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Abstract—The pervasiveness of “Internet-of-Things” in daily 
life has led to a recent surge in fog computing, encompassing a 
collaboration of cloud computing and edge intelligence. As a 
significant field of IoT, real-time detection and classification have 
a huge demand. Due to the insufficiency of computing power in 
mobile devices and the increment of network bandwidth, 
combination of edge devices and cloud servers would be an 
accessible orientation for real-time tasks. In this work, we present 
ECNet—an edge-cloud network system dealing with the balance 
between performance and time cost. We propose to transmit the 
output feature map of an exit point to the cloud with offload 
controller and quantizer deployed to minimize the transmission 
cost. ECNet is tested to reach a balance between processing time 
and accuracy performance with reducing transmission cost down 
to 25%. We also consider implementing an integrated feature map 
encoder to further reduce the bandwidth demand and meanwhile 
minimize the loss of accuracy. Additional achievements could be 
expected in our future work. 

Keywords—Edge-cloud system, ECNet, model cascading, 
classification, encoding.  

I. INTRODUCTION 
In recent years, edge and cloud cooperative approach for 

object detection has been proposed [1]. Thanks to advancements 
in both hardware and deep learning technology, even deeper 
networks which further improve the classification performance 
have been emerged. The integration of deep neural networks  
can greatly enhance the functions of edge device, however, the 
rapid increase in runtime and power for gains in accuracy may 
deepen the neural network which become less tractable in many 
real-time situations where latency and energy costs are 
important factors 

The current state of deep learning systems on edge devices 
leaves an unsatisfactory result mainly because of the gap of 
computation power between edge devices and cloud servers. It 
is prone to sacrifice either processing time or inference accuracy. 
Besides, the step of offloading image data to a large model in 
the cloud will easily lead to associated communication costs, 
latency issues and privacy concerns [2]. When meeting a real-
time task with a  very high data rate, the challenge lies in the 
demand to achieve high image throughput with a limited 
transmission bandwidth. 

To address these problems, we consider an edge-cloud 
system based on cascade structure, which combines a light 
weight neural network on edge devices with a high-accuracy 
network on cloud servers. The light weight model at the edge-
side can quickly output feature extraction, and also complete the 
inference. The offload controller takes charge of determine 
whether the inference result from the edge-side is satisfactory or 
not. The feature data that is barely satisfactory should be 
transmitted to the cloud-side for further processing with 
powerful DNN model and relatively sufficient computational 
resources. The initial idea of our network designment is to  
achieve lower computing cost than that in a DNN model, and 
higher accuracy performance compared with a simple model on  
edge devices. Further improvement of edge-side and cloud-side 
network is fulfilled for compatibility. Additionally, data 
extraction and compression module is deployed to reduce 
communication cost, and achieve real-time nature of our 
system[3].  

The major contributions of this paper are: 

 Designation and implementation of the edge-cloud 
architecture: Specifically modified edge-side network 
processes majority of inference, and exits controllable 
parts  of the feature maps. The whole system is mean 
to reduce computational costs, resulting in running time 
saving with achieving substantial overall performance 
on deep learning tasks. 

 System Regulation via offload-controller: entropy of 
classification result is set as threshold that operated by 
users to control the offload rate of feature data, thus 
ensure ECNet to meet customized accuracy demand. 

 Feature data compressing and encoding: We 
characterize the accuracy impact of different 
quantization while introducing several feature space 
encoding method with time cost analysis. 

