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Abstract—This paper explores the applicability of conditional
generative adversarial networks in audio-to-audio translation
problems and proposes a neural network architecture capable of
doing so. Recent advances have shown than causal convolutions
can be effective for modeling raw audio when their kernel is
dilated by many factors, in contrast to previous techniques
that utilized recurrent approaches. Embedding such convolutions
within a conditional GAN architecture allows the targeted gen-
eration of raw audio given a certain input. This architecture can
then be used to learn and simulate certain translative operations
applied to an input signal. This creates the defined problem of
havving to converting one audio signal into another which has
different characteristics. We also propose a novel discriminator
structure for the evaluation of generated audio.

Index Terms—conditional generative adversarial networks,
causal dilated convolutions, audio effects, signal processing

I. INTRODUCTION

The term “Audio effect” generally describes a transforma-
tion that is applied to an audio signal. It is important to make
the distinction, that the word “transform” here does not refer
to a mathematical operation that performs a domain conver-
sion. An example of such a transform would be the Fourier
Transform, which decomposes a signal into it’s constituent
frequencies and essentially converts a signal from the time
domain into the frequency domain. The transformations that
will be discussed in the remainder of this paper should not
be regarded as such, but rather as translative operations, or
operations of conversion.

Pix2Pix [1] serves as a good illustrative example for our
purposes. Their objective is to provide a solution for image-to-
image translation problems, where images are “translated” into
different images, that are structurally very similar, but have a
different style and character. For example, colorizing Black-
and-White images could be regarded as such a translation.
Structurally, both images are identical, but their form of
presentation is very different. Furthermore, converting hand-
drawn sketches into realistic images is also such a translation.
Even though the pixel structure that represents the object will
be slightly morphed, the observable object is still the same,
but now has a different appearance.

This comparative explanation should make the purpose of
audio effects clear. It is to change the way a sound is perceived
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by our ears. For example, low pass filters can be used
to smoothen harsh sounds and attenuate certain frequencies
present in that sound, figure I illustrates the effect of a low-
pass filter on an audio signal. Other effects, like reverbs can
be used to place a sound in a certain space, such as a church
hall, a large cave or merely a small broom-closet. Some effects
even purposefully distort a signal, such as distortion effects,
that have made possible many iconic guitar sounds throughout
the history of western music. Traditionally, these types of
operations fall into the domain of signal processing and can
be achieved with analog and digital circuits. Entire books
have been dedicated to the topic of construction and design of
such circuits [2]. Nowadays, these types of effects are most
prominently used in music production, sound engineering and
sound design, where they most notably occur in the forms of
software (VST plugins) or hardware (effect pedals), and serve
as sound-shaping and sound-sculpting tools.

This paper proposes a neural network architecture that can
serve as a general purpose framework capable of learning and
simulating certain audio effects. Such a framework could also
be used for tasks other than audio effects, such a denoising
audio samples, similarly to SEGAN [3] for example, or learn-
ing the specific characteristics of a certain hardware circuit
(naturally only if it possible to generate and record enough
training data with it). In section II we discuss previous network
architectures that contribute to this work. Section III describes
the proposed architecture and how it is different from previous
works. And finally, section IV explains how the model was
trained and shows the experimental results that have been
achieved so far.

II. RELATED WORK

This network architecture is generally based on the con-
ditional GAN [4] architecture proposed in the Pix2Pix paper
[1], combined with the proven effectiveness of Causal Dilated
Convolutions proposed in Wavenet [5].

A. Pix2Pix: Image-to-Image Translation with Conditional Ad-
versarial Networks

Pix2Pix proves that Generative Adversarial Networks [6]
can generate excellent fakes when they are applied in a
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Fig. 1. We apply a low-pass filter with a cut-off frequency of 129Hz and resonance of 1.85 at the cut-off frequency (or Q factor), to a synthetic brass sound.
Figures A and B show the effect that this has on the overall shape of the waveform. Figures C and D show the respective spectrograms of the dry and effected
signal. The high frequencies of the signal are attenuated and not present in D, whilst D has more resonant frequencies around 129Hz. The welch periodogram
F shows that the spectral density of higher frequencies is much lower than that of the dry signal as shown in figure E.

conditional setting [4]. Originally, GANs learn to generate an
output given a random noise vector as input. In the conditional
variant, this noise vector is replaced by a condition, which is
in other terms an input to the network. In the case of Pix2Pix
this input would be an image of some sort. This demands an
appropriate architecture that is capable of taking in such an
1mput.

