Interpolation-Free Fractional Pixel Motion Estimation
Based on Data Trend Approximation

Chang-Uk JEONG and Hiroshi WATANABE

Abstract ~ Motion estimation can efficiently eliminate the temporal redundancy to achieve video compression.

The computational complexity of a fractional pixel motion estimation (FME) module cannot be

negligible, although such modules improve visual quality after the integer pixel motion estimation

process. Most conventional FME methods include an interpolation procedure to form fractional

pixel search points from information about the integer pixels. The interpolation, however, requires

frequent memory access and a certain amount of processing time. In this paper, interpolation-

free FME techniques using a data trend approximation are proposed. The proposed methods were
implemented using the reference encoders of HEVC and H.264/AVC. The simulation results show
that the proposed methods produce a similar or better performance than the existing FME methods

without the need for any additional search points.

Introduction

Mobile network technologies such as the 3G, 4G,
and Long Term Evolution (LTE) wireless standards have
made rapid progress. Nevertheless, the transmission of
large amounts of multimedia data increases consumer
traffic dramatically on both wireless and wired networks.
Video compression standards, such as ISO/IEC MPEG-
1, MPEG-2, MPEG-4, ITU-T H.261, H.263[1],
and H.264/AVC [2], [3] also keep evolving. H.264/
AVC is a state-of-the-art video compression standard
for encoding and decoding video data using various
advanced technologies. Although the advanced features
allow it to encode video data more effectively compared
with conventional methods, the increased computational
complexity requires a certain level of CPU power to perform
real-time video encoding, especially in mobile applications.
The High Efficiency Video Coding (HEVC) standard,
also known as H.265, has recently been jointly developed
by ISO/IEC MPEG and ITU-T VCEG [4]-[6]. HEVC
can provide much higher video coding efficiency compared
to H.264/AVC by halving the bitrates while maintaining a
similar image quality, but this is achieved at the expense of a
significant increase in computational complexity.

Generally, a video encoder is divided into three units:
a temporal redundancy eliminator, a spatial redundancy
eliminator, and an entropy encoder. The temporal
redundancy eliminator estimates and extracts the motion of

an object using the close correlation between neighboring

video frames, while information related to stationary objects
or background is eliminated. As motion estimation (ME)
is at the core of the temporal model, it occupies more than
half of the total encoding time [7]. Thus, a great deal of
research into fast ME has been conducted in an attempt
to reduce the high computational complexity of the ME
module.

Motion estimation methods can be classified into
pixel recursive algorithms and block matching algorithms
according to their elementary units, i.e., pixels or blocks.
Block matching algorithms, in particular, have been
adopted by many reference video encoders due to their low
computational cost and robustness to errors. For example,
the diamond search (DS) [8], the hexagon-based search
(HEXBS) [9], the efficient three-step search (E3SS)
[10], the cross-diamond-hexagonal search (CDHS)
[11], the unsymmetrical-cross multi-hexagon-grid
search (UMHexagonS) [12], and the test zone search
(TZS) implemented in the reference software such as
JSVM [13], JMVC [13], and HM [14] are fast block-
based ME algorithms, developed to effectively reduce
the computational complexity of the integer pixel ME
(IME) module. Each of the existing IME algorithms has
a different search strategy to satisfy both the accuracy of
estimation and the search speed.

Most motion estimators follow the IME process with
a fractional pixel ME (FME) process. The location of a
moving object in a video sequence can be represented at

fractional pixel, as well as integer pixel, precision. FME

Ma_nuscript recieved 30° November 3)13; revised 11* February 3314; accepted i February 2014
Graduate School of Global Information and Telecommunication Studies, Waseda University

52

GITS/GITI Research Bulletin 2013-2014

improves the image quality visibly, but requires higher
computational complexity. The runtime of the FME
module is over 30% of the total encoding time [7]. The
conventional full fractional pixel search (FFPS), also called
the hierarchical fractional pixel search, is wasteful and
inefficient owing to its fixed number of search points. In
addition, an interpolation process (upsamp]ing) must be
performed to create the fractional pixel search area, which
requires a high computational complexity and frequent
memory access. To ameliorate these issues, techniques such
as center-biased fractional pixel search (CBFPS) [12],
fast sub-pixel ME having lower computational complexity
[15], quadratic prediction-based FME (QPFPS) [16],
and fast ME with interpolation-free sub-sample accuracy
[17] have been developed. In this paper, interpolation-
free FME techniques based on data trend approximations
are proposed. These techniques focus on performing FME
without interpolation operations. In the experimental
results, the performance of the proposed algorithms will

be evaluated in terms of their peak signal-to-noise ratio
(PSNR) and bitrate.

