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1. Introduction 

Recently, more and more people are getting interested in 

music arrangement, aiming to make their own music. 

People are getting more and more interested in music. 

Not only listening to music, but also making music by 

themselves. However, for freshman, music arrangement is 

too difficult to learn. Even some of the people cannot 

play any instrument. Most of the people stop their dream 

here. Maybe a brilliant music is also killed because the 

people who made it do not know how to arrange it. 

Consequently, an automatic music arrangement system 

may help this kind of people to arrange their music easier. 

With the well-developed machine learning technique 

nowadays, making such a system becomes possible. In 

our research, we provide a system to arrange a music. In 

the first step of our system, we transfer the input music 

into MIDI file. Then, we train a GAN model (we use 

Cycle-GAN here) to transfer between input music and 

arranged music. We can see the effect of the automatic 

music arrangement system by the output MIDI file. We 

also confirmed the difference by groups of hearing tests. 

2. Background 

2.1. MIDI 

MIDI file introduced capabilities that transformed the 

way many musicians work [1]. Simply speaking, MIDI 

file stores what instrument does the user play, when does 

the user play and which key or string does the user play, 

by which we can use simple arrays to store a complex 

music. 

2.2. Onsets and Frames  

Onsets and Frames is a model for automatic polyphonic 

piano music transcription made by Google Brain Team. 

Using this model, we can convert raw recordings of solo 

piano performances into MIDI [2]. 

2.3.  Generative Adversarial Network (GAN) 

 GAN [3] is a method proposed by Goodfellow et al. 

Two neural networks contest with each other in a game, 

making the generated target statistically indistinguishable 

from the real one. The two networks in GAN model 

called Generator and Discriminator. In the game, 

generator tries to generate a fake target which is as same 

as possible with the Ground truth. Discriminator tries to 

find out the generated target is fake or not. After training, 

the Generator will finally generate a target close to the 

real one. Figure 7 shows the structure of GAN [2, 15]. 

2.4. ResNet 

In order to train deeper networks better, a network 

structure ResNet is proposed in 2015 [4], which was the 

winning algorithm of ImageNet Large Scale Visual 

Recognition Challenge 2015. ResNet is a residual 

network, we can understand it as a sub-network, this 

sub-network can form a deep network after stacking. The 

output of each residual block can be written as formula 

2.2.  

𝐲 = ℱ(𝐱, {𝑊𝑖}) + 𝐱                    (2.2) 

ℱ(𝐱, {𝑊𝑖}) can be written as: 

ℱ = 𝑊2𝜎(𝑊1𝐱)            (2.3) 

Where 𝑊1 is the weight of weight layer 1 and 𝑊2 is the 

weight of weight layer 2. σ is the activation function, 

which is Relu here. 

2.5. Cycle-GAN 

 Traditional GAN is unidirectional, which means we 

can just generate from one domain to another but cannot 

go back. Cycle-GAN is essentially two GANs working 

like a mirror, forming a ring network. The two GANs 

share two generators, each with a discriminator. 

Cycle-GAN performs great on image-to-image transfer, 

which is one of the most popular models in GAN family 

[5]. 

 

 
Figure 1 Structure of Cycle-GAN (1) 



 
Figure 2 Structure of Cycle-GAN (2) 

Figure 1 and 2 shows the structure of Cycle-GAN, in 

which x and y are the input images from two different 

dataset. In the first step, x is transferred to the domain of 

y by Generator G and y is transferred to the domain of x 

by Generator F. In the second step, we take G(x) and F(y) 

as a new input of their Generator each other, which means 

G(x) is transferred to the domain of x by Generator F, and 

F(y) is transferred to the domain of y by Generator G.  

3. Proposed Method 

3.1. Pre-Processing 

We use the Onsets and Frames (Chapter 2.2) function 

to transfer the sample into MIDI file. If the sample is 

clear enough, we can get a nice result, which means the 

MIDI file is nearly totally the same as we want. 

However, sometimes there are some noise. In this 

situation, we delete some of the wrong part in the 

MIDI file manually, to make the MIDI file clear. 