The generative component of the conditional GAN that
constitutes the Pix2Pix architecture, is an auto-encoder-like
structure [7]. While preserving the encoder-decoder compo-
nents of an auto-encoder, it also features residual connections
[8] connecting the convolutional blocks in the encoder to
their counterparts in the decoder. This essentially allows an
important flow of features forward, while at the same time it
allows gradients to propagate deeper into the network. These
skip connections insinuate the shape of the ”U” when this
architecture is represented in form of a diagram, hence it has
been coined with the name “U-Net” [9]. The convolutional
layers present in the encoder perform a spatial reduction
on the input. At the bottleneck point of the generator we
should have achieved some sort of latent representation of
the input. Generally this latent representation is a machine
understandable encoding of the original image, which will
then be handed to the decoder, which in turn will upsample
this encoding and reconstruct an output image. Pix2Pix also
employs an interesting and unusual type of discriminator [10]
tailored for their purpose which will be discussed in section
11-B

B. Wavenet: a generative model for raw audio

Wavenet [5] proposes a novel architecture for generating
raw audio. Rather than utilizing recurrent units, such as in
RNNs [11] and LSTMs [12], which contain an internal mem-
ory, they show that state-of-the-art results can be achieved by
utilizing convolutions to model waveforms on a sample level.
For sequential data, or any kind of data that exhibits some
temporal (past - current - future) relationship, it is necessary
to utilize causal convolutions. Meaning, that future time-steps
should not be shown to convolution before it has generated the
next time-step, as this current time-step can not conditionally
depend on any future time-step. This condition is referred to
as causality, and was first introduced in PixelCNN [13] where
it was achieved with masked 2D convolutions.

A problem pointed out in their work is that for the con-
volution to correctly learn long term temporal relationships
between samples, it requires a quite large receptive field. This
can introduce a computational overhead. But luckily this can
also be solved by using dilated filters [14] . By skipping
some time-steps and stacking them in layers we can achieve
an exponentially larger receptive field without requiring more
computational cost, this effectively allows the convolution to
learn long term dependencies that span more than a couple of
sequential samples.

III. PROPOSED ARCHITECTURE

A. Generator

We swap out the 2 Dimensional Convolutions in the Pix2Pix
architecture for 1 Dimensional Causal Dilated Convolutions.
It’s important to notice that the input to these convolutions
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And finally we also use Batch-Norm [15] and Dropout [17]
throughout the layers, except for the input layer, where no
dropout is applied to prevent the loss of important data, and
the last layer where it is not advantageous to use batch nor-
malization. The final configuration of encoding and decoding
blocks can be observed in figure 2. Figure 3 illustrates the
shape of a tensor being passed through a convolutional layer
and a pooling operation.
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Fig. 2. Structure of encoding and decoding convolutional blocks. Note
that dropout has been omitted from the first layer of the encoder. Batch
normalization [15] is present though in the last layer of the decoder, as there
is another final convolution block after the decoder, which does not contain
batch normalization.

will be padded prior to convolutional operation, and hence
the input width is not reduced, but a channel increase still
occurs. This allows the convolutions to learn causal features,
which can also be called temporal codecs [16]. We found that
a kernel width of 1024 and a dilation rate of 8 achieved the
best results, increasing width and dilation factor further did
not yield any performance gains. The spatial reduction occurs
through a 1 Dimensional Max Pooling layer. In the decoder we
utilize the same type of convolution but with a 1 Dimensional
Up-sampling layer, which simply just “repeats each temporal
timestep n times along the time axis” (according to the keras
documentation), where n is the up-sampling factor. This up-
sampling factor is identical to the down-sampling factor used
in the pooling layers in the encoder, and is a value of 4
consistently throughout the generator, with exception of the
first two layers in the encoder, and the final and penultimate
layers in the decoder.This lower up-sampling rate in the
decoder allowed the generation of a much smoother waveform.
Analogously, the down-sampling rate had to be attenuated in
the first two layers of the encoder to ensure that the residual
connections connecting the first two and last two layers carry
over tensors of the same shape.

