝑥 is generated pictures. In GAN, given an image, we should

know its classification easily. That means the conditional probability 𝑝(𝑦|𝑥) has

low entropy (highly predictable). So, using an classification network (generally, a

Inception V3 [31] network pretrained by ImageNET [29]) to identify the generated

images and predict 𝑝(𝑦|𝑥). It will reflect the qualilty of generated images.

To measure the diversity of images, we can calculate the marginal probability 𝑝(𝑦).
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Using these two part to compute KL-divergence, we gan get Equation 2.8 .

𝐼𝑆(𝐺) = 𝑒𝑥𝑝(E𝑥∼𝑝𝑔𝐷𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦))) (2.8)

2.2.2 FID

Fréchet Inception Distance (FID) used an classification network (the same as

IS, pretrained Inception V3 by ImageNET) to extract featuires from intermediate

layer. [6] The FID between ground truth images 𝑥 and generated images 𝑔 is calculated

as Equation 2.9. Different with IS, lower FID value means better generative quality

and diversity.

𝐹𝐼𝐷(𝑥, 𝑔) = ||𝜇𝑥 − 𝜇𝑔||22 + 𝑇𝑟(Σ𝑥 + Σ𝑔 − 2(Σ𝑥Σ𝑔)
1
2 ) (2.9)

FID is sensitive to mode collapse and more robust to noise than IS. So FID is a

better metric for measuring image diversity.
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Chapter 3

Face Generation

Standing painting is one kind of illustration. Even photos and illustrations are

all pictures, the difference in data distribution between photos and illustrations is

quite obvious. Compared to photos, illustrations tend to have fewer colors, but have

rich edge information. We can empirically believe that the continuity of the photos is

stronger, and the illustrations are more discrete. When performing a two-dimensional

image convolution operation, discrete information is often more difficult to learn.

Moreover, the mainstream evaluation metrics FID and IS need to extract features

of images by a classfication network. In fact, all of them used pretraine Incetpion v3

by ImageNet (A advanced photos datasets with more than 14 million images). There-

fore, it is difficult to determine whether FID and IS can be effective in illustration

evaluation.

Since the data distribution of photos and illustrations is so different, we need

to design a set of verification experiments to guarantee that GANs can effective-

lyh synthesize illustrations and FID is a available matric to evaluate the quality of

illustrations.

This preparative experiment will start with simpler anime character’ faces gener-

ation rather than full-body illustration.
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3.1 Proposed Approach

DCGAN, WGAN and WGAN-GP have been introduced in 2.1, they are most

classic generative models in the theoretical line of GANs. More of current models

are extended from them. We can say that if they can generate illustrations, other

advanced structures will also have no problem. By the way, we can also test their

performance and the effectiveness of FID.

We will respectively train DCGAN, WGAN and WGAN-GP by two different

datasets.

1. CelebFaces Attributes Dataset (CelebA) [28] is an open source dataset with

202,599 number of celebrity face images. It is originally a large-scale face

with 40 attribute annotrrations. But in fact, its attribute annotrrations usually

not used, as a standard unsupervised dataset for image generation tasks. The

dataset has large diversities and quantities, faces of pictures are extracted uni-

fied location and the resolution is normalized to 178 × 218. For ease of use, we

further crop them to 128 × 128.

2. AniFace is our self-built dataset. All of the original illustrations are download

from Pixiv. Most illustrations are produced by professional painters. The faces

in illustrations are detected by a application called lbpcascade_animeface. This

dataset contains 945 faces with normalized resolution of 128 × 128.

3.2 Model Structures

We used modified DCGAN as our network. The original version of DCGAN

is designed to synthesize 64 × 64 picturess. [22] To output 128 × 128 pictures, we

changed some details of this network. The structures of Generator and Discriminator

are shown by Figure 3-1.
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Figure 3-1: Generator and Discriminator of DCGAN

The input latent code 𝑧 of the Generator is a 100-dimensional distribution noise.

After a fully connected layer, it will be transformed into 512 8 × 8 convolutional

kernels. There are 4 upsampling layers of this model.One upsampling layer contains

a deconvolution, a activation function and a LeakyReLU.

All deconvolution layers’ kernels size is 4×4 , stride is 2 and padding size is 1. With

this setting, by Equation 3.2, each deconvolution will double the size of the features,

and quickly reach the target size. The activation function of the convolution layer is
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LeakyRelu. As for output layer, tanh will be used to limit data range (0 ∼ 255).