3.2. Arrangement Model 

 We use Cycle-GAN (Chapter 2.3) for our arrangement 

model. When we arrange a music, we want it adds some 

details to the input music and keeps the main rhythm, but 

not totally change the music. In the music style transfer 

research of Sumu Zhao et al [6]., we find out that they 

add a loss function to check whether the transferred 

music can still be understood as the original music. We 

also add a loss here to check whether the arranged music 

still have the rhythm of the input music. 

3.3. Generator and discriminator 

Although the team who makes the Cycle-GAN used 

ResNet for their Generator, we also tried U-Net in our 

research, which is a popular structure for generators. 

After groups of experiments, we finally choose ResNet 

because it performs better on our dataset. 

The discriminator has 5 convolutional layers between the 

input and the output, the same as the Cycle-Gan team. 

4. Experiment 

4.1. Dataset 

 We need a dataset with two groups of audios, and we 

want the two groups of audios to be in pairs. After days of 

paper research, we did not find such a dataset which can 

fit our needs. Therefore, we collect data by ourselves. We 

find MIDI music from opensource websites [21, 22, 23], 

and manually catch the main rhythm out to make a pair of 

data. We made 28 music and then cut them into 

16-second pieces. After that, we got 454 pairs of samples 

to training with.  

4.2. Result 

 
(a)The MIDI file of the melody before arrangement 

 
(b)The MIDI file of the arranged music 

Figure 3 Result 

Figure 3. (a) is a MIDI file of the melody we played on 

our piano, which is transferred from raw recordings of 

piano performances. Figure 3. (b) is the MIDI file of the 

arranged music transferred from (a), generated by our 

Cycle-GAN model, trained with 454 x 16s pairs of 

samples. 

From Fig.1 and Fig.2, we can see the effect of the 

automatic music arrangement. We also confirmed the 

difference by groups of hearing tests. 

5. Conclusion 

 In this research, we tried to build a music arrangement 

system based on Machine Learning. We used a model 

called Onset and Frame to transfer the input music from 

spectrogram into MIDI file. Then, we use Cycle-GAN 

model to arrange the music, add more details in our music 

and keep the main rhythm at the same time. As a 

conclusion, our music arrangement system works well, 

but still have a long way to go. 
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1. Introduction 

 

1.1  Abstract 

 

Nowadays, Machine learning (ML) can be found everywhere in our life. There are many 

applications of machine learning, such as message filtering, speech processing and computer 

vision. Machine learning is a branch of Artificial Intelligence (AI). It is the study of computer 

algorithms that improve automatically learning through experience [1]. Deep learning is a 

specific kind of machine learning, which performs great on Natural Language Processing, Self-

Driving Cars, Computer Vision and many other areas.  

A generative adversarial network (GAN) [2] is a class of frameworks performs great on image 

generation, which is also a significant part of Deep Learning. In a GAN, usually Two neural 

networks contest with each other in a game. Given a training set, GAN learns to generate new 

data with the same statistics as the training set. Using GAN, researchers got plenty of 

achievements on different areas, especially on image generation. However, on music generation 

area, GAN still have a long way to go. 

In most of the researches, GAN generates there target from noise. Nevertheless, some research 

generates pictures from picture. For example, Pix2Pix [3] generate pictures from scratch, Cycle-

GAN [4] generate pictures from another group of pictures, and Star-GAN [5] generates pictures 

from several other groups of pictures. We notice that the picture generated by GAN usually have 

more details than before. Then we came up an idea: Can we use GAN to make a music 

arrangement system, which gives our input music more details. 

Thus, in our research, we provide a system to arrange a music. In the first step of our system, we 

transfer the input music into MIDI file. Then, we train a GAN model (we use Cycle-GAN here) to 
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transfer between input music and arranged music. We can see the effect of the automatic music 

arrangement system by the output MIDI file. We also confirmed the difference by groups of 

hearing tests. 

 

1.2 Motivation 

 

Recently, more and more people are getting interested in music arrangement, aiming to make 

their own music. People are getting more and more interested in music. Not only listening to 

music, but also, sometimes, making music by themselves. For example, when a man is taking a 

shower in his bathroom, a rhythm comes up in his mind. He thinks it is beautiful and he recorded 

it right after he comes out from his bathroom. What to do next? To make the rhythm into a music, 

music arrangement is needed. 