II. APPROACH 

A. Edge-side and cloud-side designation 
YOLOv3, as the most well used network for object detection 

tasks, requires large computing cost at the meantime. We 
considered YOLOv2, the earlier version of YOLOv3, operating 
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as the edge-side network with the advantage of lightweight [4]. 
In the initial construction of the edge-cloud system, we applied 
edge-side with Darknet19(backbone of YOLOv2), cloud-side 
with DarkNet53 (backbone of YOLOv3), planning to set exit 
point at the edge-side. Owing to the different structure of both 
side network, feature maps extracted at the exit point could not 
be directly employed in further processing at cloud-side. 
Therefore, we intend to reconstruct head part of both networks 
with same structure. This kind of distributed approach, however, 
is challenging for several considerations including: 

 The structure of DarkNet53  is built on numerous 
residual block, and each of residual block contains 
successive 3 × 3 and 1 × 1 convolutional layers 
connected by one shortcut connection [5]. This structure 
is aiming to solve the degradation problem on deep 
networks. Reconstructed front part of edge-side network 
should avoid dividing residual block to ensure its 
integrity. 

 In detection tasks, YOLOv3 predicts boxes at 3 different 
scales. The cloud-side of ECNet extracts features from 
those scales using a similar concept as feature pyramid 
networks [6]. It has good performance on small objects 
that are to be recognized by the detector [7]. The location 
of offloading feature map to cloud-side should be before 
the layer where starting extracting features. 

 To limit computing cost and processing time at edge-side, 
the depth of edge-side should not be too large.  

 Guided by aforementioned considerations, the structure of 
edge-cloud network is designed after several times of trials and 
simulations.  

B. Measure of confidence score at edge-side exit point 
In the task of classification, we use entropy of a 

classification result (e.g., by softmax) as measure [8]. The 
entropy works as a confidence score during the simulation. 
When the classification result stands with high confidence, the 
value of entropy will be small, otherwise the value of entropy 
will be large. The edge-side network will transmit feature maps 
to the cloud when the output entropy is above a threshold set by 
users. Entropy is defined as 

entropy  

where  is a vector containing computed probabilities for all 
possible class labels and  is a set of all possible labels. 
 

 

C. ECNet  
As shown in Fig.1, the general framework of ECNet is 

mainly consists of Edge operation and Cloud operation. Feature 
maps extracted from edge-side will be transferred to cloud-side 
determined by offload controller. Due to the limitation of 
network bandwidth, the feature map should be compressed 
before transmission. Quantization is a popular method to 
accelerate neural network. Offload rate can be determined by 
the threshold to fit the accuracy requirement. 
 

III. EXPERIMENT AND RESULT 
 In this section, we provide additional analysis on key 

aspects of ECNet. We use 10 classes Imagenet dataset for 
experiment (10000 images for training and 3000 images for 
testing).  

A. Classification performance of the edge-side network 
To ensure the classification performance of the optimized 

edge-side network, we made evaluation and comparison with 
darknet19 and darknet53. 

TABLE I.  CLASSIFICATION PERFORMANCE COMPARATION 

 Rank-1(%) Rank-5(%) Processing 
Time(s/frame) 

Edge-side 68.5 81.8 0.013 

Darknet19 (YOLO v2) 64.3 76.4 0.006 

Darknet53 (YOLO v3) 81.2 98.2 0.023 

The result shows that the designed Edge-side network has 
considerable classification performance and the less processing 
time per frame than Darknet53, which is reasonable. 

B. Entropy distribution 
Entropy of each sample from our test dataset is counted to 

confirm the entropy distribution as shown in Fig.2. Most of 
feature maps outputted from edge-side has less entropy than 0.5, 
which confirmed the relatively reliable classification 
performance of our designed edge-side network. The part above 
0.5 tends to be sparse distributed, which shows better 
classification ability is expected on the cloud-side network. 

 

 

Fig.1. General framework of ECNet  
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C. Accuracy impact with different quantization bits 

We evaluated the overall accuracy of ECNet for varying 
entropy threshold with different quantization bits [9]. As shown 
in Fig.3 (overlap existed between the green dotted line and the 
original result), the int8 quantization has the least accuracy drop, 
the int6 and int4 quantization lead to a serious accuracy drop. 
The solid line in blue shows how operating of threshold affects 
offload rate. The threshold and offload rate satisfy negative 
correlation. The accuracy is tend to have little improvement 
when the offload rate reaches to 0.5. Thresholds should be 
chosen when it satisfies the latency requirement while 
maintaining accuracy requirement. 