𝑠𝑖𝑧𝑒𝑐𝑜𝑛𝑣 = (𝑠𝑖𝑧𝑒𝑖𝑛 − 𝑠𝑖𝑧𝑒𝑘𝑒𝑟𝑛𝑒𝑙 + 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔)/𝑠𝑡𝑟𝑖𝑑𝑒 + 1 (3.1)

𝑠𝑖𝑧𝑒𝑑𝑒𝑐𝑜𝑛𝑣 = 𝑠𝑖𝑧𝑒𝑖𝑛 × 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑠𝑖𝑧𝑒𝑘𝑒𝑟𝑛𝑒𝑙 − 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 − 𝑠𝑡𝑟𝑖𝑑𝑒 (3.2)

The structure of the Discriminator is almost symmetrical with the Generator.

Discriminator output 1 dimensional prediction through 4 downsampling layers and 1

fully connected layer. As for the output layer, DCGAN used Sigmoid as its activation

function but WGAN and WGAN-GP did not use activation function. Except for the

Discriminator of WGAN-GP used layer normalization [2], all other models used batch

normalization [8] as normalized function.

3.3 Training Detail

In all models, we set the learning rate as 0.0002 and batch size as 64. The device

we used is a Nvidia RTX 1080. The experimental environment is Tensorflow on win10.

Noting that the performance of WGAN and WGAN-GP will get better and better

as the training progresses, but mode collapse occures during the training process. So

we just take the best result of DCGAN.

In addition, the training process of Discriminator and Generator in WGAN-GP

are not synchronized. In fact, every training Discriminator 5 times, Generator just

be trained only once. Here, we used training iterations of Generator as standard.

3.4 Result

Figure 3-2 ∼ Figure 3-7 show the synthesized faces of GANs. Table 3.1 and Table

3.2 show the numeric results.

We can find that although DCGAN is not as good as WGAN, it is ten times faster

than WGAN-GP, the effect is not bad. As for WGAN, the underlying problem caused
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it to perform poorly.

Whether in human face generation task and anime face generation task, WGAN-

GP shows its amazing synthesize ability. Some faces in Figure 3-4 are difficult to

distribution by human eyes. Although synthesized anime faces are not as perfect as

human face.

Table 3.1: Results of CelebA

GAN Type Time Iterations FID
DCGAN 1.8h 14400 150.40
WGAN 9.5h 31650 191.80
WGAN-GP 19h 31650 120.52

Table 3.2: Results of AniFace

GAN Type Time Iterations FID
DCGAN 0.5h 4000 204.47
WGAN 6h 20000 219.20
WGAN-GP 12h 20000 145.21

We can believe that GANs already catch many features of anime face. Be aware

that this is trained by a dataset only contains 945 images, 1 / 200 of CelebA.

In conclusion, through experiments, we have proved that GAN is effective in

illustrations generation task. It’s not much worse than the photoes generation task.

3.5 About FID

An additional experiment will be performed to confirm the efficiency of FID. The

result is shown by Talbe 3.3.

Firstly, we randomly picked 945 pictures from CelebA and calculated the FID

between AniFace is 217.40. That is mean the FID of 217.40 is a fairly large to

distinguish 2 totally different datasets.

Then, we calculated the FID of two different batches in the same dataset. The

value reflects the smoothness of dataset.
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Table 3.3: Test of Fid

Data(A-B) Pictures FID
CelebA-Aniface 945 217.40
2 batch from CelebA 64 2.27
2 batch from AniFace 64 5.32

In conclusion, although FID trained without illustration, it can also evaluate the

quality of illustrations.
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Figure 3-2: Synthesized human faces by DCGAN
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Figure 3-3: Synthesized human faces by WGAN
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Figure 3-4: Synthesized human faces by WGAN-GP
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Figure 3-5: Synthesized anime faces by DCGAN
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Figure 3-6: Synthesized anime faces by WGAN
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Figure 3-7: Synthesized anime faces by WGAN-GP
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Chapter 4

Full-body Generation

In the previous chapter, we have demonstrated the feasibility of GANs in gener-

ating illustrations. But we know that full-body illustrations are very different from

faces. First, the resolution of the full-body illustration is several times of face. Sec-

ond, the position of the face is relatively fixed in one picture, which is easy to learn.

However, the body illustrations are rich in movements. Third, through the face de-

tector, faces can be extracted from any illustration. It is difficult to obtain a clean

standing painting without background.