However, for freshman, music arrangement is too difficult to learn. Even some of the people 

cannot play any instrument. Most of the people stop their dream here. Maybe a brilliant music 

is also killed because the people who made it do not know how to arrange it. 

Consequently, an automatic music arrangement system may help this kind of people to arrange 

their music easier. With the well-developed machine learning technique nowadays, making such 

a system becomes possible. In our research, we provide such a system to arrange a simple music. 

When a rhythm comes up in your mind, you can make a music in a second. 

 

1.3 Problem Statement 

 

For freshman, there are two main problems on music arrangement:  



3 

 

The first problem is to transfer their idea into a score, which can be considered as MIDI file here. 

To solve this problem, In the first step of our system, we transfer the input music into MIDI file. 

We used a model called Onset and Frame here, which will be introduced in Part 2.  

The second problem is to arrange the music. We need more details in our music, but we do not 

want to change the main rhythm made by ourselves. So, in the second part of our job, we train a 

Cycle-GAN model to transfer between input music and arranged music. 

To train the Cycle-GAN model, we need a dataset with 2 groups of music, including arranged 

music and un-arranged music. We cannot find such a dataset because the arranged music and 

un-arranged music we need should be in pair. As a result, we made the dataset by ourselves. 

This is the most time-cost problem in our research. 

The last problem is the evaluation. We also cannot find an evaluation method for our arranged 

music. At last we confirmed the difference by groups of hearing tests, which is used in most of 

the research about music generation. 

 

1.4 System Overview 

 

To solve the problems mentioned in the previous part, the system has a series of experiments. 

Figure 1 shows the system in this research. 
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Figure 1 System Overview 

 

For the “Transfer to MIDI” part, we used a structure called Onsets and Frames, which is the 

state-of-the-art model for automatic polyphonic piano music transcription. 

And for the Arrangement part we trained a Cycle-GAN model. For the Generator of Cycle-GAN 

we use U-Net structure. And for the Discriminator we use Resnet structure. 
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1.5 Outline 

 

The outline of this thesis is as follows: 

Chapter 1:  

An introduction of this research, including abstract, motivation, problem statement, system 

overview and outline.  

Chapter 2:  

Background of this research, including MIDI, Onsets and Frames, and Cycle-GAN. we talk about 

the tools and methods we use in our research in this chapter. 

Chapter 3: 

Proposed method of this research, including pre-processing, arrangement model and data 

collection. In this chapter, we talk about the proposed methods of our research, which should be 

used in our experiment. 

Chapter 4: 

Experiment of this research, including working environment, dataset, pre-processing, training, 

result and evaluation. In this chapter we talk about the experiment based on the method in 

chapter 3 and the solutions for some coming problems during the experiment.   

Chapter 5: 

Conclusion and future work of this research. In this chapter we have a brief conclusion about our 

research, and we talk about the work can be done in the future. 
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2. Background 

 

To make our system, we need to do a lot of paper research before our work. Machine learning 

has been researched for decades since the term Machine Learning was coined in 1959 by Arthur 

Samuel. Neural Network also has been researched for years. For music arrangement, it has even 

hundreds of years history. We are standing on the shoulders of giants.  

In this section, we talk about the tools and methods we use in our research, including MIDI, 

Onsets and Frames and Cycle-GAN.  

 

2.1 MIDI 

 

 

Figure 2 A MIDI file for a classic piano music 

 

MIDI file introduced capabilities that transformed the way many musicians work [6]. Simply 

speaking, MIDI file stores what instrument does the user play, when does the user play and which 

key or string does the user play, by which we can use simple arrays to store a complex music. A 

popular music saving in MIDI file usually takes under 1 megabyte, sometimes even under 100 

kilobytes. For some classic piano music, it takes only around 20 kilobytes. Figure 2 shows a MIDI 

file for a classic piano music, it takes only 32 kilobytes. The height of each line means the key of 

the note, can be understood as the keys on the piano we play. The length of the lines indicates 

how long the note keeps, can be known as how long we played the key.  
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2.2 Onsets and Frames 

 

Onsets and Frames is a model for automatic polyphonic piano music transcription made by 

Google Brain Team. Using this model, we can convert raw recordings of solo piano performances 

into MIDI [7]. 

