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1. Introduction 

Structure from Motion (SfM) is a visual based method which can 
recover the camera poses as well as sparse 3D structure from a set of 
corresponding unstructured images. It has been widely researched in 
conventional perspective image and fish-eye image cases for 
applications such as augmented reality (AR), automotive, video 
stabilization, scene roaming, etc. At present, with the appearance of 
Ricoh Theta, which is a portable omni-directional (OD) camera 
covering Field of View (FoV) of 360 degrees, more and more people 
tend to share and upload OD images to social networks. We can 
expect to see the fast growth of overwhelming amount of OD vision 
data in the future. Because of the large FoV and increasing amounts of 
OD images, it is worth researching on SfM by OD images. However, 
the projection model of conventional perspective image and fish-eye 
image is different with OD image, which leads to widely researched 
SfM pipeline not suitable anymore. Additionally, equi-rectangular 
(EQR) image, as the most common OD format we could search on the 
Internet, is associated with non-uniform distortion which makes the 
matched keypoints not reliable by conventional feature 
detection/matching algorithms. In this work, we propose a modified 
SfM system for OD images with preprocessing steps to address the 
problem of non-distortion. 

On the other hand, the performance of SfM would suffer from the 
moving obstacles (such as pedestrians and vehicles) existing on used 
images since these pixels would bother the feature correspondences as 
well as motion estimation. Thus, we further combine the proposed 
SfM with moving objects elimination based on Mask R-CNN [1], 
which is a state-of-the-art deep Convolutional Neural Network base 
model for object detection. 

The results show that the proposed SfM system could work well 
for OD images to recover a sparse 3D structure as well as ego-motion 
between corresponding images. Besides, by combining moving 
objects elimination, we can accelerate the process of RANSAC [2] 
which resulting in more accurate motion parameters. 
2. Related Technologies 

The SfM part of this work is based on modification of widely 
researched classical SfM pipeline [3][4], which first detect and match 
feature points by SIFT to obtain corresponding 2D keypoints between 
images, then recover the motion parameters by RANSAC with 
epipolar constraint, after that, 3D coordinates of the keypoints are 
calculated by 3D triangulation, finally bundle adjustment (BA) are 
utilized for non-linear refinement of initially recovered motion 
parameters and 3D points. 

For combining elimination of moving obstacles, we first need to 
detect these moving objects. Here, we utilize Mask R-CNN model, it 
is proposed by Facebook Research in 2017. Mask R-CNN improved 
the performance of Faster R-CNN by building a multi-task model 
which is trained with the loss function not only for bounding boxes 
regression and classification, but also for a binary mask prediction. 
 
3. Proposed Approach 

Figure.1 shows the proposed system for OD images by combing 
the modification of conventional SfM pipeline with moving objects 
elimination based on Mask R-CNN 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure.1. Proposed SfM system for OD images 
 
3.1 Unit-spherical model 
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As shown in Figure.2. From Eq. (1,2), we build the projection 

model which project 2D pixel on EQR image to 3D unit-spherical 
model, further processing steps are all based on the 3D unit-spherical 
coordinates of each point. 
 
 
 
 

 
 
 

 
 
 

Figure.2. Projection from 3D to 2D of EQR image 
 

3.2 Preprocessing 
To address the non-uniform distortion problem described before, 

we applied cubic mapping. 



3.3 RANSAC on unit-spherical domain 
The RANSAC method for building fundamental matrix in 

classical SfM designed the error function on 2D pixel domain since 
there is a linear intrinsic matrix K could be used to describe the 
projection in perspective images. For EQR image, we define the error 
function as angular error L: 

? = cosCD(6E7F ∙ H6D7 ) (3) 
We set the thresholding value as L> 85°, which means reprojected 
point on 3D domain should be perpendicular to the normal vector of 
epipolar plane. Note that in our system, RANSAC is the process for 
modeling the essential matrix H, which also remove some outliers. 
3.4 Pose Estimation 

In conventional perspective image case, the four possible 
combination of N  and O  ambiguity is addressed by judging the 
recovered depth value of 3D point. For OD image, there is no 
constraint of positive depth value, so we defined the angular error 
between reprojected point and detected point on 3D domain with 
angle P which should satisfy P < 5°. 

P = cosCD(6E7F ∙ RSEF ) (4) 
3.5 Bundle Adjustment 

In conventional perspective image case, the error function for BA 
is designed as the 2D pixel distance between detected feature and 
reprojected feature, here we define it in 3D unit-spherical domain as: 
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4. Experiment and Results 
The proposed SfM system is implemented in Python, we perform 

SIFT algorithm by using open-source library OpenCV, and we utilize 
the Mask R-CNN architecture implemented by [5]. The model is 
trained on COCO dataset. Additionally, image data are divided into 8 
groups, group (1-3) are synthetic image pairs, group (4-8) are real 
images captured in two different scenes. 

We evaluate the important steps of proposed SfM including feature 
correspondences with calculating the repeatability P: 

P =
#	:d	ef-9ℎ2,	g2^6:+=-;	fd-2h	2f9ℎ	;-f32

#	:d	,2-29-2,	g2^6:+=-; =
gi
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The results are shown in Figure.3. We can see that after cubic mapping, 
the correct matched points are increased in all the three steps since the 
non-uniform distortion has been addressed, besides, the process of 
RANSAC is accelerated because of higher repeatability.  

 
Figure.3. Comparison between EQR and Cubic image on performance 

of feature correspondences 
 
Group (8,9) are captured in crowded scene with vehicles and 
pedestrians showing on the images. The intuition of detected results 
by Mask R-CNN is shown in Fig.4. The performance of combining 
moving objects elimination is illustrated in Fig.5, which shows it can 
accelerate the RANSAC process since obvious outliers are removed, 
besides, more correctly matched points are preserved which leads to 
more robust estimation of camera pose. We test the SfM system on 
synthetic image data. The results of recovered 3D scene and camera 
poses corresponding to each frame are shown in Fig.6 and Table.1. 
Our proposed system can work well for OD images. Note that, frame 
1 is set as the reference of world coordinates system, with N = l,O =
0. 

 
Figure.4. Performance of moving objects detection on cubic image (example 

taken from group 8) 
 
 
 
 
 
 
 

 
 
 

 
Figure.5. Performance of moving objects detection on cubic image (example 

taken from group 8) 
 Tx Ty Tz α [rad] β [rad] γ [rad] 

Frame 2 
RMSE 0.001 6.8 e-4 0.005 0.00 0.002 0.001 

Frame 3 
RMSE 0.045 1.3 e-4 0.084 -0.02 0.010 0.003 

Table.1. Motion estimation by proposed SfM 
 
 
 
 
 
 
 
 
 

Figure.6. Visualizing reconstructed 3D points by proposed SfM 
5. Conclusion 

In this work, we proposed a novel SfM which is suitable to EQR 
images generated by OD camera since the conventional SfM pipeline 
is associated with perspective image which has different projection 
model with OD image. We evaluated our system for not only 
two-view but also multi-view SfM. The results of recovered structure 
and camera poses showed that proposed system works well with OD 
image. 

We address the non-uniform distortion problem of EQR image by 
preprocessing step, which is proved to be effective for obtaining more 
reliable corresponding feature points. 

Finally, we combined SfM with elimination of moving obstacles 
based on Mask R-CNN, the results show that SfM system could 
benefit from this combination which removed those obvious outliers, 
thus accelerates the process of RANSAC. 
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Abstract 
 

Structure from Motion (SfM) is a visual based method which can recover the camera poses as 

well as sparse 3D structure from a set of corresponding unstructured images. It has been widely 

researched in conventional perspective image and fish-eye image cases for applications such as 

augmented reality (AR), automotive, video stabilization, scene roaming, etc. At present, with the 

appearance of Ricoh Theta, which is a portable omni-directional (OD) camera covering Field of 

View (FoV) of 360 degrees, more and more people tend to share and upload OD images to social 

networks. We can expect to see the fast growth of overwhelming amount of OD vision data in the 

future. Because of the large FoV and increasing amounts of OD images, it is worth researching 

on SfM with OD images. However, the projection models of conventional perspective image and 

fish-eye image are different with OD image, which leads to widely researched SfM pipeline not 

suitable anymore. Additionally, equi-rectangular (EQR) image, as the most common OD format 

we could search on the Internet, is associated with non-uniform distortion which makes the 

matched keypoints not reliable by conventional feature detection/matching algorithms. In this 

work, we propose a modified SfM system for OD images with preprocessing steps to address the 

problem of non-distortion. 

On the other hand, the performance of SfM would suffer from the moving obstacles (such as 

pedestrians and vehicles) existing on used images since these pixels would bother the feature 

correspondences as well as motion estimation. Thus, we further combine the proposed SfM with 

moving objects elimination based on Mask R-CNN, which is a state-of-the-art deep 

Convolutional Neural Network base model for object detection. 

The results show that the proposed SfM system could work well for OD images to recover a 

sparse 3D structure as well as ego-motion between corresponding images. Besides, by combining 

moving objects elimination, we can accelerate the process of RANSAC which resulting in more 

accurate motion parameters. 

 

Keywords: Structure from Motion; Omni-directional image; Mask R-CNN; Feature 

detection/matching; Moving object elimination; 
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Chapter 1 Introduction 

1.1 Motivation 

Recovering camera poses and corresponding 3D structure is of great significance for AR, automotive, 

scene roaming, etc. According to [1, 2], the researches for this task could generally be divided into 

two groups: the first group can be regarded as monocular visual based methods, that is, only utilize 

images captured by a single camera; the second group is based on associating various sensors as 

complements, for example, GPS, IMUs, Lidar, Laser and RGB-D camera. However, the latter group 

has the limitations such as: expensive, limited range of estimated depth, low resolution and somehow 

suffering from severe conditions (under water, aerial scene). Thus, we focus on the monocular visual 

based method by using a single camera which is portable and low cost. Further, the monocular based 

approaches could be divided into another two groups: the first group is focusing on real-time 

applications, such as VO (Visual Odometry) [1] and SLAM (simultaneous localization and 

mapping)[3, 4], they are performed on consecutive sequence of frames which can be regarded as 

structured data; the second group, in contrary, is focusing on off-line applications [5-7] which is a 

more general method also known as SfM (Structure form Motion) since it is performed on unstructured 

image data. Thus, in this thesis, we focus on using SfM to recover the structure. SfM, as a feature-

based approach, has been widely researched in last two decades for images taken by conventional pin-

hole camera with narrow Filed of View (FoV). However, it usually suffers from the problem of large 

movement between the images, the tracked feature points might be missed.  

Recently, there has been a lot of solutions of camera systems, such as GoPro Fusion and Ricoh 

Theta, which can produce the omni-directional (OD) vision for immersive experience. Furthermore, 

YouTube and Facebook have already realized the support of OD vision streaming media, more and 

more people share and upload this kind of 360° images and videos in social network. We can expect 

to see that with the growth of overwhelming amount of OD vision data, it would become a main trend 

of the future development of image and video applications.  

Object detection is a computer technology to detect instances of semantic objects of a certain class 

(such as humans, buildings, or cars) in digital images and videos. As a main task of computer vision, 

it has been widely researched in various applications like image retrieval and video surveillance. With 

the rapid development of computation capability of GPU (Graphics Processing Unit) and image 

dataset, the performance of object detection has been dramatically improved by utilizing Deep 

Convolutional Neural Network (Deep CNN) in last few years [8-12]. On the other hand, since the SfM 

for 3D reconstruction involves the use of images of a stationary scene, the moving objects such as 

vehicles and pedestrians would apparently bother its performance when images are captured in a 
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crowded scene. [13] proposed a VO system combined with pedestrian elimination, while the 

conventional Machine Learning based approach like Histogram of Oriented Gradients (HOG)[14] and 

Support Vector Machine (SVM)[15] are used for extraction of pedestrians to minimize the effect on 

reliability and accuracy of camera poses estimation. 