The activation function of choice is the LeakyReLU, which
is applied throughout all the layers of the generator with excep-
tion of the final output layer, which utilizes a tanh activation.
Initially we experimented with A Parametric ReLU activation,
to give the generator more liberty in the gradient flow, but this
actually introduced noise in the generated samples, when the
output should simply just be the absence of sound.

Additionally we added a learn-able parameter to the skip
connections such that the generator can weight the importance
of certain skip connections between encoder and decoder.

Input to layer

shape = (batch_size, 16384, 1) Convolution
Channel Increase

shape = (batch_size, 16384, 2) Pooling

shape = batch size, 8192, 2

Fig. 3. Shapes of the input tensor passed through the very first layer of the
generator. Channels increase while width is reduced.

B. Discriminator

Traditionally the discriminator in adversarial networks is a
binary classifier which learns how to tell apart fake from real
images and gives meaningful feedback to the generator. In
Pix2Pix the discriminator does not do a binary classification.
It operates on the level of individual patches [14]. Given a
small patch that is an NxN sub-square of pixels of an image,
it will determine if that entire patch is probable to be real or
not. This patch is run convolutionally across the image and
the response is averaged.

We attempted to use this type of discriminator in an audio
setting, where the NxN patch is now represented by slices of
length N of the waveform, where N refers to the number of
samples in that slice. Similarly this slice will be evaluated for
validity and run convolutionally and causally across the wave-
form. What Slice length is optimal is still to be determined.
We have defaulted to values of 32 and 64 samples per slice.

IV. DATA AND METHOD
A. Dataset

For the purpose of this experiment we trained on the NSynth
dataset [18] which consists of 305,979 4 second long .wav
files. Since our proposed architecture only accepts 1 second
long audio files sampled at 16384 samples per second, the data
pre-processing step involved resampling the n-synth dataset at
a samplerate of 16384 and then splitting each training example
into four equal chunks of 1 second. Those chunks were then
indexed and saved to disk as .npy files, as that made it much
faster to load individual batches (we used a batch size of 32
as that was the batch size used in the original wavenet paper)
with a data generator, since it was not possible to load the



3 def lowPassFilter (filter_cutoff, Db,

entire dataset into memory. This gave us an extensive dataset
of 1,156,820 (289,205 x 4) training examples. This also left
over a more than sufficient number of evaluation and testing
samples.

Since we need input and output training pairs, we also had
to generate the target halves of the training examples. The
effect of choice for that was a algorithmic implementation of
a low pass filter, as follows:

import numpy as np
signal) :
N = int (np.ceil((4 / Db)))

if not N & 2:
N += 1
n = np.arange (N)

sinc_func = np.sinc(2 » filter_cutoff

*x (n - (N -1) / 2.))
window = 0.42 - 0.5 * np.cos(2 * np.pi
*n / (N - 1)) + 0.08

* np.cos (

4 x np.pi * n / (N - 1))

sinc_func = sinc_func » window

sinc_func = sinc_func / np.sum(sinc_func)

return np.convolve (signal, sinc_func)

B. GAN training

We followed the standard procedure for training adversarial
networks as described in the original GAN paper [6], the dis-
criminator is trained on real data, then on fake data generated
with the generator, then we perform an update step on the
combined model while the discriminator is frozen. We use the
Adam optimizer for both discriminator and generator, but with
different learning rates of 0.0004 and 0.001 for generator and
discriminator respectively, this choice of learning rates can be
justified with the smaller architecture of the discriminator, such
that one does not “over-power” the other. The next section V
shows generated waveformes after 10 training epochs.

V. RESULTS

We found it best to inspect the generated waveforms visually
by plotting them, and generating spectrograms as well as peri-
odograms. This allows for a preliminary subjective evaluation
of the viability of the proposed architecture. Two musical notes
were chosen at random from the NSynth test set [18] one of
which is a C#5 note played on a reed flute with a velocity of
0.75. And the other note is a D6 played on an acoustic guitar
also with a velocity of 0.75. It is important to state that these
exact two notes do not belong to the training set and haven’t
been seen by the network during training. Figure 4 and figure 6
show the results of running the two notes through our network
respectively. A subjective glance at the waveform plots, reveals
that it is capable at modeling the target signals decently. But
zooming in on certain spots of the generated waveform, we

notice that the generated samples do not perfectly align with
the samples of the target signal.