The input should be a record of solo piano music, or other instruments, even humans voice. At 

first, the input can be understood as a spectrogram, and the result is a MIDI file transferred from 

the input spectrogram. Figure 3 shows an example, the transferred MIDI file is showed in figure 

4. Which has a little bit mistakes because of the noise from the original music. 

This work achieves a new state of the art by using CNNs and LSTMs [11] to predict pitch onset 

events and then using those predictions to condition framewise pitch predictions. 

 

 

Figure 3 Piano music recorded in our lab 
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Figure 4 The MIDI file transferred from figure 3 

 

Before Onsets and Frames, Frame-only LSTM was the previous state-of-the-art. Onsets and 

Frames is also a method improves from the Frame-only LSTM. Figure 5 shows the structure of 

Frame-only LSTM. 

 

 

 

Figure 5 Frame-LSTM 
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Figure 6 Onsets and Frames 

  

The reason Onsets and Frames performs better is because they split the task into two neural 

networks: One network is trained for onset frames detection. Another one, same as the Frame-

only LSTM, is trained to detect every frame.  

Onset frames is the first few frames of every note, which means the Onset network only care 

about the beginning of each note, but not the whole note. Usually the beginning part is the 

strongest. Experiments indicate that by separating out the onset detection task, this two-
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network structure performs much better than the previous model. The structure of Onsets and 

Frames is showed in figure 6. 

 

The comparation between Frame-LSTM and Onsets and Frames: 

 

Table 1 Inception score between Frame-LSTM and Onsets and Frames 

 Inception score 

Onsets and Frames 50.22 

Frame-LSTM 27.89 

 

2.3 Cycle-GAN 

 

Before the introduction of Cycle-GAN, we need to understand several Concepts. Include GAN, 

CNN, and the structure we used for our Generator and Discriminator.  

 

2.3.1 GAN 

 

GAN [2] is a method proposed by Goodfellow et al. Two neural networks contest with each other 

in a game, making the generated target statistically indistinguishable from the real one. The two 

networks in GAN model called Generator and Discriminator. In the game, generator tries to 

generate a fake target which is as same as possible with the Ground truth. Discriminator tries to 

find out the generated target is fake or not. After training, the Generator will finally generate a 

target close to the real one. Figure 7 shows the structure of GAN [2, 15]. 
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Figure 7 The structure of GAN 

 

Generator is a neural network with input as latent variable z and output as image. On the other 

hand, Discriminator is a neural network whose input is image and output is the prediction of the 

input image (true/false). The images of the dataset and the images generated by the Generator 

are alternately input to the Discriminator, and the Discriminator determines whether the images 

are derived from the dataset or the generator (true/false). Discriminator learns to make 

judgment correct, and Generator learns to let Discriminator judge that the generated image as 

an image derived from the dataset. By successfully training the Generator and Discriminator, the 

Generator will be able to generate an image as same as the image of the dataset, and the 

Discriminator will be able to determine whether the input image is from the dataset more 

accurately. GAN obtains the optimal Generator and Discriminator by solving the minimax 

problem of the value function V (G, D) expressed by equation (2.1). 

 

 

 

min
𝐺

 max
𝐷

 𝑉(𝐺, 𝐷) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧))] (2.1) 
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D(x) represents the probability that the input x of the Discriminator comes from the dataset, and 

G(z) represents the sample generated by the Generator from z. In addition, 𝑝𝑑𝑎𝑡𝑎(𝑥) represents 

the probability distribution of the data set, and 𝑝𝑧(𝑧) represents the probability distribution of 

z. 