Mathematical Models

2.1 Parabolic Models to Approximate Matching
Errors

Block-based ME evaluates the matching error cost
obtained by subtracting the candidate region from the
current macroblock in order to find the best matched block
within a search range in the reference frame. Equations (1)
(151, [17], (2) [15], and (3) [15], [16], have been used
to model the matching error F (x,) at fractional pixel

resolution.
F(x,y)=cx"y +e,xX"y+e,07 +e, 0y + 6,3 + (1)
cx+e,V +ey+e,
F(x,y)=¢x + e,y +6,)" +e,X+¢;V +¢ (2)
F(x,y)=ex +e,x+¢,3 +e,y+¢ (3)

In particular, the parabolic models in (1) and (2) require
the matching errors of the nine adjacent search points at
integer pixel resolution, as described in Fig. 1, to determine
coefficients ¢,—¢, and ¢—¢;, respectively. In other words, if
all nine matching error costs are not provided by the IME
process, the estimation cannot be guaranteed. To fix this
problem, a full search (FS) and an eight neighbor search
(ENS) have been used for IME [15], [17]. However, FS is
very wasteful in terms of computational complexity, and the
rectangular search pattern consisting of eight IME search
points used in ENS is inefficient compared with the small
diamond search pattern (SDSP) with five IME search
points, illustrated in Fig. 1. SDSP has been applied to many
fast IME algorithms due to its efficiency and simplicity

4 e as o 0 am s om 1
Fig. 1 The five main integer pixel search
points (H,, H,, C, V,, ,) and the
four relatively unimportant search

points (U). The five main search
points form the SDSP.

E
E

Known Search Points [%]
Known Search Points [%]

(b)

Fig. 2 Results of a simulation counting the number
of known integer pixel search points with
their matching error cost by performing
UMHexagonS. (a) Percentages of known
search points within a 3 x 3 range of the local
position for the QCIF “Salesman” sequence.
(b) Percentages for the CIF “Football”
sequence.

[8]-[14]. In addition, many powerful IME algorithms,
including UMHexagonS in H.264/AVC, terminate the
search process using SDSP in the final step. UMHexagon$
occasionally determines the best position by checking only
one search point using the early termination technique [12].
The fast IME algorithms using SDSP, therefore, may not
calculate the matching errors of the diagonal search points
surrounding the best determined position. Fig. 2 shows
the results of a simulation counting the number of known
IME search points with their matching error. In Fig. 2, the
percentage K, of each local position (,y) can be obtained

as follows:
K, (%)= The number of the known search points 100 (4)
" The total number of the macroblocks
used for IME

In the simulation, UMHexagon$ is used for IME with
the QCIF test video sequence “Salesman” (100 frames)
and the CIF sequence “Football” (100 frames). These
videos include small and large motion objects, respectively.
As described in Fig. 2, the percentage K, of the known
integer pixel search points of the center position (0,0),

which represents the local coordinates of the search point

53

GITS/GITI Research Bulletin 2013-2014

corresponding to the best position with the lowest matching
error, is always 100%, and the percentages (K, ,, K4, Ky, 1,
K1) of the four positions forming the SDSP are also over
90%. In contrast, the four diagonal positions on the edge
have low percentages (K., ., Ki 1, K14, Ky;) of about 7%
and 40% for the “Salesman” and “Football” sequences,
respectively. This means that the two models in (1) and
(2) have difficulty working with powerful IME algorithms
using SDSP. Accordingly, if a fast IME using SDSP was
to be followed by the FME process based on (1) or (2),
it would cause an increase in the total encoding time and
require some modifications to the fast IME module. The
models in (1) and (2) are also unstable on the extension
to the quarter pixel or less-than-one FME. This is because
some matching errors at the outside half-pixel locations,
e.g., (—=0.5,—1), must be additionally approximated after
calculating the coefficients.

Contrary to the mathematical models discussed above,
the parabolic model in (3) can be applied without any
difficulties under state-of-the-art IME techniques because
it needs only five IME matching errors, as described in
Fig. 1, to determine the five coefficients ¢—c;. This model
can also be decomposed into two one-dimensional (1-
D) parabolic models that approximate the horizontal and
vertical matching errors separately, as described in the

following equation:

F(p)=c,p’+c,p+c;, (p=xory) (5)
As has been discussed [16], the minimum matching error
cost F(p) can easily be found by differentiation with respect
to « and y. When dF/dp = 0, the x and y coordinates are

regarded as the best prediction position (xy,y,) .

—C

2(:: ®)

F’(p)=261p+cz =0, p,=
The 1-D parabolic model uses only the three IME
matching error costs, corresponding to (H,, C, H,) or (¥, C,
V), to compute ¢;—¢;, as derived in (7) [16].

q=(L+I1,-2C)/2, (I,=H,orV,I,=H, orV,)
¢, =(-L+1,)/2 (7)
c;=C

The best predicted #; and y, coordinates are estimated
independently of each other. Here, however, the 1-D
parabolic model-based prediction has a serious fault, as

shown below:

_CI l
2e, g 2 ®

C>I,, if p,=

Equation (8) is an abnormal case, and there is a
contradiction because the matching error C at the local
location (0, 0) always returns the lowest error cost in the
IME. That is, the 1-D parabolic model-based prediction
alone is not able to find the best prediction position at locations
with pixel values greater than 0.5 or less than —0.5. This
will have a serious impact on the FME process at quarter-
pixel or less-than-one resolution. Moreover, if the matching
error H, or H, is set to zero, denoting an unknown
matching error, the 1-D parabolic graph tends to be concave
down rather than concave up. As an alternative solution, to
enhance the reconstruction PSNR performance, QPFPS
[16] adopted an interpolation-based refinement procedure
in its final search step, although this led to an increase in

computational complexity.