As a result, this thesis focuses on modifying conventional SfM and combining it with objects 

segmentation for 3D reconstruction with OD images in consideration of two opportunities: first, 3D 

reconstruction and camera poses estimation in scenario with moving obstacles existed would benefit 

from OD images and objects segmentation, which is shown in Chapter 4; second, less number of OD 

images are enough to be used for reconstruction due to it covers 360 degree scene information which 

is far greater than the information in conventional images. 

1.2 Problem Statement 

3D reconstruction and ego-motion estimation with wide-angle camera has been paid increasing 

attention to over past few years with its characteristics of portability as well as the large Field of View 

(FoV). [16] demonstrated that using a wide-angle camera, such as fisheye camera, has an obvious 

advantage that larger FoV could improve the accuracy and robustness of ego-motion estimation 

because that the corresponding two images have large overlapping area. Two typical approaches are 

researched for dealing with this kind of radially distorted images. The first one is based on correction 

of distortion by calibrating the corresponding fisheye camera, then conventional widely researched 

SfM pipeline could be used directly like in[6]. This is the most popular way for commercial users or 

researchers to deal with different distorted projection models. Basically, a generic camera model [17] 

is utilized to cover various fisheye projections (e.g. stereographic, equidistance, equisolid angle and 

orthogonal projection), then a full model including radial and tangential distortion is optimized to 

obtain an intrinsic matrix which describe how 3D ray is projected to 2D pixel domain. Successively, 

they correct and convert the distorted image into perspective image. However, this kind of undistortion 

approach would lead to information loss since it introduces the undesirable “pin-cushion” shape [18] 

appearing at the corrected image boundary which are removed by cropping in most cases. The second 

approach is based on a relatively direct way. [19]used a polynomial fisheye model for SfM but the 

performance is not good due to the conventional method of feature correspondences is used. Omni 

LSD-SLAM [20] is an extension of LSD-SLAM for so-called omni-directional camera, but in fact 

fisheye camera was used. Besides, as described before, LSD-SLAM is a direct approach for 

simultaneously 3D mapping and localization rather than a feature-based approach in which feature 

correspondences should be considered, while the feature-based approach is what we pay attention to 

in this thesis. [21] proposed a method dealing with SfM for 3D reconstruction from feature 

correspondences in circular images taken by the cameras equipped with fish-eye lenses Nikon FC-E8 
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(183°) or Sigma 8mm-f4-EX (180°). Several researches made attempts to detect and match feature 

points directly on the radially distorted images such as sRD-SIFT [22] and MDBRIEF[23]. They 

proposed modifications to the SIFT [24] algorithm and BRIEF [25] algorithm that improve the 

detection repeatability and matching performance under radial distortion, while preserving the original 

characteristics of those detectors and descriptors. Again, these methods only considered the fisheye 

images with radial distortion but not 360° images with non-uniform distortion.  

  
(a) Perspective image captured by conventional camera (b) Full-circle fisheye image taken by fish-eye camera  

 
(c) Omni-directional image taken by Ricoh Theta 
Figure 1.1: Comparison of different camera  

Unlike other wide-angle images, real OD image as depicted in Figure 1.1 covers surrounding 360° 

FoV along with horizontal direction and 180° FoV along with vertical direction. Equi-rectangular 

(EQR) image, as the most common format of OD images we could search on the Internet, is the object 

of our research. As shown in Figure 1.1, the projection model of EQR image is different with it of 

fish-eye image and so are the type of distortion (large distortion near south/north pole and less 

distortion near equator, respectively). Therefore, it introduces new challenge for researches dealing 

with the EQR image. For addressing the non-uniform distortion, [26] chose to rotate the EQR image 

for several times then apply conventional SIFT detection and matching on the less-distorted central 

area of each rotated image. This approach makes sense, but due to the location-dependent projection, 

the operation of rotation for EQR image costs large computation to calculate corresponding rotated 
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position of each pixel. On the other hand, [27] try to directly detect and describe feature points on 

EQR image via a sphere model. They project surrounding patch for each feature points onto a tangent 

plane to tackle the problem of distortion while preserving the rectangle kernel filter in the process of 

conventional SIFT algorithm. However, similar as in[26], the tangent projection for each patch 

increases the computation cost dramatically.  

Objects segmentation in OD images is another task that we try to perform. As mentioned in section 

1.1, moving obstacles have bad effect on the performance of SfM since they would contribute to wrong 

estimation and error propagation of camera pose. In [13], HOG is used for extracting feature 

descriptors which are then fed into SVM for classification, then the area of pedestrians detected in the 

image will be eliminated when processing feature detection and matching. [28] proposed a similar 

idea with us several weeks ago, they combined the segmentation with ego-motion estimation in visual 

based SLAM in order to obtain robust performance in tracking feature points. However, all of them 

cannot deal with detection or segmentation on OD images since the existing publicly-available 

datasets for training a conventional machine learning model (like HOG+SVM) or a Deep CNN 

(Convolutional Neural Network) based model are composed by a great number of manually labeled 

perspective images. The non-uniform distortion of OD images will dramatically affect the capacity of 

these methods. The specific reason will be explained in the following chapter. 

The main contributions of this thesis are: 

1. For obtaining camera poses and a sparse reconstruction of the scene, we propose the modified 

system to make the conventional Structure from Motion (SfM), which was designed for 

perspective images, suitable to the omni-directional images. 

2. We combine moving objects segmentation in omni-directional images with proposed SfM to 

accelerate convergence and improve the performance of RANSAC and Bundle Adjustment, 

hence more accurate results of sparse and dense reconstruction could be achieved. Moreover, 

two proposals for objects segmentation on EQR images are proposed, which can be used not 

only in our SfM system but also in other computer vision tasks associated with detection or 

segmentation. 

1.3 Outline 

The outline of this thesis is organized as follows: 

⚫ Chapter 1: We describe the background and motivation of this research. Also, we explore the 

related works including their limitations and challenges to introduce the problem statement of 

this thesis. After that, the important contributions of our works are explained. 



5 
 

⚫ Chapter 2: We introduce Omni-directional (OD) vision, the corresponding Equi-rectangular 

(EQR) projection and related knowledge about conventional SfM pipeline. Additionally, Mask 

R-CNN is also introduced in this chapter as it is the state of the art in deep learning-based 

instance segmentation approaches. For introducing our proposed system in later chapter in 

consideration of completeness and validity, we mathematically elaborate those related 

knowledge. Besides, the problems of directly applying conventional methods mentioned above 

to non-uniformly distorted EQR images are fully discussed.   

⚫ Chapter 3: Proposed methods are explained in this chapter for 3D reconstruction by OD images. 

We detail our modifications on conventional approaches in SfM for sparse reconstruction, 

resulting in 3D reconstruction directly achieved by OD images. Also, we elaborate the 

proposals for making conventional Mask R-CNN model work well on non-uniformly distorted 

EQR images to produce masks of moving objects (vehicles and pedestrians) in images. Those 

masks for eliminating bothering pixels are combined with feature correspondences to obtain 

more robust estimation. 

⚫ Chapter 4: In this chapter, we first explain the experiment setting and parameters we used for 

programming implementation. Next, subjective and objective evaluations of the performance 

of our methods with synthetic and real images are presented, which shows that our system 

works well in 3D reconstruction using OD images. Apart from that, the results of feature 

correspondences prove that our methods produce more correctly matched feature points and 

eliminate moving objects to avoid bothering the convergence of RANSAC and BA, which 

improves the accuracy of estimation of camera poses as well as final reconstructed model. 

⚫ Chapter 5: Finally, we summarize the proposed system in this chapter where the conclusions 

and deficiencies of our works are discussed. Potential future works are provided for extension 

of this research. 
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Chapter 2 Related Technologies 

2.1 Omni-directional vision 

Omni-directional (OD) vision, also known as 360-degree vision, is recorded by an omni-directional 

camera as depicted in Figure 2.1. It has been used recently because of rapid advancements in digital 

image/video technologies and photographic equipment. With the 360-degree vision, users could in 

demand choose which angle to view for enjoying the immersive experience. Nowadays, the popular 

solution of OD camera system is utilizing capture equipment such as six GoPro cameras to take 

pictures separately, followed by processing step of stitching to generate single panoramic image. 

Recently, with the appearance of Ricoh Theta and GoPro Fusion, which are handy and portable OD 

cameras embedded with two wide-angle fish-eye lenses (larger than 180° FoV) on both front and 

back sides, the focus has been changed to OD vision in last two years. Due to the potential of the 

emergence of a large amount of OD data, YouTube and Facebook has already realized the support of 

OD streaming media. More and more people tend to share and upload the 360° images and videos 

in social network due to the demand of immersive experience. 

   
(a) Gopro Fusion[29] (b) Six Gopro Hero 4[30] (c) Ricoh Theta[31] 

Figure 2.1: Three types of Omni-directional camera 

2.1.1 Unit-spherical model 

Here, we introduce a unit-spherical model to illustrate the relationship between 3D scene point and 

optical center of camera, as shown in Figure 2.2(a). It could be considered as a generic model for 

producing 360° images by OD cameras like GoPro Fusion and Ricoh Theta. We set a right-hand 

coordinate system with respect to the OD camera as Figure 2.2(a) where 𝑍 axis stands for the depth. 

Suppose there is a unit-sphere of radius 1 and a 3D scene point 𝑃 = [𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃]𝑇, then it is projected 

to 𝑝′ = [𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 , 𝑠𝑖𝑛𝜃 , 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙]𝑇 , where 𝑝′ is the intersection of the sphere surface with the 

ray connected by center 𝑂𝑐  and point 𝑃. So, we have the equation: 
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𝑝′ =
𝑃
‖𝑃‖

(2.1) 

where ‖𝑃‖ = √𝑋𝑃2 + 𝑌𝑃2 + 𝑍𝑃2  , 𝜃 = ∠𝑝′𝑂𝑐𝑌  which represents latitude and 𝜙 = ∠𝑍𝑂𝑐𝑝∗  which 

represents the longitude given in radians, respectively. For calculating 𝜃 and 𝜙 from 3D point 𝑃 

by math toolbox, we have: 

{
 

 𝑟 = √𝑋𝑃2 + 𝑍𝑃2

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑟, 𝑌𝑃)
𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑋𝑃, 𝑍𝑃)

 (2.2) 

where 𝜃 ∈ [0, 𝜋] and 𝜙 ∈ [−𝜋,+𝜋]. 

 
(a) Unit-spherical model 

 
(b) Equi-rectangular projection 

Figure 2.2: Projection from 3D to 2D of Omni-directional camera 
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2.1.2 Equi-rectangular image 

Essentially, OD vision is like a spherical vision which projects spatial 3D points on the sphere surface. 

However, for achieving the capability of storage, interchange, editing and presentation, it is necessary 

to map this kind of spherical vision to a flat 2D plane. In 2016, Omnidirectional Media Application 

Format (MPEG-OMAF) specified 4 projections of omni-directional media including equi-rectangular, 

cylinder, cube, and platonic solid. Since the mapping operation from 3D spherical domain into 2D 

domain would inevitably introduce interpolation which produces a large number of pixels without 

valid information and leads to redundant bitrate. As a result, some researches focusing on compression 

of OD image and video are proposed[32, 33]. Facebook proposed mapping from EQR image to cubic 

image which reduced redundant information to 25%, [32] compared the sampling density of different 

projections and proposed a tile segmentation scheme. [33] performed a flatten representation of a 

geodesic division sphere based on an icosahedron. Unlike those researches described above, our work 

is focusing on 3D reconstruction with OD images. Since Equi-rectangular (EQR) image, as displayed 

in Figure 2.2(b), is the most common format of OD image uploaded and shared on the Internet, this 

thesis is mainly focusing on dealing with EQR images. 