 

2.3.2 CNN 

 

CNN (Convolutional Neural Network) is a class of deep neural networks which has decades of 

history. CNN on computer vision was developed from a research to recognize hand-written ZIP 

Code numbers in 1989, by Yann LeCun et al [8]. In 2004, it is proved that neural networks can be 

greatly accelerated on GPUs. Research of K. S. Oh and K. Jung shows that their implementation 

was 20 times faster than an equivalent implementation on CPU [9]. Therefore, the first GPU 

implementation of a CNN was described in 2006. Deep learning theory was proposed at the same 

year. From 2006, Convolutional Neural Networks has received attention and has been developed 

with the update of numerical computing equipment. Since Alex-Net comes in 2012 [10], complex 

convolutional neural networks supported by GPU computing clusters have repeatedly become 

the winning algorithm of ImageNet Large Scale Visual Recognition Challenge in several years 

[12]. 
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Figure 8 Structure of CNN 

 

Figure 8 is a structure of CNN. The structure can be changed in different research, to feat different 

situations. There are several layers inside the structure, each of them has their own applications. 

 

a. Convolutional Layer 

 

Convolutional Layer (Conv Layer) consists of filters and activation functions. The general 

hyperparameters to be set include the number of the filters, size of the filters, step size of the 

filters, and whether the padding is "valid" or "same". Of course, it also includes what activation 

function to choose.  

Figure 9 shows a working Convolutional Layer, the map in the left is the input image, and the 

map in the middle is the filter here. The size of the filter is 3 x 3 here. In the convolution, the filter 

multiplies the parts in the input image and get a result in each calculation. Step size of the filters 

means how long the filter goes between each calculation.  

For example, when the step is 2, the size of our filter is 2 x 2, the size of our input image is 5 x 5. 

If we do the convolution, we cannot get the feature in the last queue. In this situation, we need 

to use padding. Padding means add line around the image, with “0” in each pixel. After padding, 

we make the size of the input image become 6 x 6 from 5 x 5, the convolution can be done well. 

Every pixel can be contained. 
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Figure 9 Progress of Convolutional Layer 

 

b. Pooling Layer 

 

In pooling layer there are no parameters here that we need to learn, because the parameters 

here are all set, either Max-pooling or Average-pooling. The hyperparameters that need to be 

specified include Max or average, window size and step size. 

Usually, we use Max-pooling more, and generally take a filter with a size of (2,2) and a step size 

of 2. Therefore, after pooling, the input length and width will be reduced by 2 times, and the 

channels will not change. 

Figure 10 shows a working pooling layer using Max-Pooling, with a 2 x 2 window size and a step 

size of 2. The right map is the input image of this layer. The right map is the result. In the map 

after pooling, each of the block means a result in the window. We are using Max-Pooling here, so 

each of the result indicate the Max number in the window. Take the first window as an example, 

there are four pixels with “1, 3, 7, 9” in them. The result should be the max number in the window, 

which is 9 in this situation. If we take Average-Pooling here, the result in the first window should 

be the average number in it, which is “5”. 
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Figure 10 Progress of Pooling Layer 

 

c. Fully Connected Layer 

 

All neurons between the two layers have weight to connect. Usually the fully connected layer is 

at the tail of the convolutional neural network. It is the same as the connection method of 

traditional neural network neurons. The hyperparameters to be specified here are the number 

of neurons and the activation function. 
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Figure 11 Progress of Fully Connected Layer 

 

2.3.3 ResNet 

 

We know that the deeper the network, the more information we can get, and we can also get 

better feature. However, according to experiments, as the network deepens, the optimization 

effect becomes worse, and the accuracy of test data and training data decreases. This is because 

the deepening of the network will cause the problem of gradient explosion and gradient 

disappearance. 

In order to train deeper networks to better, a network structure ResNet is proposed in 2015 [13], 

which was the winning algorithm of ImageNet Large Scale Visual Recognition Challenge 2015. 

ResNet is a residual network, we can understand it as a sub-network, this sub-network can form 

a deep network after stacking. Figure 12 shows the structure of a ResNet block. 
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Figure 12 ResNet block 

 

Here x is the feature before the residual block, and F(x) is the function of the two weight layers. 

The output can be written as formula 2.2.  

 

𝐲 = ℱ(𝐱, {𝑊𝑖}) + 𝐱                                                                  (2.2) 

 

ℱ(𝐱, {𝑊𝑖}) can be written as: 

 

ℱ = 𝑊2𝜎(𝑊1𝐱)                               (2.3) 

 

Where 𝑊1 is the weight of weight layer 1 and 𝑊2 is the weight of weight layer 2. 𝜎 is the 

activation function, which should be Relu here. 