 
D. Feature map compression attempts 
 Thanks to  the int-8 quantization operation and offload 
controlling based on threshold operating, we can limit the 
transmission burden with little accuracy loss comparing with the 
original network. Since most real-time tasks have strict 
transmission demand, we still consider the offload performance 
could be unsatisfactory for real scenario, which lead to the idea 

of  compression on feature maps after quantization to further 
improve energy-efficiency and throughput [10]. 

 
 According to the visualization of the feature maps that output 
from the edge-side as Fig.4 shows, we can conspicuously lead 
to a conclusion that it seems to be less likely to apply differential 
pulse-code modulation (DPCM) solution in our task, since the 
degree of sparsity and similarity of feature data hardly meet our 
need, not only between channels but also between raw or column 
in channel. Besides, we analyze the data variation of the 
quantized feature maps. 

TABLE II.  COMPARISON OF INFORMATION VOLUME 

 Raw data DPCM between 
channels DPCM in channel  

Number of 
symbol 98.4 171.8 151.4 

Entropy 4.85 5.73 4.90 

 

TABLE  gives the result of  data analysis of quantized feature 
map, feature map after DPCM applied between channels and 
feature map after DPCM applied in channel. We use 1200 
images for calculation and applying DPCM in channel for the 
element of each column. The result shows that DPCM operation 
cannot lead to a reduction of the  entropy which means it cannot 
help reduce the amount of information in feature map. 

 
Fig. 2.  Entropy distribution of feature maps 

 
Fig. 3. Total accuracy with different quantization bits and offload control 

by threshold operating 

 
Fig. 4. Visualization of feature maps at exit point by channels 
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 Fig.5 shows the analysis of data variation of quantized 
feature maps on 100 images. Due to the int-8 quantization 
function and the standard attributes of the Imagenet datasets we 
use during our simulation, the symbol of ‘10’ has the highest 
amount of frequency while other symbol satisfying a Gaussian-
like distribution as shown in Fig.5. According to this data 
distribution factor, we propose to apply lossless compression 
method on whole channels like Huffman coding and ZIP 
compression after quantization operation [11] [12].  

TABLE III.  COMPRESSION PERFORMANCE EVALUATION 

 Origin Huffman 
coding 

Optimized 
Huffman coding ZIP 

Compression ratio 1 1.62 1.50 1.68 

Time cost(s/frame) 0.001 0.98 0.35 0.009 

  

 The improvement of optimized Huffman coding is using 
prior Huffman tree which calculate sufficient samples instead of 
setting Huffman tree for every feature map. Since the operation 
of Huffman coding is not based on matrix operation which 
means the encoder and decoder have to run on the whole dataset 
at least once a time, the time cost is increasing dramatically. As 
shown in TABLE III, ZIP compression method has better 
performance both on compression ratio (compression ratio is 
defined as the ratio between uncompressed size and compressed 
size) and time cost factors. The ZIP compression could reach to 
1.68 compression ratio with 0.009 second each frame, however, 
the time cost is still a major concern. 

 Besides the method we have mentioned, we also continuing 
making research on other compression method such as principal 
component analysis (PCA) before coding, compression in neural 
network and JPEG compression for monochrome images. We 

expect further improvement on feature map compression task 
and completely settle the problem of time cost limitation. 

IV. CONCLUSION  
In this paper, we proposed ECNet with designed edge-side 

and cloud-side network. The edge is able to transmit quantized 
feature maps to the cloud, administrated by the offload 
controller with entropy as threshold. The improvement of 
ECNet is leveraged by reaching a balance between processing 
time and accuracy performance with reducing transmission cost 
down to 25%. This system has been evaluated on classification 
tasks and chose proper quantization bit based on experiments. 
For future work, we plan to adapt the ECNet to detection tasks, 
and make evaluation in actual scenarios. 
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Fig. 5. Data variation of the feature map in single channel 
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