Here, we explain the relation of mapping between sphere surface described above and EQR form 

in detail. As shown in Figure 2.2(b), suppose 𝑝  is the corresponding 2D pixel of 3D point 𝑝′ 

projected on EQR image. Let 𝑝 = [𝑢 , 𝑣]𝑇, which is related to longitude 𝜙 and latitude 𝜃 by: 

{
𝑢 = (𝜋 − 𝜙) ∗

𝑤𝑖𝑑𝑡ℎ
2𝜋

𝑣 = 𝜃 ∗
ℎ𝑒𝑖𝑔ℎ𝑡
𝜋

 (2.3)  

where, 

 𝑝′ = [𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙] (2.4)  

here, 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 stand for the horizontal pixels and vertical pixels of resolution of the EQR 

image, for example, Ricoh Theta produces low-quality EQR image with resolution 2048 ∗ 1024 . 

From Eq. (2.2) and Eq. (2.3), we can easily implement the projection from 2D plane to normalized 

coordinates without intrinsic matrix obtained by calibration and vice versa. 

Figure 2.3 illustrates the underlying principal of how OD cameras, such as Ricoh Theta and GoPro 

Fusion, produce EQR image. As mentioned before, The Ricoh Theta camera is actually embedded 

with two fish-eye lenses on each side of the camera body, each lens captures FoV slightly larger than 

180°. Once the button of shutter pressed, two fish-eye images are recorded with the nature of radial 

distortion. Then the camera handles stitching process internally so that the two fish-eye images could 

be combined together into one EQR image by either using the geometry or by detecting feature points 

on the periphery area of each circle and blending them together. 

However, this process will introduce two problems that we have to consider: 
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1. The non-uniform distortion on EQR image, especially those area near the north and south pole, 

makes accurate and robust feature correspondences become suffering when we directly utilize 

traditional algorithm of feature correspondences, mainly because they have no invariance to 

this location-dependent non-uniform distortion. 

2. Considering that the fish-eye image is distorted from the center to the periphery area, and the 

stitching from two fish-eye images is performed on the outermost area of the circles, so that it 

will lead to the problem of low quality (i.e., less details) at border area on generated EQR image. 

Both of the problems described above would have bad effect on the performance of SfM as well 

as objects segmentation in our system. In order to address them, we propose an approach which will 

be explained in section 3.1.1. 

  

 
Figure 2.3: illustration of process in generating EQR image from two fish-eye images 
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2.2 Structure from Motion 

Structure from Motion (SfM) is a typical task in Computer Vision to recover the 3D structure of a 

stationary scene from a set of structured or unstructured 2D images by geometric relationships. We 

could compute 3D scene points as well as camera locations from feature matches with images captured 

at different viewpoints in the same scene. In this section, we explore the main steps of classical SfM 

approach [34, 35]with conventional perspective images, also, the problems of applying it to EQR 

images are discussed for each step. 

Figure 2.4 indicates the pipeline of classical SfM. This approach is beginning with collecting 

images and calibrating them with pin-hole projection model to obtain the intrinsic matrix. Next, feature 

detection and matching are performed to gather the robust corresponding points between images. Then, 

camera pose (extrinsic matrix) could be estimated from a set of pairs of feature points associated with 

outlier removal. After that, the 3D coordinates of those matched feature points could be calculated by 

3D triangulation with camera poses estimated before. Finally, Bundle Adjustment (BA) is applied to 

nonlinear refinement for the parameters of all the associated images. 

 
Figure 2.4: Classical Structure from Motion pipeline with perspective images 

2.2.1 Pin-hole camera model 

Pin-hole camera model, also known as perspective projection model, describes the relationship 

between 3D coordinates of a point in the scene and its projection onto the 2D image plane of an ideal 

pin-hole camera without distortion. As shown in Figure 2.5, the pin-hole model involves with the 

transformation between 3 coordinates system: World Coordinates, Camera Coordinates and Image 

Coordinates. 

Suppose there is a point 𝑃  in 3D space, let 𝑃𝑊 = [𝑋𝑊 ,𝑌𝑊 , 𝑍𝑊]𝑇  and 𝑃𝐶 = [𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶]𝑇 
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where 𝑃𝑊  and 𝑃𝐶   are the coordinates of 𝑃  with respect to world coordinates and camera 

coordinates respectively. Then rotation matrix 𝑅 and translation matrix 𝑇 could be used to describe 

the relationship between 𝑃𝑊 and 𝑃𝐶  as: 

 
Figure 2.5: Projection from 3D to 2D of pinhole camera 

 

𝑃𝐶 = 𝑅𝑃𝑊 + 𝑇 (2.5) 

specifically, 

[
𝑋𝐶
𝑌𝐶
𝑍𝐶
] = [

𝑟11  𝑟12  𝑟13
𝑟21  𝑟22  𝑟23
𝑟31  𝑟32  𝑟33

] [
𝑋𝑊
𝑌𝑊
𝑍𝑊
] + [

𝑡𝑋
𝑡𝑌
𝑡𝑍
] (2.6) 

where 𝑇 = [𝑡𝑋 , 𝑡𝑌 , 𝑡𝑍]𝑇 is a 3x1 matrix standing for the coordinates of the origin of world space with 

respect to camera space. R is a 3x3 orthogonal matrix representing the rotation from world space to 

camera space with the constraints: 

𝑟112 + 𝑟122 + 𝑟132 = 1
𝑟212 + 𝑟222 + 𝑟232 = 1
𝑟312 + 𝑟322 + 𝑟332 = 1

(2.7) 

Sometimes we need present them in homogenous coordinates for simplification (the relation could be 

described as a single transformation matrix 𝑀):  

[𝑃𝐶
1
] = 𝑀 [𝑃𝑊1

] (2.8) 
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[

𝑋𝐶
𝑌𝐶
𝑍𝐶
1

] = [𝑅  𝑇0𝑇 1] [

𝑋𝑊
𝑌𝑊
𝑍𝑊
1

] (2.9) 

So, we combine the rotation matrix R and translation matrix T as the extrinsic parameters which is the 

so-called ego-motion between cameras as our task. 

As we can see in Figure 2.5, 𝑝 is the intersection of the virtual image plane with the ray connected 

by camera optical center 𝑂𝐶  and 3D point 𝑃, 𝑓 is the focal length. Let 𝑝𝐶 = [𝑥, 𝑦, 𝑓]𝑇 which is the 

coordinates of 𝑝 with respect to camera space, we have: 

{
 

 𝑥 = 𝑓 ∗
𝑋𝐶
𝑍𝐶

𝑦 = 𝑓 ∗
𝑌𝐶
𝑍𝐶

(2.10) 

by normalizing Eq. (2.10) in homogenous coordinates, it can be written as: 

𝑍𝐶 [
𝑥
𝑦
1
] = [

𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] [

𝑋𝐶
𝑌𝐶
𝑍𝐶
1

] (2.11) 

after that, we further transform it to pixel domain in image coordinates. Suppose 𝑝𝑖 = [𝑢, 𝑣]𝑇 is the 

pixel coordinates of 𝑝, 𝑂𝑖 = [𝑢0, 𝑣0]𝑇 is the pixel coordinates of the origin in image plane. Then 𝑝𝑖 

and 𝑝𝐶 have the relation: 

𝑢 − 𝑢0 =
𝑥
𝑑𝑥
 , 𝑣 − 𝑣0 =

𝑦
𝑑𝑦

(2.12) 

where 𝑑𝑥 and 𝑑𝑦 represent the physical size of single pixel in image sensor, also Eq. (2.12) could 

be rewritten in homogenous coordinates and matrix as: 

[
𝑢
𝑣
1
] =

[
 
 
 
 
1
𝑑𝑥

0 𝑢0

0 
1
𝑑𝑦

𝑣0

0  0 1 ]
 
 
 
 

[
𝑥
𝑦
1
] (2.13) 

From Eq. (2.9), (2.11) and (2.13), we could see that: on the premise of the known camera 

parameters, if we know the 3D coordinates 𝑃𝑊 of a point 𝑃 with respect to the world space, then, 

the corresponding 2D pixel coordinates 𝑝𝑖 could by calculated by: 

𝑍𝐶 [
𝑢
𝑣
1
] =

[
 
 
 
 
𝑓
𝑑𝑥

0 𝑢0

0
𝑓
𝑑𝑦

𝑣0
0 0 1 ]

 
 
 
 

[
𝑟11 𝑟12 𝑟13 𝑡𝑋
𝑟21 𝑟22 𝑟23 𝑡𝑌
𝑟31 𝑟32 𝑟33 𝑡𝑍

] [
𝑋𝑊
𝑌𝑊
𝑍𝑊
] = 𝐾[𝑅, 𝑇] [

𝑋𝑊
𝑌𝑊
𝑍𝑊
] (2.14) 

we define that 𝐾 = [

𝑓
𝑑𝑥

0 𝑢0

0 𝑓
𝑑𝑦

𝑣0
0 0 1

], [𝑅, 𝑇] = [
𝑟11 𝑟12 𝑟13 𝑡𝑋
𝑟21 𝑟22 𝑟23 𝑡𝑌
𝑟31 𝑟32 𝑟33 𝑡𝑍

], where 𝐾 is the intrinsic matrix 

of a certain camera, the combination of rotation matrix 𝑅 and translation matrix 𝑇 is the extrinsic 
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matrix [𝑅, 𝑇] which describe the orientation and position of a moving camera. 

To obtain the intrinsic parameters of 𝐾, it is necessary to calibrate the camera by an approach 

proposed by [36]. This approach is the most used method and implemented by OpenCV as a toolbox 

we can easily utilize. 

 Type Scale Rotation Affine transformation 

Harris corner x x x 

FAST corner x x x 

ORB corner √ √ x 

SIFT blob √ √ x 

SURF blob √ √ x 

Affine-SIFT blob √ √ √ 

Table 2.1: Comparison of properties of different detectors 

2.2.2 Feature correspondences 

Finding corresponding feature points is of utmost importance in SfM since the estimation of ego-

motion is derived by a set of pairs of corresponding feature points among the input images. Therefore, 

the methods for feature detection and matching should generate enough robust matched feature points. 

There are many feature detectors have been proposed in last two decades, which can be mainly 

divided by two groups: 1) the corner detectors, e.g., Harris[37], FAST[38] which is based on machine 

learning, and ORB[39] which is the extension of FAST by detecting FAST corners on different scale 

level; 2) the blob-like detectors, e.g., SIFT[24], SURF[40] which improve the computation efficiency 

of SIFT by using box filters to approximate the Gaussian derivatives, and Affine-SIFT [41] which 

apply the affine transformation space sampling technique to improve SIFT and aims to achieve affine 

invariance. The choice of the appropriate feature detectors in different tasks is based on the trade-off 

between computation-cost and repeatability (whether the detector is robust to scale, rotation 

invariance). We summarize the properties of these detectors in Table 2.1. Our work is aiming at an off-

line 3D reconstruction system, we care more about the repeatability rather than computation-cost. 

Therefore, SIFT-based approach is used in our experiment, and it is basically composed of 3 main 

steps: 1) Detection: Identify the local feature points by SIFT detector; 2) Description: Extract a robust 

vector descriptor of the image content surrounding each detected point; 3) Matching: Comparing the 

similarities of the descriptors to match corresponding points. 

2.2.2.1 SIFT detector 

Scale Invariant Feature Transform (SIFT) was proposed by David Lowe in 2004 to detect and describe 
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local features in images. It is the most popular approach for feature correspondences due to the 

property of invariance to scaling, rotation and translation. 