The same as the original Cycle-GAN paper, we use ResNet for our generator structure. 
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2.3.4 Cycle-GAN 

 

Traditional GAN is unidirectional, which means we can just generate from one domain to another 

but cannot go back. Cycle-GAN is essentially two GANs working like a mirror, forming a ring 

network. The two GANs share two generators, each with a discriminator, that is, a total of two 

discriminators and two generators [4].  

 

 

Figure 13 Structure of Cycle-GAN (1) 

 

 

Figure 14 Structure of Cycle-GAN (2) 
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Figure 13 and 14 shows the structure of Cycle-GAN. In the structure, x and y are input images 

from two different dataset. In the first step, x is transferred to the domain of y by Generator G 

and y is transferred to the domain of x by Generator F. The results are shown as G(x) in figure 13 

and F(y) in figure 14. At that point, there is a discriminator and we got an output just like a 

normal GAN. Here comes the second step, which is the most significant point in Cycle-GAN. In 

the second step, we take G(x) and F(y) as a new input of their Generator each other, which means 

G(x) is transferred to the domain of x by Generator F, and F(y) is transferred to the domain of y 

by Generator G. The results are shown as F(G(x)) in figure 13 and G(F(y)) in figure 14. We use 

Cycle-consistency Loss to evaluate whether the system works well, which indicates the 

difference between x and F(G(x)) and the difference between y and F(G(y)) [4, 14]. The function 

is like the follows: 

 

ℒcyc(𝐺, 𝐹) = 𝔼𝑥∼𝑝data(𝑥)[∥ 𝐹(𝐺(𝑥)) − 𝑥 ∥1] + 𝔼𝑦∼𝑝data(𝑦)[∥ 𝐺(𝐹(𝑦)) − 𝑦 ∥1]     (2.4) 

 

Totally, the loss function of Cycle-GAN should be: 

 

ℒ(𝐺, 𝐹, 𝐷𝑋 , 𝐷𝑌) = ℒGAN(𝐺, 𝐷𝑌 , 𝑋, 𝑌) + ℒGAN(𝐹, 𝐷𝑋 , 𝑌, 𝑋) + 𝜆ℒcyc(𝐺, 𝐹)       (2.5) 

 

Where ℒGAN(𝐺, 𝐷𝑌 , 𝑋, 𝑌) and ℒGAN(𝐹, 𝐷𝑋 , 𝑌, 𝑋) are two loss functions same as the normal GAN, 

which are used on the two Discriminators. ℒcyc(𝐺, 𝐹)  is the Cycle-consistency loss and 𝜆 

controls the relative importance of the two objectives. 
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3. Proposed Method 

 

In Chapter 1, we already talked about the problems we need to solve and had a brief overview of 

our system. In this chapter, we are going to talk about the proposed method of our research, 

including pre-processing, arrangement model and data collection. 

 

3.1 Pre-processing 

 

In Chapter 1 (Figure 1), we introduced the flowchart of our system. First, we need to get the 

input before we process it, which should be a record of rhythm. The recording equipment we 

used is AT2020 Cardioid Condenser Microphone from Audio-Technica. 

 

 

Figure 15 Recording Equipment 

 

The recorded sample is in MPEG-4 [16] format. We use the Onsets and Frames (Chapter 2.2) 

function to transfer the sample into MIDI file. If the sample is clear enough, we can get a nice 

result, which means the MIDI file is nearly totally the same as we want. However, sometimes 

there are some noise. In this situation, we delete some of the wrong part in the MIDI file manually, 

to make the MIDI file clear. 



21 

 

3.2 Arrangement model 

 

We use Cycle-GAN (Chapter 2.3) for our arrangement model. When we arrange a music, we want 

it adds some details to the input music and keeps the main rhythm, but not totally change the 

music. In the music style transfer research of Sumu Zhao et al [17]., we find out that they add a 

loss function to check whether the transferred music can still be understood as the original 

music. We also add a loss here to check whether the arranged music still have the rhythm of the 

input music. 

 

𝐿𝐷𝐺,𝑂
= ∥ 𝐷𝐺,𝑂(𝑥) − 1 ∥2+∥ 𝐷𝐺,𝑂(𝐺(𝑥)) ∥2                 (3.1) 

 

Where 𝐷𝐺,𝑂 can be understood as a new generator to find out whether the Generated music is 

from the Original music. 