In order to solve these problems, we need to create a new dataset and look for a

powerful generative model.

4.1 Data Collection

Our ideal data set has the following characteristics.

1. As large as possible. The representative open source dataset CelebA has 200,000

images. Another face dataset Flickr-Faces-HQ Dataset (FFHQ) [14] has 60,000

images. Although GANs can work on small-scale datasets with hundreds of

images, we want our dataset to be as large as possible to ensure the generation

quality.

2. It contains no impurities. In fact, most datasets often do not deal with the back-
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ground. We can find flaws in the background of almost all advanced generation

models. However, for standing paintings used for game production, unclean

backgrounds are unacceptable.

3. The resolution is high enough. The 64 × 64 face images can also be recognized

by human eye. Since the general head-to-body proportions of illustrations is

between 5 ∼ 8. We hope to synthesize pictures with resolution of 512 × 512.

Figure 4-1: Samples of the standing dataset

To collect standing paintings, a directly idea is to extract resources from games.
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In fact, we tried this approach initially. We have found several Japanese games, each

of them can provide us with hundreds of source illustrations. But a serious problem is

that their format is not uniform. Depending on the design style, some games do not

require full body standing paintings, only the upper body is used. Another problem

is the huge amount of repetitive data. In order to express different expressions and

actions, generally there are several differential versions of one standing paintings.

Through they be one kind of data augmentation, differential versions increase the

weight and affect the balance of the entire dataset. The last problem is that the

style in one game is often similar, which also affects the balance of and reduces the

diversity of the dataset.

So, inspired by Makegirlsmoe [10], we found getchu1, which is a game retail web-

site, most pictures from the website have resolution of 500 × 500. We crawled about

60,000 pictures from it and used the following 4 steps to process these raw data.

1. Because the same game may release multiple versions, there is a lot of duplicate

data. We selected similar pictures through MD5. The MD5 message-digest

algorithm [26] is a hash function widely used to verify data integrity. It can

produce a 128-bit hash value for every file. In experience, pictures with Ham-

ming distance of MD5 less than 3 are often very similar. Only one picture in

each similar group is kept.

2. Some lower quality pictures were manually removed.

3. Most pictures in this website are watermarked. We removed the 20×100 pixels

in the lower right corner of all pictures. This method can process 90% of the

pictures.

4. Padding pictures to 512 × 512.

After these operations, we retain 12,000 high-quality pictures. Figure 4-1 show

some samples of the dataset2.

1http://www.getchu.com/
2https://drive.google.com/open?id=1kjLcBWpNc59DWhOWJDi3VIHMWXwL2IXX
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4.2 Proposed Approach

In recent years, several latest achievements of GANs that can generate high resolu-

tion have appeared. Compared to the previous GANs, they can surprisingly synthesize

images with a resolution of 1024x1024. The representatives of them are BigGAN [3],

MSG-GAN [12], Pro-GAN [13] and StyleGAN [14].

This paper selected StyleGAN as baseline. Compare with other advanced GANs,

StyleGAN requires less computing resources. For example, the training of BigGAN

requires several weeks on hundreds of graphics cards. However, StyleGAN can be

trained on an ordinary computer with only one high-end graphics card. In addition,

as its name suggests, StyleGAN has amazing feature: style transform.

The structure of StyleGAN is very different with others. Figure 4-2 shows its

generator.

The generator of StyleGAN is a progressive network [13]. A progressive network

do not synthesized target image in one step. It firstly generates pictures with low

resolutions, and then uses these low-resolution pictures as conditions to generate

high-resolution pictures. With this method, training will be more stable. When the

memory is insufficient, the bottom layers can have larger batchsize. Each resolu-

ton level of StyleGAN contains two convolutional layer. This generator has 26.2M

trainable parameters. For a high resolution network, it is quite streamlined.

Don’t like previous GANs, StyleGAN do not have traditional input, the first layer

of generator is a vector of constants. Latent code do not input to the generator

directly. Before entering the network, the original hidden layer code Z (generally a

Gaussian noise) needs to pass through a mapping network. The mapping network is a

multi-layer perceptron, encoding Z to an intermediate latent code W. The significance

of this operation is to extract meaningful information from noise. W is decomposed

into several parts (w1 ∼ w16), input each resolution unit.