For explaining SIFT detector, we first introduce scale space in which stable features are searched 

across all the possible scales to achieve invariance to scale change. Let 𝐼(𝑥, 𝑦) be an input image, 

and 𝐺(𝑥, 𝑦, 𝜎) be the 2-D Gaussian function with a variable scale. Then the scale space of an image 

𝐼 could be represented by a function 𝐿(𝑥, 𝑦, 𝜎) which is obtained from the convolution of Gaussian 

function with the input image: 

𝐿(𝑥, 𝑦, 𝜎) = 𝐼(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦, 𝜎) (2.15) 

where ∗ stands for the convolution operation and Gaussian kernel could be derived by: 

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
exp(−

𝑥2 + 𝑦2

2𝜎2
) (2.16) 

Scale space is generated by convolving input image with Gaussian kernel to get more and more 

blurred images as different scales. Then, the DoG (Difference of Gaussian) pyramid is built by 

calculating the subtraction of adjacent blurred images as a close approximation to LoG (Laplacian of 

Gaussian): 

𝐷𝑜𝐺(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎) (2.17) 

After that, each sample pixel in the DoG pyramid is compared with its neighbors at current and 

adjacent scales to detect local extrema (maxima or minima) in space and scale dimensions.  

Since the local extrema detected before are discrete and unstable, the next step is to perform a 

better fit to the nearby pixels for location, scale and ratio of principal curvatures in order to accurately 

localize the position and scale of the keypoints. 

2.2.2.2 SIFT descriptor 

The SIFT detector could find the stable keypoints with corresponding scale level, the next step is 

computing descriptor for each keypoint.  

First, we should assign a consistent orientation to each keypoint based on the information of local 

image patch to achieve invariance to image rotation. According to the obtained scale level, we select 

the corresponding blurred image 𝐿(𝑥, 𝑦)  so that the subsequent computations are performed in a 

scale-invariant manner. Let 𝑔(𝑥, 𝑦) and 𝜃(𝑥, 𝑦) be the gradient magnitude and orientation of each 

pixel, respectively. Then we have: 

𝑔(𝑥, 𝑦) = √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))
2
+ (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))

2 (2.18) 

𝜃(𝑥, 𝑦) = arctan (
𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)
𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)

) (2.19) 

Then, we determine the orientation of each keypoint by calculating an orientation histogram of its 

neighbors. Specifically, the orientation histogram is composed of 36 bins covering 360 degrees, and 
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each neighbor pixel added to the histogram by its Gaussian weighted gradient magnitude. Finally, the 

peak in the histogram is set to be the dominant direction of local gradients, with this, we could assign 

an orientation to the corresponding keypoint. 

Through the above steps, we obtained the image location, scale level and orientation of each 

keypoint, the next step is to generate a robust descriptor for it. Focusing on an 8-pixel radius (i.e., a 

16x16 window) around a keypoint in the scale level at which it is detected. Then, an 8-bin orientation 

histogram for each 4x4 region is calculated so that the final descriptor is assigned with the 128-

dimensional vector containing the histogram values of 4x4 regions. For further details, see [24]. 

2.2.2.3 SIFT matching 

Matching is the final step for feature correspondences where the descriptors of keypoints are matched 

together by comparing their vector similarities. The best candidate match for each keypoint is found 

by identifying the its nearest neighbor with minimal distance compared to all other candidates. There 

are two types of distance measurements are usually used depending on the vector type of different 

descriptors, for example, Euclidean distance (L2-Norm) is utilized for real-valued descriptors (SIFT 

and SURF), and Hamming distance is used for binary-strings descriptor (ORB). 

According to [24], for rejecting incorrect matches to achieve robustness, we compare the distance 

of the closest neighbor with that of the second-closest neighbor. This method is relatively reliable since 

the correct matches need to have the closest neighbor which is significantly closer than the closest  

incorrect match. Empirically, the ratio of distance (closest/second-closest) is set to 0.8 as a 

thresholding value. 

Feature correspondences by SIFT could handle the conventional perspective images very well. 

However, as we can expect from the theory of conventional SIFT explained above, simply applying 

this 2D local features to the EQR image is unreliable due to the location-dependent distortion. This 

could be observed in Chapter 4 where the repeatability of feature detection decreases with distortion. 

Also, the quality of the image could influence on the performance of detection and matching. The 

proposed approach will be elaborated in section 3.1.1 to address these problems. 

2.2.3 Motion estimation and 3D triangulation 

After corresponding 2D feature points between images are detected and matched, we could estimate 

the ego-motion between images and reconstruct the 3D coordinates via these matches as in [34]. In 

this section, we will describe how to make use of geometry relationship between multi-views in order 

to recover the camera pose and 3D structure, the main theories are explained mathematically.  
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2.2.3.1 Epipolar geometry 

In general, if there are two views and corresponding features in the same scene, we could obtain several 

geometry constraints according to the characteristics of camera, the position of 3D scene points and 

relative positional relationship between cameras. [34] defined epipolar geometry to describe these 

constraints. 

As we can see from Figure 2.6, suppose there are two cameras 𝐶1 and 𝐶2 with the corresponding 

camera coordinate system 𝐹𝐶1 and 𝐹𝐶2. For simplification, we use subscription index 1 and 2 as 

substitution for 𝐶1 and 𝐶2 in the following instruction. There is a point 𝑃 in 3D space, let 𝑃1 =

[𝑋1 , 𝑌1 , 𝑍1]𝑇  and 𝑃2 = [𝑋2 , 𝑌2 , 𝑍2]𝑇  where 𝑃1  and 𝑃2  are the coordinates of 𝑃  with respect to 

𝐹𝐶1 and 𝐹𝐶2 respectively. Then, it is projected on two image planes with 𝑝1 = [𝑢1 , 𝑣1]𝑇 and 𝑝2 =

[𝑢2 , 𝑣2]𝑇. According to Eq. (2.5), we have: 

𝑃2 = 𝑅𝑃1 + 𝑇 (2.20) 

Here, 𝑅 and 𝑇 stands for the relative rotation and translation between camera 𝐶1 and 𝐶2. More 

importantly, the space point 𝑃, the image points 𝑝1 and 𝑝2 and the camera optical centers 𝑂𝐶1 and 

 

 
Figure 2.6: Epipolar geometry of conventional pinhole camera 

 

𝑂𝐶2 are coplanar. This plane is denoted as epipolar plane. As shown in Figure 2.6, the normal vector 

of the epipolar plane can be obtained by cross product of 𝑂𝐶2𝑂𝐶1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (i.e. 𝑇) with 𝑂𝐶2𝑃 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (i.e. 𝑃2), and 

it should be perpendicular to the vector 𝑂𝐶1𝑃 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (i.e. 𝑅𝑃1), so we get: 

(𝑅𝑃1)𝑇 ∙ [𝑇]×𝑃2 = 0 (2.21) 

Eq. (2.21) can be rewritten as: 
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𝑃2𝑇 ∙ [𝑇]×𝑅 ∙ 𝑃1 = 𝑃2𝑇𝐸𝑃1 = 0 (2.22) 

where we define 𝐸 = [𝑇]×𝑅 as the 3x3 essential matrix. After that, Eq. (2.22), which describes the 

relationship between two 3D rays, could be further transformed as the relationship between two image 

points according to Eq. (2.14): 

[𝑝21  ]
𝑇
𝐾−𝑇𝐸𝐾−1 [

𝑝1
1 ] = [

𝑝2
1  ]

𝑇
𝐹 [
𝑝1
1 ] = 0 (2.23) 

where we define 𝐹 = 𝐾−𝑇𝐸𝐾−1  as the 3x3 fundamental matrix, 𝐾  is the intrinsic matrix of the 

camera which is obtained by calibration. We should know that 𝐹  is a matrix with 8 degrees of 

freedom since the scale is unknown. 

For calculating fundamental matrix 𝐹 , we introduce definition of epipolar line which gives 

another constraint to 𝐹: For any point 𝑝1 in the left image, it will be projected to the right image on 

the corresponding epipolar line is 𝑙2 = 𝐹 [
𝑝1
1 ]. Moreover, the epipolar line 𝑙2 should always contain 

the epipole 𝑒2, so 𝑒2 satisfies 𝑒2𝑇𝐹 [
𝑝1
1 ] = 0 for any 𝑝1. It means 𝑒2𝑇𝐹 = 0, and 𝑒2 is the left null-

vector of 𝐹 which gives the constraint that the rank of 𝐹 is 2.  

 

 
Figure 2.7: Euclidean distance on 2D pixel domain as error function for RANSAC in perspective case 

2.2.3.2 RANSAC 

RANSAC (Random Sample Consensus) is a classical iterative method proposed by Fischler and 

Bolles in 1981 [42] to estimate the parameters of a designed mathematical model from a large set of 

observed data containing outliers. The basic idea of RANSAC is: the observed data set is composed 

of inliers and noise, a reasonable model should be able to fit all the inliers and reject the those noise 

at the same time. Thus, we could simultaneously estimate the desired model and remove outliers by 

applying RANSAC. 

In the case of SfM, the elements of matrix 𝐹  is considered as the model we need to fit with 

observed data, and the observed data are those corresponding 2D keypoints that we matched before. 

As a result, we could design a RANSAC based method to compute the fundamental matrix 𝐹 as well 

as remove outliers from matched SIFT feature points. The algorithm can be divided into following 
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steps: 

Step 1: Define the computation method associating target model (i.e., fundamental matrix 𝐹) with 

observed data (i.e., feature points). Here, eight-points method [34] is used to calculate 𝐹. According 

to Eq. (2.23), one pair of feature points contributes to one degree of freedom, then 8 correspondences 

form 8 required equations which are enough to calculate 𝐹 . Additionally, the previous section 

explained that the epipolar line introduces another constraint: the rank of 𝐹 should be 2 (i.e., 𝑑𝑒𝑡𝐹 =

0). By calculating the SVD (Singular Value Decomposition) of 𝐹, we get: 

𝐹 = 𝑈𝐷𝑉𝑇 (2.24) 

where we set the last element of 𝐷 to zero as 𝐷∗, then final 𝐹 is cleaned up by 𝐹 = 𝑈𝐷∗𝑉𝑇. 

Step 2: Randomly sampling 8 pairs of matched keypoints to calculate the model 𝐹 as described 

in Step 1. 

Step 3: Define an error function 𝐿 to judge if the other keypoints are satisfied to the calculated 

model 𝐹 or not by an assigned thresholding value 𝜆. As explained in previous section, for a keypoint 

𝑝1 in the left image, it should be projected to the right image on the corresponding epipolar line 𝑙2 

where 𝑙2 = 𝐹 [
𝑝1
1 ]. Ideally, if 𝐹 is a reliable model, then the corresponding point 𝑝2 in the right 

image should lie on the epipolar line 𝑙2. For simplification, the homogenous coordinates of epipolar 

line can be represented as 𝑙2 = [𝑎, 𝑏, 𝑐]𝑇. As shown in Figure 2.7, we define the Euclidean distance 

between 𝑝2 = [𝑢2 , 𝑣2]𝑇 and 𝑙2 as the error function 𝐿: 

𝐿 =
|𝑎𝑢2 + 𝑏𝑣2 + 𝑐|

√𝑎2 + 𝑏2
(2.25) 

Empirically, the epipolar error 𝐿 should be smaller than thresholding 𝜆 = 0.7089 𝑝𝑖𝑥𝑒𝑙. 

Step 4: Counting the number of inliers from all the other keypoints by calculating corresponding 

epipolar error 𝐿 bellowing thresholding 𝜆. 