 

3.2.1 Generator 

 

Although the team who makes the Cycle-GAN used ResNet for their Generator, we also want to 

try other structure in our research. So, we try not only ResNet, but also U-net [18]. U-net is a 

popular structure for generators. A lot of researchers use U-net in their research to generate 

image. We want to know whether it performs better in our research. 

When we use ResNet as our Generator, we also try to change the numbers of the layers. In ResNet, 

we changed the numbers of the Residual Blocks, to see the difference of our arranged music. The 

structure is shown in figure 16. 
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Figure 16 Generator Structure 

 

Where n is the number of residual blocks, Conv layer is convolutional layer introduced in chapter 

2 (Chapter 2.3.2). DeConv layer is Deconvolutional layer, which is a layer has the opposite 

function with convolutional layer.  

 

3.2.2 Discriminator 

 

For the Discriminator, we use the same structure with the Cycle-GAN group. It has 5 

convolutional layers. Figure 17 shows the structure of the discriminator. 
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Figure 17 Discriminator 

 

3.3 Data collection 

 

We need a dataset with two groups of audios: The first group of audios should be music with 

only main rhythm, without chord and reharmonization. Another group of audios should be 

arranged music, with chord and reharmonization. The problem is that, we want the two groups 

of music to be in pairs. One rhythm should have an arranged version in another group of data, 

and an arranged music need to have their main rhythm in another group of data. 
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4. Experiment 

 

In the previous chapter (Chapter 3), we talked about the proposed method of our research. 

Besides the problems we introduce in chapter 1 (Chapter 1.3), more problem is found during 

our experiment. In this chapter we are going to talk about the experiment based on the method 

in chapter 3 and the solutions for coming problems.   

 

4.1 Working Environment  

 

Most of our work is done on the computer in our lab. The working environment is shown in table 

2. 

  

Table 2 Working Environment 

OS Windows 10 Pro 

RAM 16GB 

CPU Intel®Core𝑇𝑀 i7 − 8750H CPU @ 2.20GHz  

GPU NVIDIA GeForce GTX 1080 

 

4.2 Dataset 

 

In chapter 3.3 we talked about the data collection method. We need a dataset with two groups 

of audios, and we want the two groups of audios to be in pairs. After days of paper research, we 

did not find such a dataset which can fit our needs. Therefore, we collect data by ourselves. We 

find MIDI music from opensource websites [21, 22, 23], and manually catch the main rhythm out 

to make a pair of data. Figure 3.3 and 3.4 show an example of our data. 
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Figure 3.3 A data in the arranged group 

 

 

Figure 3.4 The data with only main rhythm 

 

As a dataset, the data are too long and too large. Thus, we cut the data into dozens of small 

ones with 16 seconds for each data. As a result, we got a dataset like table 3 shows. 

 

Table 3 Dataset 

Dataset Music data 

Arranged Music 28 454 

Main Rhythm 28 454 
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4.3 Pre-processing 

 

When we use Cycle-GAN to generate images, the input and output is considered as matrix. 

Usually we use a package in Python called Numpy [19] to deal with matrix. In image processing, 

we can use matrix to present the contents in an image because image is assembled by pixel, 

which is just like a matrix.  

However, MIDI file is not assembled by pixel. Before we use the MIDI data to train our model, we 

need to do some pre-process on the MIDI files, aiming to transfer MIDI files into Numpy files. 

Here, we use a Python package called pretty-midi [20] to transfer MIDI files into matrix.  