32



Figure 4-2: The Generator of StyleGAN
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4.3 Train Detail

The graphics card we used is one Nvidia RTX 2080-Ti with 11G memory. The

experimental environment is Tensorflow on win10. When training, we used dynamic

learning rate and batch size in Table 4.1.

Table 4.1: Parameters of Training

Resolution learning rate batch size

4 × 4 0.0015 32

8 × 8 0.0015 32

16 × 16 0.0015 16

32 × 32 0.0015 8

64 × 64 0.0015 4

128 × 128 0.0015 4

256 × 256 0.002 4

512 × 512 0.003 4

This experiment tested three different variants of StyleGAN. StyleGAN(a) is the

baseline StyleGAN as paper [14]. StyleGAN(b) and StyleGAN(c) are improved meth-

ods from [15]. StyleGAN(b) do not use growing structure [13], and StyleGAN(c) used

a larger network. Since the representative position of WGAN-GP in tranditional

GANs, We also trained a 128 × 128 WGAN-GP as a reference of FID.

All methods are trained with 8000 kimgs, which is approximately equal to 700

epochs. As data augmentation, all pictures are mirrored with a 50% probability

before entering the network.
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4.4 Result

After long training, we got some interesting result which is shown in Table 4.2.

More details can find at our github3. The calculation consumption of WGAN-GP

is less than 1/16 of StyleGAN(a), but achieved better FID score. Among these

StyleGANs, since the growing structure, StyleGAN(a) is fastest. However, the FID

of StyleGAN(a) is even worse than WGAN-GP. We know that the FID of 220 can

represent two different datasets. As human subjective evaluation, the synthesized

samples shown in Figure 4-4 are much better than Figure 4-3. There are two possible

reasons. First, FID is invalid on this dataset. Second, the generative diversity of

StyleGAN(a) is insufficient, which seriously lowers FID.

Table 4.2: Results of StyleGAN

Model Resolution Time FID

WGAN-GP 128 × 128 1d 8h 187.31

StyleGAN (a) 512 × 512 3d 17h 220.77

StyleGAN (b) 512 × 512 10d 2h 7.28

StyleGAN (c) 512 × 512 19d 6h 5.02

The results of StyleGAN(b) and StyleGAN(c) are more credible. In the same

training iterations, StyleGAN(c) spent almost twice as long to win StyleGAN(b)

with a slight advantage. But no matter what, as human eyes, results of them seems

to be almost the same.

In addition, we can also see that the generated image has some defects. Some of

the clothes are weird. And character’s hands often synthesized incompletely.

3https://github.com/zampie/standing-stylegan
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Figure 4-3: Generated samples by WGAN-GP, FID=187.31
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Figure 4-4: Generated samples by StyleGAN(a), FID=220.77
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Figure 4-5: Generated samples by StyleGAN(b), FID=7.28
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Figure 4-6: Generated samples by StyleGAN(c), FID=5.02
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4.5 Style Mixing

Style transformation is an important subject of image processing. It can be real-

ized by non-GAN methods [7, 11, 32]. In GANs, style transformation is often imple-

mented by supervised [9, 27,33] or semi-supervised [16,34] models.

Figure 4-7: Style Mixing

As the name suggests, StyleGAN has the ability of style transformation, even it is

an unsupervised model. The ability of StyleGAN depend on its mapping network in

Figure 4-2. By manipulating intermediate latend codeW, some features of synthesized
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pictures can be controlled.

Empirically, W can be divided into 3 parts which represent 3 kinds of style.

1. Coarse style: w1 ∼ w6 corresponds 4 × 4 ∼ 16 × 16 levels of generator.

2. Middle style: w7 ∼ w10 corresponds 32 × 32 ∼ 128 × 128 levels of generator.

3. Middle style: w11 ∼ w16 corresponds 256×256 ∼ 512×512 levels of generator.

In Figure 4-7, all characters are synthesized by stylegan(c). By replacing a style

in source A with a style in source B, 2 characters’ attributes will be mixed.

We can find that, the coarse style can control character’s actions, the middle style

can control character’s clothes and the fine style can control overall color of pictures.

We can use this property to control many properties and create customized char-

acters.

41



4.6 Animation Generation

According to the result of the previous section, we know that chapter’s feature

can be extracted and changed respectively. So, by controling features of action in

standing paintings, we can make some simple animations

In Figure 4-8, we keep the first character’s middle style and fine style, interpolate

coarse style to other chapters whose poss is different.