Step 5: Repeating step 2-4 to find the most reliable fundamental matrix 𝐹. 

2.2.3.3 Estimation of poses and 3D points 

After fundamental matrix 𝐹 is obtained, we can compute the essential matrix 𝐸 by Eq. (2.23) where 

the intrinsic matrix 𝐾 is known. The next step is recovering rotation matrix 𝑅 and translation matrix 

𝑇 from 𝐸. According to the constraint of epipole line explained in previous section, we know that 

𝑒2𝑇𝐸 = 0 where 𝑇 = 𝑒2, so the translation vector 𝑇 is the left-null vector of 𝐸. By computing the 

SVD of 𝐸 that: 

𝐸 = 𝑈 [
1 0 0
0 1 0
0 0 0

] 𝑉𝑇 (2.26) 

where 𝑇 could be obtained from the third column of 𝑈 since 𝑇 is assumed as a unit-vector without 

scale information. There are four possible combinations of translation matrix and rotation matrix since 
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the translation 𝑇 = ±𝑢3  and 𝑅 = 𝑈𝑌𝑉𝑇   or 𝑅 = 𝑈𝑌𝑇𝑉𝑇  , which results in 4 possible projection 

matrices 𝑀 = [𝑅 𝑇]. To resolve the 4-fold ambiguity problem, we first triangulate the 3D coordinates 

of 𝑃 by all of the possible 𝑀, then check the depth value 𝑍 of 𝑃 which should be positive so that 

pin-hole camera can observe. Then the correct combination of 𝑅 and 𝑇 can be obtained by ensuring 

the 3D point 𝑃 is in front of two cameras. The 3D triangulation is derived by: 

[
[𝑝11 ]×

𝑀1 

[𝑝21  ]×
𝑀2

] [𝑃
1
] = 𝐴 [𝑃1

] = 0 (2.27)  

Generally, the unknown 3D coordinate 𝑃 could be obtained by a linear least squares method which 

compute the SVD of 𝐴. 

2.2.4 Bundle Adjustment 

After the rotation matrix 𝑅, translation matrix 𝑇 and 3D coordinates of feature points are calculated 

by the methods described before, the next step is applying Bundle Adjustment (BA) to locally and 

globally optimize these parameters of camera poses and structure points. It is necessary to apply BA 

since we care more about optimal reconstruction under the assumptions regarding the noise pertaining 

to the observed images. BA was originally conceived in the field of photogrammetry during 1950s, 

which has been widely used by computer vision researchers during last two decades [34, 43, 44]. 

Unlike linear least squares problem which has a global optimal solution can be solved by simply 

calculating the normal equation, BA is a nonlinear least squares problem leading to many local minima. 

Therefore, the camera poses and structure points obtained before could be a good initialization in BA. 

Here, we introduce the derivation of how to solve this problem and the corresponding error function 

usually used in the case of conventional SfM with perspective images. 

2.2.4.1 Nonlinear least squares 

We define 𝑥 as the parameters to be optimized, 𝑏 as the value of observed data, 𝑓(𝑥) as the value 

of predicted data from 𝑥. Then the nonlinear least squares problem can be regarded as: 

min
𝑥
‖𝑓(𝑥) − 𝑏‖2 = min

𝑥
(𝑓(𝑥) − 𝑏)𝑇(𝑓(𝑥) − 𝑏) = min

𝑥
𝑓(𝑥)𝑇𝑓(𝑥) − 2𝑏𝑇𝑓(𝑥) (2.28) 

here we define 𝐿 as the objective function to be minimized, then we have: 

𝐿 = 𝑓(𝑥)𝑇𝑓(𝑥) − 2𝑏𝑇𝑓(𝑥) (2.29) 

then we could obtain a condition for the solution by calculating the partial derivative of 𝐿 with respect 

to 𝑥 and set it to 0: 

𝜕𝐿
𝜕𝑥

= 2
𝜕𝑓(𝑥)𝑇

𝜕𝑥
𝑓(𝑥) − 2

𝜕𝑓(𝑥)𝑇

𝜕𝑥
𝑏 = 0 (2.30) 

where we introduce the Jacobian matrix 𝐽 as: 
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𝐽 =
𝜕𝑓(𝑥)
𝜕𝑥

=

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛]

 
 
 
 

(2.31) 

Next, we take the Taylor expansion around 𝑥 as: 

𝑓(𝑥 + ∆𝑥) ≈ 𝑓(𝑥) +
𝜕𝑓(𝑥)
𝜕𝑥

∆𝑥 (2.32) 

Then substitute it into the Eq. (2.30), we get: 

𝜕𝐿
𝜕𝑥

= 2
𝜕𝑓(𝑥)𝑇

𝜕𝑥
(𝑓(𝑥) +

𝜕𝑓(𝑥)
𝜕𝑥

∆𝑥) − 2
𝜕𝑓(𝑥)𝑇

𝜕𝑥
𝑏 = 0 (2.33) 

which could be rewritten and organized by Jacobian matrix 𝐽 as: 

𝐽𝑇𝐽∆𝑥 = 𝐽𝑇(𝑏 − 𝑓(𝑥)) (2.34) 

Note that, ∆𝑥 in here can be regarded as direction of the next step for iteration to converge to the 

optimal solution as 𝑥𝑖+1 = 𝑥𝑖 + ∆𝑥, where: 

∆𝑥 = (𝐽𝑇𝐽)−1𝐽𝑇(𝑏 − 𝑓(𝑥)) (2.35) 

2.2.4.2 Error function 

As we already know the process for optimize the parameters 𝑥 as explained above, the next step is 

designing an error function 𝐸 = ||𝑓(𝑥) − 𝑏||
2
 to describe the relationship between observed value 

𝑏 and predicted value 𝑓(𝑥) of parameters 𝑥. 

In the case of conventional SfM with perspective images, the error function is usually defined as 

a reprojection error on 2D pixel domain, as shown in Figure 2.8. The reprojection error is defined as 

the Euclidean distance between the observed keypoint 𝑝′ = [𝑢, 𝑣]𝑇  and predicted point 𝑝 =

[𝑢′, 𝑣′]𝑇. 𝑝′ stands for the keypoint originally matched by SIFT, while 𝑝 represents the reprojection 

of reconstructed 3D point 𝑃 = [𝑋𝑤, 𝑌𝑤, 𝑍𝑤]𝑇 by Eq. (2.14) that: 

𝑍𝐶 [
𝑢
𝑣
1
] = [

𝑥
𝑦
𝑧
] = 𝐾[𝑅 𝑇] [𝑃1]

(2.36) 

Here 𝐾 is the intrinsic matrix which is already known, so we can consider it as a constant value. 𝑅 

𝑇 and 𝑃 are the rotation matrix, translation matrix and 3D points respectively, which is the target 

parameters that we want to optimize by BA. Thus, from Eq. (2.36) we can define 𝑢 and 𝑣 as a 

function: 

𝑢 =
𝑥(𝑅, 𝑇, 𝑃)
𝑧(𝑅, 𝑇, 𝑃)

, 𝑣 =
𝑦(𝑅, 𝑇, 𝑃)
𝑧(𝑅, 𝑇, 𝑃)

(2.37) 

Then our target of minimization can be regarded as: 

min
𝑅,𝑇,𝑃

‖𝑝 − 𝑝′‖2 = min
𝑅,𝑇,𝑃

‖[𝑥
(𝑅, 𝑇, 𝑃) 𝑧(𝑅, 𝑇, 𝑃)⁄
𝑦(𝑅, 𝑇, 𝑃) 𝑧(𝑅, 𝑇, 𝑃)⁄ ] − [𝑢

′

𝑣′
]‖
2

(2.38) 
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Figure 2.8: Reprojection error in BA defined on 2D pixel domain in perspective case 

2.3 Mask R-CNN 

Our target of applying object detection is to output bounding boxes and labels for moving objects (e.g., 

pedestrians and vehicles) which will bother the performance of motion estimation and structure 

reconstruction in SfM, and the bounding box represent the area we should eliminate when performing 

feature detection and matching. 

Deep CNN based methods has dominated the task of object detection recently, the performance of 

object detection with conventional methods (e.g., HOG+SVM, DPM[45]) are outperformed by Deep 

CNN based methods. The main reason of why deep learning can outperform all the traditional methods 

is that: the former can fit a model which is trained to extract high-level features while the latter usually 

construct low-level features from using prior knowledge about problem domain. Generally, Deep CNN 

based object detection approaches could be divided into two groups: the first group can be regarded 

as two stage methods, which first generate several proposals, and then perform the classification 

through CNN, such as a series of works (R-CNN[8], Faster R-CNN[9] and Mask R-CNN[10]) 

proposed by Facebook Research; the second group can be regarded as one stage methods which pay 

more attention to the computation efficiency to achieve real-time application such as SSD[11], 

YOLO[12]. 

Mask R-CNN is the state-of-the-art method for both objects detection and instance segmentation 

on conventional perspective images, which extends the object detection task of Faster R-CNN by 

adding a branch of Fully Convolutional Network (FCN)[46] to parallelly provide pixel-level 

segmentation. Specifically, the backbone architecture combining ResNet-101[47] with Feature 

Pyramid Network (FPN)[48] is used to achieve strong scale-invariant feature extraction. Then, regions 

of interest produced by Region Proposal Network (RPN) mapped on extracted pyramid feature maps 

are passed through 3 branches for classification, bounding box regression and binary mask prediction 

respectively. The author demonstrated that this multi-task model can improve performance of 
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detection comparing with Faster R-CNN which only has two branches (classification and bounding 

box regression). Besides, ROIAlign is introduced for producing more accurate bounding boxes and 

masks. An example of the detection output of Mask R-CNN is shown in Figure 2.9. 

 

 
Figure 2.9: An example output of Mask R-CNN trained on COCO dataset  

 

2.3.1 Feature Pyramid Network 

For detecting objects at different scale, Mask R-CNN combines ResNet-101 and Feature Pyramid 

Network (FPN) as the backbone architecture to extract strong scale-invariant features. To construct 

the pyramid, FPN involves a bottom-up pathway, a top-down pathway, and lateral connections. 

The bottom-up pathway is performed by any classical backbone ConvNet, in which feature maps 

are downscaled by Conv layer and pooling layer again and again so that the feature map of deeper 

layer is stronger than it of lower layer. Specifically, using ResNet-101 as the backbone ConvNet, we 

define one pyramid level for each stage in ResNet-101 and choose the last layer of each stage as the 

reference set of feature maps. And the outputs of the stages are denoted as {𝐶2, 𝐶3, 𝐶4, 𝐶5}. 

The top-down pathway is to obtain strong features in lower layer. As we know, the lower layer 

corresponds to higher resolution but weaker feature maps. Thus, the top-down pathway upsamples the 

deeper layer feature map which is spatially coarser but semantically stronger, subsequently, it is 

enhanced with corresponding features from the bottom-up pathway by lateral connections. This 

process is iterated until the finest resolution feature map is generated. And the final set of constructed 

feature maps is denoted as {𝑃2, 𝑃3, 𝑃4, 𝑃5}, corresponding to {𝐶2, 𝐶3, 𝐶4, 𝐶5}. 

2.3.2 Region Proposal Network 

Region Proposal Network (RPN) was first proposed in Faster R-CNN to generate region proposals 

directly from the extracted features of the backbone ConvNet. Therefore, RPN and other branches 
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(classification, bounding box regression and binary mask prediction) can share the feature maps, 

which dramatically reduce the computation cost comparing with other methods for generating region 

proposals. 