 

4.4 Training 

 

In chapter 3 we mentioned that we try not only ResNet, but also U-net. We want to know which 

one performs better in our system. After training with different layers of ResNet and U-net, we 

find out that when we use U-net, the system nearly does not fit. The Cycle-consistency loss keeps 

high and the results was very noisy. We are not clear with the reason, but we think possibly it is 

because our dataset is too small for the training. However, using ResNet can get a result much 

better than using U-net. We tried different numbers of layers in our generator, including 8, 10 

and 12. Table 4 shows the structure, the activation function is Relu [24, 25]. 
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Table 4 Structure of Generator 

Layers Kernel size Channel 

Conv layer 7 x 7 64 

Conv layer 3 x 3 128 

Conv layer 3 x 3 256 

ResNet 3 x 3 256 

… 

ResNet 3 x 3 256 

Deconv layer 3 x 3 128 

Deconv layer 3 x 3 64 

Deconv layer 7 x 7 1 

 

When we use 8 layers of ResNet, the fitting rate is lower than 10 layers and 12 layers. When we 

use 10 layers of ResNet, the fitting rate is higher. However, when we use 12 layers of ResNet, the 

fitting rate is not higher than 10 layers.  

After we hear the results and compared between different layers. We find out that 12 layers 

ResNet have better reharmonization and clearer chord (Clearer than the other two results, but 

still not perfect). Nevertheless, although the result is not a good music for us, 8 layers ResNet 

gives us a music which have more details. As a result, we choose 10 layers ResNet as our 

generator structure. 

For the discriminator, we simply used the same structure with the original Cycle-GAN model. 

The structure is as follows (the activation function is Leaky Relu [24, 25]): 
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Table 5 Structure of Discriminator 

Layers Kernel size Channel 

Conv layer 3 x 3 64 

Conv layer 3 x 3 128 

Conv layer 3 x 3 256 

Conv layer 3 x 3 512 

Conv layer 1 x 1 1 

 

4.5 Result 

 

In our system, the result should have two steps: 

Step 1 have a spectrogram input (Figure 18), and a MIDI output with the recorded rhythm 

(Figure 19). 

Step 2 take the output of step 1 as an input, and an arranged music in MIDI file as an output 

(Figure 20).  
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Figure 18 The input spectrogram 

 

 

Figure 19 The MIDI file transferred from the input spectrogram 

 

 

Figure 20 The MIDI file of the music arranged from 19 
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1.6 Evaluation  

 

Up to now, we did not find a good evaluation method for the generated music besides hearing 

test. Therefore, we found 20 people to join our hearing test, including different ages and sexual. 

We ask them to listen to our arranged music and give a rank between 1 to 10, the result is shown 

in the coming table: 

 

Table 6 Evaluation 

Samples Average Rank 

Music Sample 1 4.2 

Music Sample 2 5.0 

Music Sample 3 3.9 

 

From the result, we know that our arranged music still has a long distance from human reality. 

We still have a long way to go. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

5. Conclusion and Future Work 

 

5.1 Conclusion 

 

In this research, we made an attempt to build a music arrangement system based on Machine 

Learning. The system solves two main problem for music arrangement. The first problem is to 

transfer idea of the users into a score, which can be considered as MIDI file. We used a model 

called Onset and Frame to transfer the input music from spectrogram into MIDI file. This is the 

first part of our system. 

The second problem is to arrange the music. Using Cycle-GAN model, we add more details in our 

music, and we keep the main rhythm at the same time. During the experiment, we tried different 

structures and different layers in our structure. At last, we get our result. This is the second part 

of our system.  

We also have two more problems during we are working on our research. The first one is 

collecting our dataset. We need a dataset with 2 groups of music, including arranged music and 

un-arranged music. However, we did not find a dataset which can fit our research well. As a 

result, we collect and process the data by ourselves, which take us plenty of time. However, our 

dataset is still small. A larger dataset may give us a better result. 

The last problem is the evaluation. We cannot find an evaluation method for our arranged music. 

Therefore, we confirmed the results by groups of hearing tests. Although the rank is not high, 

but the music is being arranged and the result is not bad. 

As a conclusion, our music arrangement system works well, but still have a long way to go. Some 

of the parts can be improved, which will mention in the coming section.  
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5.2 Future Work 

 

For the future work of our research, we can briefly summary as 2 parts: 

First and the most important, we need to continue the work of data collection. Although we 

already took plenty of time on data collection, the dataset is still too small. In machine learning, 

usually a larger dataset means a better result. 

Second, we can try some other structure besides Cycle-GAN. In fact, we are trying Pix2Pix [26] 

in our system, but the work is not done yet. Using machine learning on music arrangement has 

too much possibility. We still have a long way to go. 
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