Figure 4-8: Synthesized Animation

By this approach, many simple animations be generated in an instant, which has

great application potential.
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4.7 Encoder of Latend Code

StyleGAN can extract features from synthesized images rather than real illus-

trations. The key to the problem is to get the intermediate latent code W of real

illustrations.

For this, we trained an encoder. The structure of encoder is a 5 layers fully

convolutional network. The input of encoder is a 3× 512× 512 illustrations, and the

expected output is the intermediate latent code W.

Figure 4-9: Ground truth from dataset

Figure 4-10: Reconstructed images by the encoder

Put the pictures in Figure 4-9 to get W, and then put W into stylegan’s generator,

reconstructed pictures are shown in Figure 4-10.

Maybe the encoder is too small, reconstructed picture is different from the original

picture, many features (e.g. gender, clothes, pose) are restored.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This paper discusses the methods and applications of using GANs to generate

illustrations.

First, a small face dataset AniFace was created. DCGAN, WGAN and WGAN-

GP were trained by the dataset and used to generate animated faces. The preparative

experiment verified that GAN can generate illustrations, and FID can also be used

to evaluate illustrations.

Then, through crawling and data cleaning, a standing painting dataset was cre-

ated. By this dataset and StyleGAN, this paper is the first successful research about

anime character’s full-body standing painting generation.

Finally, by analyzing the middle latent code and separating the character’s fea-

tures, the potential that using GANs to generate animation was discovered.
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5.2 Future Work

At present, the quality of the generated standing painting is not perfect. The

most significant reason is that the dataset is not big enough, it can also be expanded

by the game’s resource files. Another reason is that limited to memory, the batch size

we used to train StyleGAN’s is too small. In subsequent rearch, larger batch size can

be used to stabilize the training process.

For wider application of this StyleGAN based standing painting generative model,

we should train a more advanced encoder to obtain the intermediate latent code from

natural pictures. In this way, the style transformation of all pictures can be achieved.
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Chapter 6

Appendix

6.1 More experimental results

Figure 6-1: The averange output of StyleGAN(c)
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Figure 6-2: Mode collapse of DCGAN in CelebA
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Figure 6-3: Mode collapse of StyleGAN in standing painting dataset
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6.2 Code about style mixing

import os

import pickle

import numpy as np

import PIL.Image

import dnnlib

import dnnlib.tflib as tflib

import time

import pretrained_networks

if __name__ == ’__main__’:

root = ’./’

synthesis_kwargs =

dict(output_transform=dict(func=tflib.convert_images_to_uint8,

nchw_to_nhwc=True), minibatch_size=8)

tflib.init_tf()

os.makedirs(root, exist_ok=True)

ckpt = ’./ckpt/network-snapshot-007339.pkl’

_G, _D, Gs = pretrained_networks.load_networks(ckpt)

seeds = [112, 268, 274]

imgs = []

sec = 2

n = 24 * sec

truncation_psi = 0.5

Gs_kwargs = dnnlib.EasyDict()

Gs_kwargs.output_transform =

dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)

Gs_kwargs.randomize_noise = False

w_avg = Gs.get_var(’dlatent_avg’) # [component]
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z_str =

np.stack([np.random.RandomState(seeds[0]).randn(Gs.input_shape[1])])

w_str = Gs.components.mapping.run(z_str, None) # [seed, layer,

component]

w_str = w_avg + (w_str - w_avg) * truncation_psi

for seed in seeds[1:]:

z_end =

np.stack([np.random.RandomState(seed).randn(Gs.input_shape[1])])

w_end = Gs.components.mapping.run(z_end, None) # [seed, layer,

component]

w_end = w_avg + (w_end - w_avg) * truncation_psi

w_end[:,6:,:] = w_str[:,6:,:]

for lamb in np.arange(n) / (n - 1):

w = (1-lamb)*w_str + lamb*w_end

img = Gs.components.synthesis.run(w, randomize_noise=False,

**synthesis_kwargs)

img = PIL.Image.fromarray(img[0], ’RGB’)

imgs.append(img)

w_str = w_end

imgs[0].save(os.path.join(root, ’inter_%s_seeds_%s_model_%s.gif’

% (time.ctime().replace(’ ’, ’_’).replace(’:’, ’_’),

str(seeds)[1:-1].replace(’, ’, ’_’), ckpt.split(’/’)[-1])),

save_all=True, append_images=imgs[1:], optimize=False,

duration=41, loop=0)
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