The basic idea of RPN is sliding a small network over the feature map output of the last shared 

conv layer. And this small network is connected to an 𝑛 × 𝑛 window of the feature map. To achieve 

the ability of detecting objects with different aspect ratios, 𝑘  anchors (region proposals) at each 

sliding window location are predicted. Specifically, 3 scales and 3 aspect ratios are used which 

generate 𝑘 = 9 anchors at each sliding position. Then, each anchor is mapped to a 256-dimensional 

vector and fed into 2 FC (Fully-connected) layers: one is called box-regression layer for predicting a 

rough bounding box for the region; the other one is called box-classification layer for classify this 

region contains possible object or not. 

2.3.3 Problem in omni-directional case 

The performance of current classification based Convolutional Neural Network (CNN) architecture 

on EQR image is not reliable because of two reasons: 

1. For feature extraction, current CNN is constructed based on conventional Conv Layers with 

rectangle window filters. Because of downscaling feature with Pooling Layers, it can achieve 

invariance to scale, slight translation and rotation. However, the underlying projection model 

of CNN is perspective model, which cannot achieve the non-uniform distortion such as the 

location-dependent distortion introduced by the 360° EQR image. 

2. A large scale labeled image dataset and data augmentation could make current CNN achieve 

invariance to large rotation, affine transformation, illumination change, etc. However, it is 

awkward that those current existing image datasets COCO[49] ImageNet[50] for training are 

perspective images as shown in Figure 2.10(c). 

  
 

(a) Visualized filters of first layer of 
AlexNet[51] 

(b) Visualized filters of first layer of 
ResNet-101[51] 

(c) Labeled perspective images of COCO 
dataset[49] 

 

Figure 2.10: Intuition of the problems of current CNN and dataset 
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Figure 2.10(a,b) illustrates the filters of Conv layer of AlexNet[52] and ResNet-101. We can see 

that even for the first Conv layer, it can only extract orientated edges, which is apparently not reliable 

for extracting features in EQR image especially for the large distortion near north pole and south pole. 

Figure 2.11 shows the result when we directly feed EQR image into Mask R-CNN trained on COCO 

dataset. 

 

 
Figure 2.11: An example output of directly feeding EQR image into Mask R-CNN trained on COCO 

dataset, the performance is not good due to the non-uniform distortion (e.g., the book and TV are 

not detected) 
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Chapter 3 Proposed Approach 

 
 

Figure 3.1: Proposed SfM pipeline for Omni-directional images 

 

This chapter presents our proposed 3D reconstruction system with omni-directional images by 

combining modification of conventional SfM with moving objects detection based on Mask R-CNN, 

in which: we address the distortion problems of EQR images and make conventional SfM suitable to 

unit-spherical projection model described in section 2.1. 

We start by giving a description of the proposed pipeline step by step. Then, we explain the details 

of the theory associated with each step in this pipeline, including how to make conventional SfM 
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suitable to non-uniform distorted EQR image and how to detect moving objects in this kind of image. 

Here, for object detection, we present two proposals based on Mask R-CNN to detect objects in various 

situations, which can be used not only in the proposed system for structure reconstruction but also in 

other computer vision applications. Additionally, we describe the way of plugging moving objects 

elimination into SfM. 

As shown in Figure 3.1, the general pipeline can be abstracted as follows: 

1. Gather the EQR images captured in the same scene together and perform preprocessing to 

address problems of distortion. The preprocessed images set are defined as 𝐼. 

2. Select initial two frames 𝑖1 and 𝑖2 in set 𝐼, do feature detection and matching to obtain the 

corresponding 2D keypoints set 𝑆12. Here, moving object detection is performed on both 𝑖1 

and 𝑖2 to eliminating the bothering area in order to filter outliers away from 𝑆12. 

3. Estimate essential matrix 𝐸 by RANSAC where outliers of keypoints are removed at the same 

time. After that, relative camera pose 𝑅1  and 𝑇1  matrices are recovered from 𝐸 , and 3D 

points are reconstructed by 3D triangulation. Finally, all of the parameters are fed into BA for 

local nonlinear refinement. 

4. Add the new image 𝑖3 and do feature detection and matching with 𝑖2 to obtain corresponding 

keypoints set 𝑆23 , then splitting 𝑆23  into two subsets as 𝑆𝑜𝑙𝑑  (those keypoints observed 

before) and 𝑆𝑛𝑒𝑤(those new observed keypoints). Again, outliers are filtered away by moving 

object elimination. 

5. Do PnP to directly recover the new pose 𝑅2 and 𝑇2 by 𝑆𝑜𝑙𝑑 in which 3D coordinates have 

already been reconstructed in step 3. We then reconstruct the 3D points of 𝑆𝑛𝑒𝑤   by 3D 

triangulation. Finally, all of the parameters are fed into BA for global nonlinear refinement. 

6. Repeat steps 4-5 until all the images in set 𝐼 are involved. 

3.1 Structure from Motion by EQR images 

In this section we explain our proposed SfM system in three parts corresponding to the pipeline in 

Figure 3.1: Preprocessing as the yellow path; Two-view SfM as the blue path; Multi-view SfM as the 

red path. 

3.1.1 Preprocessing for feature correspondences 

As mentioned in section 2.1.2, the EQR image generated by Ricoh Theta will introduce two problems: 
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non-uniform distortion and low quality at certain area. They would dramatically affect the 

performance of conventional feature detection and matching methods as we discussed in section 2.2.2, 

thus, in this thesis, we introduce two preprocessing steps performing on raw EQR images. 

3.1.1.1 Cubic mapping 

Cubic mapping has recently been utilized in preprocessing for compression of EQR images. It projects 

the EQR image to six tangent patches (each patch corresponds to 90° FoV) which are in a similar 

manner with images captured by perspective pin-hole camera in different point of view. Here we utilize 

cubic mapping to tackle the distortion problem by converting our raw EQR images into cube map for 

improving the reliability of SIFT feature correspondences. For implementing cubic mapping in our 

system, the process is explained as follows: 

Suppose the raw EQR image 𝐼𝑒 with resolution 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡, then we define our target cubic 

image 𝐼𝑐 with resolution 𝑤𝑖𝑑𝑡ℎ × 3
2
ℎ𝑒𝑖𝑔ℎ𝑡. Since artifacts will be produced by simply projecting 

each pixel of 𝐼𝑒 to 𝐼𝑐, we adopt an inverse way by searching the corresponding location of each pixel 

in 𝐼𝑐 on 𝐼𝑒. Specifically, we first calculate the corresponding 3D coordinates 𝑃(𝑋, 𝑌, 𝑍)𝑇  of each 

pixel 𝑝𝑐(𝑢𝑐, 𝑣𝑐) on cubic image 𝐼𝑐, then we have: 

{
𝑟 = √𝑋2 + 𝑍2
𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑟, 𝑌)
𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑋, 𝑍)

 (3.1) 

Where 𝜃  and 𝜙  is the latitude and longitude as explained in section 2.1.1, then we get the 

corresponding floating coordinates of 𝑝𝑒(𝑢𝑒, 𝑣𝑒) on raw EQR image 𝐼𝑒 by Eq. (2.3). As shown in 

Figure 3.2, we only know the RGB value of discrete pixel in 𝐼𝑒, and the floating pixel 𝑝𝑒(𝑢𝑒, 𝑣𝑒) is 

locating on the position surrounding with four neighboring discrete pixels 

𝑝1(𝑢1, 𝑣1), 𝑝2(𝑢2, 𝑣2), 𝑝3(𝑢3, 𝑣3) and 𝑝4(𝑢4, 𝑣4). For obtaining the RGB value of 𝑝𝑒 , we use the 

bilinear interpolation. 

By calculating the weights 𝜆1 ,𝜆2 ,𝜆3 , 𝜆4  corresponding to the RGB values 𝑖1 , 𝑖2 , 𝑖3 , 𝑖4  of 4 

neighbor pixels 𝑝1, 𝑝2, 𝑝3, 𝑝4, the interpolated RGB value 𝑖𝑒 can be obtained by: 

𝑖𝑒 = 𝜆1𝑖1 + 𝜆2𝑖2 + 𝜆3𝑖3 + 𝜆4𝑖4 (3.2) 

The example cubic map from a raw EQR image is shown in Figure 3.3. 
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Figure 3.2: Bilinear interpolation used in cubic mapping 

 
Figure 3.3: An example of proposed cubic mapping to address the problem of distortion 

3.1.1.2 Merging from pure rotation 

For addressing the problem of low quality area introduced by interpolation and stitching when EQR 

image is generated by OD camera, we design a system as illustrated in Figure 3.4. Each time we obtain 

two images 𝐼1 and 𝐼2 with pure rotation at one spot and compute the rotated angles by detecting the 

most reliable set of pairs of keypoints from SIFT, this can be realized by raising the ratio of distance 

between two nearest pairs of keypoints described in [24]. Here we select 5 most reliable pairs of feature 

points as a reference. Specifically, we define a pair of keypoints as 𝑝1(𝑢1, 𝑣1) and 𝑝2(𝑢2, 𝑣2). For 

those two frames with pure rotation, the difference in locations of 𝑝1 and 𝑝2 only occur with the 

horizontal 𝑢  axis. We can simply use the pixel distance 𝑑𝑢 = 𝑢2 − 𝑢1  to rotate 𝐼2  to generate 

𝐼2𝑟𝑜𝑡 and merge it with 𝐼1, the merged EQR image is then mapped to a cubic image 𝐼𝑐 as described 

in section 3.1.1.1. The example of merged image is shown in Figure 3.4. 
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Figure 3.4: Proposed merging step to address the problem of low quality at certain area 

 

  

  
Matched feature points by SIFT without merging Matched feature points by SIFT With merging 

 

Figure 3.5: Intuition of improvement on repeatability of SIFT by preprocessing. 
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3.1.1.3 Feature correspondences 

After the preprocessing steps described above, we apply conventional SIFT algorithm for feature 

correspondences, the detail of SIFT algorithm are described in section 2.2.2 including keypoints 

detection, description and matching. Figure 3.5 shows the performance of SIFT with preprocessing 

steps. The further evaluation in Chapter 4 shows that by tackling the un-uniform distortion especially 

on the area near north pole and south pole of the raw EQR image and addressing the low quality at 

certain area can increase the repeatability of conventional SIFT method.  

3.1.2 Two-view Structure from Motion 

From initially selected two frames, we now get a set of pairs of matched keypoints by performing 

feature correspondences with preprocessing steps described in previous section. Next, we need to 

estimate the relative pose 𝑅 and 𝑇 from these corresponding 2D keypoints. As described in section 

2.2.3, in the situation of perspective images, this motion estimation problem can be solved by 

calculating fundamental matrix 𝐹  from epipolar constraint with Eq. (2.23). However, this is not 

suitable to EQR images since we cannot describe the unit-spherical projection model (introduced in 

section 2.1.1) with a linear intrinsic matrix 𝐾. In unit-spherical domain, the epipolar geometry could 

be illustrated as Figure 3.6. According to Eq. (2.3) and (2.4), we get: 

 𝑝1′ = [𝑥1, 𝑦1, 𝑧1]𝑇 = [𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜙1, 𝑠𝑖𝑛𝜃1, 𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜙1]𝑇 (3.3)  

 𝑝2′ = [𝑥2, 𝑦2, 𝑧2]𝑇 = [𝑐𝑜𝑠𝜃2𝑐𝑜𝑠𝜙2, 𝑠𝑖𝑛𝜃2, 𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜙2]𝑇 (3.4)  

Where 𝑝1′  and 𝑝2′  are the unit-spherical coordinates corresponding to a pair of keypoints 𝑝1(𝑢1, 𝑣1) 

and 𝑝2(𝑢2, 𝑣2) . According to Eq. (2.22), the epipolar constraint in unit-sphere domain could be 

regarded as: 

𝑝2′𝑇𝐸𝑝1′ = 0 (3.5) 

 

 
Figure 3.6: Epipolar geometry in unit-spherical domain 
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3.1.2.1 RANSAC on unit-sphere domain 

Different with RANSAC for computing fundamental matrix 𝐹 in the situation of perspective images. 