We also found it beneficial to inspect spectrograms and peri-
odograms of the generated signals. Figure 5 and figure 7 show
the spectrograms and periodograms of the reed and guitar note
respectively. In contrast to the spectrograms, comparing the
welch periodograms shows that the generated signal has a very
different and undesirable spectral density. It could merely be
that the model has not fully converged to an optimum yet and
still does not fully understand how to model signals similar
to the desired target. Equivalently, it could be that the learned
loss function does not aim at reducing this difference.

Fig. 4. A C#5 note played on an acoustic Reed instrument. The figure shows
several plots: In blue is the original signal, green represents the low-pass
filtered signal, red shows the generated waveform from our model and lastly
there is also a fourth figure that shows all of them overlapped for comparison.
The overall shape of the generated waveform comes very close to the target
signal, but it exhibits an additional ’squiggliness” when we zoom in on smaller
sample ranges. Highly periodic signals do not seem to be very difficult for it
to model.
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Fig. 5. Spectrograms and periodograms of target low-pass filtered reed note
as well as the generated one. Notice the faint white bands in B, these represent
some accentuated noise. Comparing the periodograms C and D reveals that
the quality of the generated signal might not be as good as the spectrogram
promises. The periodogram D shows that the generated signal has a very
different spectral density compared to the target signal.

VI. CONCLUSION

We find that the proposed architecture is promising, but
still requires several improvements. It can not yet be said if
is capable of learning more complicated target functions that



Fig. 6. A D6 note played on an acoustic guitar. Again, the overall shape as
well as the periodic patterns of the target waveform are captured well, except
for an initial indent.
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Fig. 7. Spectrograms and periodograms of target low-pass filtered acoustic
guitar note as well as the generated one. Similarly to figure 5 the spectrograms
reveal that the generated signal has a similar frequency content as the target
signal with slightly boosted frequencies. Whereas the periodogram reveals that
the generated signal a much higher spectral density for higher frequencies..

are more complicated than low-pass filters, and more test are
required to determine that. Future improvements will involve
different types of loss functions, especially ones that are based
in the frequency domain rather than being applied to the raw
audio waveform as phase does not seem too important for
our purposes. Additionally, recurrent Unet models could be a
promising starting point for applying our model in real-time
settings.

REFERENCES

[1] P.Isola,J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” arxiv, 2016.

[2] U. Zolzer, X. Amatrian, D. Arfib, J. Bonada, G. D. Poli, P. Dutilleux,
G. Evangelista, F. Keiler, A. Loscos, D. Rocchesso, M. Sandler, X. Serra,
and T. Todoroff, DAFX: Digital Audio Effects. England: John Wiley &
Sons, Ltd., 2002.

[3] S. Pascual, A. Bonafonte, and J. Serra, “Segan: Speech enhancement
generative adversarial network,” in INTERSPEECH, 2017.

[4] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
ArXiv, vol. abs/1411.1784, 2014.

[5]1 A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A generative model for raw audio,” in Arxiv, 2016.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27 (Z. Ghahramani,

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds.),
pp. 2672-2680, Curran Associates, Inc., 2014.

J. Schmidhuber, “Deep learning in neural networks: An overview,’
Neural networks : the official journal of the International Neural
Network Society, vol. 61, pp. 85-117, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention (MICCAI), vol. 9351 of LNCS, pp. 234—
241, Springer, 2015. (available on arXiv:1505.04597 [cs.CV]).

C. Li and M. Wand, “Precomputed real-time texture synthesis with
markovian generative adversarial networks,” ArXiv, vol. abs/1604.04382,
2016.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1,”
ch. Learning Internal Representations by Error Propagation, pp. 318-
362, Cambridge, MA, USA: MIT Press, 1986.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, pp. 1735-1780, Nov. 1997.

A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves,
and K. Kavukcuoglu, “Conditional image generation with pixelcnn
decoders,” in NIPS, 2016.

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” CoRR, vol. abs/1511.07122, 2015.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” ArXiv,
vol. abs/1502.03167, 2015.

J. Chorowski, R. J. Weiss, S. Bengio, and A. van den Oord, “Unsu-
pervised speech representation learning using wavenet autoencoders,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 27, pp. 2041-2053, 2019.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, pp. 1929-1958, Jan. 2014.

J. Engel, C. Resnick, A. Roberts, S. Dieleman, D. Eck, K. Simonyan,
and M. Norouzi, “Neural audio synthesis of musical notes with wavenet
autoencoders,” 2017.