Here, we define the RANSAC in EQR images as directly computing essential matrix 𝐸 according to 

Eq. (3.5). The process of the RANSAC algorithm explained in section 2.2.3.2 can still be used in here, 

but the error function 𝐿 should be redesigned since we cannot define 𝐿 as Euclidean distance on 2D 

pixel domain as described in Eq. (2.25). 

As we know from the concept of epipolar plane presented in section 2.2.3.1, 𝐸𝑝1′  can be regarded 

as the normal vector of the epipolar plane, and ideally, 𝑝2′  as a unit vector should lie on the epipolar 

plane, which means the dot product of 𝐸𝑝1′  and 𝑝2′  should be 0, that is, the angle between 𝐸𝑝1′  and 

𝑝2′  should be 90°. Thus, we define the error function as angular error: 

𝐿 = cos−1(𝑝2′𝑇 ∙ 𝐸𝑝1′ ) (3.6) 

Where we should also set the thresholding value 𝜆, in our experiment, 𝜆 = 85° could be a relatively 

reliable value, and those pairs of keypoints with 𝐿 > 𝜆  are counted as inliers. The results of the 

matched feature points after removing outliers by RANSAC with epipolar constraint are shown in 

Chapter 4. 

3.1.2.2 Pose estimation in EQR images  

After RANSAC, we get the essential matrix 𝐸 , the next step is recovering 𝑅  and 𝑇  by the 

algorithm described in section 2.2.3.3. Same as in the situation of perspective images, there are four 

possible combinations of 𝑅 and 𝑇. Note that we cannot tackle this ambiguity by simply judging the 

depth value of reconstructed 3D point. In conventional SfM, this depth value should be positive since 

all of the points observed by perspective image should be consistently in front of the camera. However, 

this constraint is not suitable to OD camera which covers 360 FoV. For solving this ambiguity in 

spherical model, we propose a different method. Suppose we get 4 possible combination of 𝑅𝑖 and 

𝑇𝑖  , where 𝑖 ∈ [1,2,3,4] . From each pair of them, we obtain the reconstructed 3D point 𝑃𝑤 =

[𝑋𝑤, 𝑌𝑤, 𝑍𝑤]𝑇 by 3D triangulation as: 

[[𝑝1
′𝑇]×[ 𝐼   0] 

[𝑝2′𝑇]×[𝑅𝑖 𝑇𝑖]
] [𝑃𝑤1 ] = 𝐴 [

𝑃𝑤
1 ] = 0 (3.7) 

where we set the coordinates reference of first camera as the world coordinates. So the rotation matrix 

and translation matrix for first camera are identity matrix 𝐼  and 0, respectively. Then we get the 

corresponding coordinates of 𝑃𝑤 in second camera as 𝑃𝑐2 which is presented as: 

𝑃𝑐2𝑇 = [𝑅𝑖 𝑇𝑖] [
𝑃𝑤
1
] (3.8) 

According to section 2.1.1, we know that ideally: 
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𝑝2′𝑇 =
𝑃𝑐2𝑇

‖𝑃𝑐2𝑇 ‖
(3.9) 

Thus, for each combination 𝑅𝑖 and 𝑇𝑖 , we calculate all the 3D points by Eq. (3.7) and then projected 

to the coordinates reference of the second camera by Eq. (3.8). After that, we check the angle 𝛼 

between 𝑝2′  and 𝑃𝑐2 as: 

𝛼 = cos−1(𝑝2′𝑇 ∙ 𝑃𝑐2𝑇 ) (3.10) 

Here, we set a thresholding value 𝜆 = 5°, which is shown to be a reliable value in our experiment. In 

a certain combination of 𝑅𝑖 and 𝑇𝑖 , if a pair of keypoints associating with 𝛼 < 𝜆, then we vote once 

for this combination. As a result, the correct 𝑅𝑖 and 𝑇𝑖  should have the most votes. Besides, the 

benefit of this procedure is that we can remove those outliers which satisfies the epipolar constraint in 

RANSAC (i.e., reprojected ray lie on the epipolar plane) but not satisfies 𝛼 < 5°. The evaluation and 

results of the matched points after recovering camera pose are shown in Chapter 4. 

3.1.2.3 Bundle Adjustment for EQR images 

As described in section 2.2.4, Bundle Adjustment is a method to perform nonlinear refinement for 

optimizing the parameters of camera poses and reconstructed 3D points. In conventional perspective 

image case, according to Eq. (2.38), the error function is designed on 2D pixel domain as the Euclidean 

distance between observed keypoints (the original keypoints obtained by SIFT algorithm) and 

corresponding projected pixels from reconstructed 3D points. However, this error function is not 

reliable for EQR image case due to the location-dependent non-uniform distortion. Here, we introduce 

an error function on 3D unit-spherical domain to make BA suitable to EQR images. 

Suppose we have 𝑃𝑐 = [𝑋𝑐, 𝑌𝑐, 𝑍𝑐]𝑇 as the coordinates of reconstructed 3D point 𝑃 with respect 

to the coordinate reference of camera 𝐶. According to Eq. (3.8), we have the relationship: 

𝑃𝑐𝑇 = [𝑅  𝑇] [
𝑃
1
] (3.11) 

Then calculate the normalized coordinates of 𝑃𝑐 as 𝑝 = [𝑥, 𝑦, 𝑧], where: 

𝑝 =
𝑃𝑐
‖𝑃𝑐‖

(3.12) 

Meanwhile, we know the unit-spherical coordinates of detected keypoint as 𝑝′ = [𝑥′, 𝑦′, 𝑧′]𝑇 which 

can be calculated from Eq. (2.3) and (2.4). Thus, the error function of Eq. (2.38) can be rewritten as: 

min
𝑅,𝑇,𝑃

‖𝑝 − 𝑝′‖2 = min
𝑅,𝑇,𝑃

‖[
𝑥(𝑅, 𝑇, 𝑃)
𝑦(𝑅, 𝑇, 𝑃) 
𝑧(𝑅, 𝑇, 𝑃)

] − [
𝑥′
𝑦′
𝑧′
]‖

2

(3.13) 

3.1.3 Multi-view Structure from Motion 

The process of two-view SfM can reconstruct relative pose 𝑅1, 𝑇1 and a set of 3D coordinates of 



33 
 

matched 2D keypoints 𝑆1 by the steps described above. When we add a new frame into the structure, 

first detect and match a set of feature points 𝑆2 between new frame and previous one, then split 𝑆2 

into two subsets: first set 𝑆2𝑜𝑙𝑑contains those keypoints observed before; second set 𝑆2𝑛𝑒𝑤contains 

new observed keypoints. This can be considered as a perspective-n-point (PnP) problem [34] to 

estimate the new camera pose relative to the current estimated structure. Here we propose the 

modification on conventional PnP by utilizing unit-spherical coordinates. 

Let 𝑀 = [𝑅2 𝑇2]  as the new camera pose we want to estimate. 𝑃𝑤 = [𝑋𝑤,𝑌𝑤, 𝑍𝑤, 1]  is 

homogenous coordinate of the reconstructed 3D point in current structure. 𝑝 = [𝑥, 𝑦, 𝑧]𝑇 is the unit-

spherical coordinates corresponding to the detected keypoint in 𝑆2𝑜𝑙𝑑. According to Eq. (3.11) and 

(3.12), we have: 

𝜆𝑝 = 𝑀𝑃𝑤 (3.14) 

𝜆 [
𝑥
𝑦
𝑧
] = 𝑀𝑃𝑤 (3.15) 

Where 𝜆 represents an unknown scale. Then Eq. (3.15) could be rewritten as an equation with cross 

product: 

[
𝑥
𝑦
𝑧
]
×

𝑀𝑃𝑤 = 0 (3.16) 

Where [
𝑥
𝑦
𝑧
]
×

is a skew-symmetric matrix which can be written as a 3x3 matrix with rank=2: 

[
𝑥
𝑦
𝑧
]
×

= [
0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

] (3.17) 

Combine Eq. (3.16) and (3.17), we have: 

[
0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

] [
𝑃𝑤𝑇 01×4 01×4
01×4 𝑃𝑤𝑇 01×4
01×4 01×4 𝑃𝑤𝑇

] [
𝑀1
𝑇

𝑀2
𝑇

𝑀3
𝑇
] = 0 (3.18) 

𝐴 [
𝑀1
𝑇

𝑀2
𝑇

𝑀3
𝑇
] = 0 (3.19) 

According to Eq. (3.18) and (3.19), we have a 3x12 matrix 𝐴 with rank=2 which contributes to 2 

degrees of freedom in a 12x1 unknown matrix [
𝑀1
𝑇

𝑀2
𝑇

𝑀3
𝑇
], thus, for computing the elements of 𝑀, we need 

6 pairs of corresponding points. Eq. (3.19) is a linear least squares problem which can be simply solved 

by SVD. 

 After we got the camera pose 𝑀, the next step is reconstructing new 3D points corresponding to 

𝑆2𝑛𝑒𝑤  by 3D triangulation described in Eq. (3.7). Finally, we perform the global BA for all the camera 
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poses and 3D points. 

3.2 Moving objects detection in EQR images 

To improve the performance of object detection in EQR image, we propose two approaches based on 

preprocessing steps. The basic idea is transforming them into perspective-like images. After that, we 

combine the moving objects detection with proposed SfM system by eliminating the pixel area of 

detected pedestrians and vehicles to remove the outliers matched by SIFT. 

3.2.1 Proposal 1 

As shown in Figure 3.7, in pre-processing stage, we apply cubic mapping same as in section 3.1.1.1 

to obtain a cubic image which project the EQR image to six perspective patches, which then be fed 

into Mask R-CNN at inference phase. Therefore, we can get the output cubic image with masks, 

bounding boxes, class labels, confidences of detected objects. The post-processing step is remapping 

it to EQR projection with same size as input image. 

We test on 10 raw images captured by Ricoh Theta with different position and viewpoints, Figure 

3.8 shows the performance of baseline (directly feed raw EQR image into Mask R-CNN) and proposal 

1 intuitively. By adjusting the thresholding value 𝜆 , which stands for the lower bounding of the 

confidence (probabilities) for detecting objects. We get the precision-recall curve as Figure 3.9.  

 

 
Figure 3.7: Proposal 1 for object detection on EQR image 
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Figure 3.8: Intuition of object detection by baseline and proposal 1 

 

 
Figure 3.9: Performance of object detection by baseline and proposal 1 ( red line represents the 

precision-recall curve for proposal 1, and blue line for baseline ) 
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3.2.2 Proposal 2 

The limitation of proposal 1 is the performance would be not reliable when there exists object 

projected across the border area of the six faces of cubic map as shown in Figure 3.10. Note that, the 

shape of the book, which is projected on the yellow circled area, is distorted by cubic mapping. 

 

 
Figure 3.10: Limitation of proposal 1 

 

To tackle the limitation of proposal 1, we propose a method which repeatedly generate tangent 

planes as the same manner with the projected six faces in cubic mapping. As shown in Figure 3.11, 

the process of our proposal is as follows: 

Step 1: Sampling a set of center points as candidates. Figure 3.12 shows the typical characteristic 

of EQR image that the shape and size is location-dependent when projecting an object to this 

longitude-latitude image. So, it can be utilized to design our sampling strategy for reducing redundant 

information. The detail of our sampling will be presented later. 

Step 2: Projecting EQR image on the unit-sphere surface. This converting process are described 

in section 2.1.  

Step 3: Consider the center of the sphere as the optical center of a virtual perspective camera with 

narrow FoV, then direct the camera to the sampled center points obtained from step 1. 

Step 4: Projecting surrounding patch of each sampled center point to a tangent plane with the 

projection model of designed virtual perspective camera. The process of tangent plane projection is as 
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the same manner with cubic mapping explained before, that is, searching the interpolated RGB value 

on EQR image for each pixel of target tangent plane. 

Step 5: Feeding all the tangent plane candidates into Mask R-CNN. 

 

 
Figure 3.11: Intuition of proposal 2 

 
Figure 3.12: Sampling strategy based on location-dependent projection of EQR image 

 

  
Figure 3.13: Performance of object detection by Proposal 2 
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In our experiment, the EQR image with resolution 2048x1024 is used. We define the sampling 

center point on unit-sphere domain as 𝑝(𝜃,𝜙), where 𝜃 and 𝜙 represent the latitude and longitude 

respectively. For different intervals along with 𝜃 , we sample a set of center points 𝑝  with 

{𝜃 = ±90°, 𝜙 = 0°}, {𝜃 = ±60°, 𝜙 = 0°, 120°, 240°}, {𝜃 = ±40°, 𝜙 = 0°, 40°, 80°, 120°,… ,320°}, 

and {𝜃 = 0°𝑎𝑛𝑑 ± 20°, 𝜙 = 0°, 20°, 40°, 60°,… ,340°}. We set the FoV of virtual perspective camera 

as 90° , and the resolution of candidate tangent plane as 1000x1000. The performance of object 

detection by proposal 2 is shown in Figure 3.13. By comparing with the results by proposal 1 in Figure 

3.10, we can see that the mouse, book, and remote which are projected across the border area in 

proposal 1 can be well detected by proposal 2.  
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Chapter 4 Experiments and Results 

In this chapter, we evaluate the important steps of proposed SfM system described in Chapter 3 

including feature correspondences with calculating the repeatability, Two-view SfM with the 

experiments for depth estimation, and Multi-view SfM with evaluating the reconstructed structure and 

camera poses.  

The proposed SfM system is implemented in Python from the scratch by implementing the 

algorithm in a naive manner without optimization, thus we cannot ensure the efficiency of our program. 

Note that, there are two parts we utilized from open-source library: SIFT provided by a third-party 

package in OpenCV [53], Mask R-CNN implemented by [54]. 

We conduct our experiments on two groups of EQR images: first, real world images captured in 

different scene with different direction, the EQR image resolution is 2048x1024 produced by Ricoh 

theta; second, synthetic images with resolution 2400x1200 rendered by Blender. Object detection 

model is trained on COCO dataset. 

4.1 Feature correspondences 

In this experiment. We compare the feature repeatability in certain three steps associated with feature 

correspondences to evaluate the performance of preprocessing, here we name it as CubicSIFT for EQR 

image. Specifically, we compare the repeatability in three stages: after original SIFT matching, after 

our RANSAC (remove outliers which are not satisfied to epipolar plane), and after our pose estimation 

(remove the remaining outliers which satisfied to epipolar plane). The detail of these steps is described 

in Chapter 3. The repeatability after each step in our experiment is defined as: 

𝛼 =
# 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑔𝑒

# 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠
=
𝑘𝑖
𝐾

(4.1) 

Where 𝐾 is a constant value which is set manually, it stands for the upper bound of the number of 

detected feature points by original SIFT, in our experiment, we set 𝐾 as 5000. 𝑘𝑖 represents the 

matched feature points after each step. 

The image pairs for our experiments are divided into 9 groups, group (1-3) are synthetic image 

pairs, group (4-8) are real images captured in two different scenes, all of the image pairs are captured 

in different directions. We show the example EQR images of our image set with the counterpart cubic 

images by preprocessing in Figure 4.1. 
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Figure 4.1: Example images taken from synthetic scene and real scene, left column shows raw EQR 

images, right column shows the counterpart preprocessed cubic images. 

 

From the results shown in Figure 4.2, we can see that by cubic mapping, the repeatability of SIFT 

will dramatically increase, because the large distortion on EQR images will affect the performance of 

detector and descriptor of original SIFT. We consider that the main reason is because the non-uniform 

distortion makes the detected location of keypoint not accurate anymore, moreover, the surrounding 

patch for generating feature descriptors are distorted which makes them been weakened. By 

preprocessing of cubic mapping, the original SIFT can achieve the invariance to this non-uniform 

distortion. Note that, for group (3,5,7) the performance of feature correspondences on original EQR 

images is slightly better than on cubic counterparts, this is because the rich texture regions are 
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projected on central area of EQR image with less distortion, showing that SIFT is robust to slight 

distortion, meanwhile, the cubic map will suffer from the interpolation by image transformation. The 

intuition of the above explanation in our evaluation is shown in Figure 4.3. Besides, the results show 

that the time cost during RANSAC process is also reduced by cubic mapping, it is proved that 

RANSAC process benefits from our pre-processing step. The main reason is that original SIFT 

algorithm on cubic map can detect and match more inliers. 

 

  

  
Figure 4.2: Comparison between EQR and Cubic image on performance of feature correspondences. 
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(a) Matched points in EQR images of group 1 

 
(b) Matched points in EQR images of group 3 

 

  
(c) Matched points in cubic images of group 1  (d) Matched points in cubic images of group 3 
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(e) Matched points in EQR images in group 7 

 
(f) Matched points in EQR images in group 8 

 

  
(g) Matched points in cubic images of group 7 

 
(h) Matched points in cubic images of group 8 

 
Figure 4.3: Performance of feature correspondences in two situations ((b,d,e,g) shows with slight 

distortion, the feature correspondences does not benefit from our preprocessing step; (a,c,f,h) shows 

large distortion does affect the performance on raw image but can be addressed by preprocessing.) 

4.2 Moving objects detection 

In this experiment, we perform moving objects detection on group 7 and group 8, which are captured 

on the street with pedestrians and vehicles as moving objects. We extract the bounding boxes of 
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moving objects by Mask R-CNN, Figure 4.4 shows that all the possible moving objects are correctly 

detected with accurate bounding boxes. After that, we remove those detected keypoints (generated by 

first stage, matched points after original SIFT) located on moving objects, then perform RANSAC and 

pose estimation for removing outliers. As we know, those matched keypoints located on moving 

obstacles can be obviously considered as outliers for motion estimation because the fundamental 

constraint for this task is based on static points. Thus, if those outliers are assumed as inliers in motion 

estimation, then there will be a great error in the estimated model. We compare the performance of 

feature correspondences similar in previous experiment, the results are shown in Figure 4.5. Clearly, 

we can see that by elimination of pedestrians and vehicles, all of the obvious outliers of keypoints are 

removed as shown Figure 4.6, as a result, it can accelerate the process of RANSAC which resulting in 

a more accurate motion model been estimated. 

  
Figure 4.4: Performance of moving objects detection on cubic image (example taken from group 8) 

  

 
Figure 4.5: Improvement by elimination of moving objects 
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Figure 4.6: Intuition of improvement by elimination of moving objects (example taken from group 8) 

4.3 Structure from Motion 

4.3.1 Two-view SfM 

In this experiment, we validate our modified SfM system in two-view SfM manner, which is similar 

as depth estimation from stereo camera.  

The experiment is set up as shown in Figure 4.7: Placing the camera at two spots with known 

baseline 𝑅,𝑇. Put 11 red markers on the different place with known distance to camera as ground 

truth. We first capture two raw EQR images then transform them into cubic map. By conducting SIFT 

feature correspondences and modified two-view SfM system described in Chapter 3, we can recover 

the relative camera pose 𝑅 and 𝑇, after that, the 3D coordinates of 11 red markers could be calculated 

by 3D triangulation. The results are shown in Table 4.1. Note that marker 𝑃12 is placed on the baseline, 

which cannot be triangulated correctly. Apart from 𝑃12, all the markers are reconstructed with error 
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lower than 4% , which could be reduced by the further nonlinear optimization of BA. Figure 4.8 

illustrates the reconstructed 11 markers and camera pose in 3D space.  

 
Figure 4.7: Experiment setting for validating two-view SfM 

 

 
Table 4.1: The result depth estimation from proposed SfM 
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Figure 4.8: Visualizing reconstructed marker points in 3D space 

4.3.2 Multi-view SfM 

In this experiment, we validate our modified SfM system in multi-view SfM manner. Note that, the 

estimated translation matrix is presented as 𝑇 = [𝑇𝑥, 𝑇𝑦, 𝑇𝑧], the rotation matrix is presented as 𝑅 =

[𝛼, 𝛽, 𝛾] which represents the 3 Euler angles corresponding three axes in 3D space. We set (𝑅1, 𝑇1) of 

first frame as (0, 0) which represents the reference system of world coordinates. The test images are 

taken from synthetic group, the results of motion estimation and 3D reconstruction by our proposed 

SfM system are shown in Table 4.2 and Figure 4.9, respectively, which proves that our SfM system 

can work well for omni-directional images. 

 

 Tx Ty Tz α [rad] β [rad] γ [rad] 

Frame 2 0.999 6.8 e-4 0.005 0.00 0.002 0.001 

Ground truth 1.000 0.000 0.000 0.00 0.000 0.000 

Frame 3 1.955 1.3 e-4 0.084 -0.02 0.010 0.003 

Ground truth 2.000 0.000 0.000 0.00 0.000 0.000 

Table 4.2: Motion estimation by proposed SfM 
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Figure 4.9: Visualizing reconstructed 3D points by proposed SfM 
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Chapter 5 Conclusion 

In this work, we proposed a novel Structure from Motion (SfM) based system to recover the sparse 

3D structure and ego-motion from Omni-directional (OD) images with elimination of moving 

obstacles based on deep CNN model Mask R-CNN. The problems of non-uniform distortion 

introduced by Equi-rectangular (EQR) images are discussed in detail: first, it can dramatically affect 

the repeatability of conventional algorithm for feature detection and matching, especially in a pair of 

images with large rotation, which leads to unreliable performance in further processing; second, it also 

shows unsatisfactory performances on object detection since current CNN architecture and existing 

perspective images based datasets cannot achieve invariance this kind of location-dependent distortion. 

In order to address them, we proposed several approaches based on image transformation which are 

proved to be effective. 

Furthermore, we modified the conventional SfM to make it suitable to OD images since the 

conventional system is associated with perspective image which has totally different projection model 

with OD image, we evaluated our system for not only two-view SfM (which also can be used in depth 

estimation from stereo OD camera) but also multi-view SfM, the results of recovered structure and 

camera poses showed that proposed system can works well with OD images. 

Finally, we combined SfM with elimination of moving obstacles (pedestrians and vehicles) based 

on Mask R-CNN, the results show that SfM system could benefit from this combination since those 

moving obstacles located on large pixel area in EQR image would interfere the operation of feature 

detection and matching. 

However, our system is associated with large computation cost in image transformation (such as 

cubic mapping) which still can be improved in future work. Moreover, this work is involved with 

frequent processing of mapping and interpolation which leads to information loss. For future work, 

the dense reconstruction for OD images could be conducted with the estimated camera poses as well 

as the sparse structure reconstructed by our proposed SfM system. 
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Chapter 6 Appendix 

6.1 List of academic achievements 

[1] Mengcheng Song, Junichi Hara and Hiroshi Watanabe: “Instance Segmentation on Omni-

directional Images Based on Mask R-CNN,” IEICE General Conference, BS-2-13, Mar. 2018 

 

[2] Mengcheng Song, Junich Hara and Hiroshi Watanabe: “Robust 3D Reconstruction with Omni-

directional Camera based on Structure from Motion,” International Workshop on Advanced Image 

Technology (IWAIT2018), No.105, pp.1-4, Jan. 2018 
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