2.2 Surface Modeling to Approximate Data

Trends

The parabolic models discussed in the previous
subsection can be extended to higher-order polynomial
surface models to achieve more accurate prediction.
However, higher-order polynomial functions require more
computational complexity and IME matching error costs,
and often result in unwanted undulations. Thus, different
forms of error surface modeling from the above-mentioned
parabolic models have been considered. Free-form surface
modeling is used to describe the skin of a 3-D geometric
element. The surfaces do not have rigid radial dimensions,
unlike in parabolic surface modeling. Free-form splines
include the following methods: Cardinal, Hermite, Bézier,
and non-uniform rational B-spline (NURBS). A Cardinal
spline is a sequence of individual curves joined to form a
larger curve, and a Hermite spline uses two points and two
tangents to model a 2-D curve. Bézier splines, particularly
in their quadratic and cubic forms, are widely used to
model smooth curves. To model a quadratic Bézier curve,
only three control points are required. The latest fast IME
algorithms such as UMHexagon$ terminate the final search
step using SDSP with the five search points shown in Fig. 1
as the smallest search pattern. In particular, each of the IME
search points (H,, C, H,) and (¥, C, V) correspond to the
three control points of a quadratic Bézier curve. A quadratic
Bézier curve is also a parabolic segment, but it does not pass
by all of the control points. Although the curve is not an
interpolation between the control points, it can approximate
the data trend. Hence, quadratic Bézier curve-based FME
techniques are introduced. NURBS, which can be defined by
degree, weighted control points, knot vector, and evaluation
rules, is currently a very popular type of spline. To model
a free-form curve with NURBS, the number of control
points must be greater than or equal to four. NURBS is a
generalization of B-splines and Bézier splines.

GITS/GITI Research Bulletin 2013-2014

2.3 Quadratic Bézier Curve

In the 1-D parabolic model in (5), the three IME
search points (H,, C, H,) or (¥}, C, V,), as shown in Fig. 1,
are used to predict the best fractional pixel position at the
horizontal or vertical location. As discussed in the previous
subsection, quadratic Bézier curves are a natural choice
for this problem, because the three IME search points
correspond to the three control points of the quadratic
Bézier curve. The quadratic Bézier curve algorithm can
be explained by (9) and (10). Equation (9) describes a

generalization of the Bézier curve.

P(r)= i:pi‘]n;' (0, 0=t=<)

im0

J:u‘ (‘t)zn Ciri (] - r)ﬂ—\f (g)
o n!
il(m—1)!

where 7 denotes the degree of the Bézier curve, py, p1, -+,
Pu1s Pn are control points, and ,C; is the binomial coefficient.
While the parameter t moves from 0 to 1, the function P(#)
traces a curve. Let the matching error costs corresponding
to the local positions (x;, 0) and (0, y;) be X; and Y.
Considering the coordinates for 1-D surface modeling,
when x; or y; = i-1, the IME search points (#,, C, H,) and
(1, G, V) can be represented as { (xg, Xo), (%3, X,), (x5,
X,)} and {(3, Yp), (3, Y1), (3, ¥;)}, respectively. At x; or
y; = m; and X, or Y; = M, each of the coordinates m; and
M, is entered separately as a control point p;. The quadratic
Bézier curve given by the three control points (pq, 21, p2)
is described in (10), which forms the core of the proposed
techniques.

2
P(r)= pr"rz;')
i
= D%y C°f°(l—f]2+ P1xzclfl (l_r)l"' P:xzczrl(l _t)u
= Pu{l _t)2 +p 23{1 _t) +P1t1

(10)

Fig. 3 shows examples of quadratic Bézier curves and
the 1-D parabolic model. As shown, the quadratic Bézier
curve does not pass by all three control points, but two points

are always passed. The » or y coordinate with the lowest

000 : . e -
0 Parsbobe . 1 0 Parabole
“‘”r - Chdas Ml ot B el | s o
000 - '\nmi-
X -x-ul | ‘E <0
E 000 kB ml
2000 000 |
o oo |
N (SR Y D T [| I O T I I .

1 o

% %

(a) (b)

Fig. 3 Examples of a 1-D parabolic model and a
quadratic Bézier curve. (a) The two curves
plotted using the three matching errors located
at (-1, 5759), (0, 1659), (1, 5759). (b) The curves
at (-1, 5759), (0, 1659), (1, 3146).

matching error cost will be regarded as the best prediction
position s, or y;. The best prediction position found by the
quadratic Bézier curve, however, tends to be more biased
toward x = —1 or 1 than that of the 1-D parabolic model, as
illustrated in Fig. 3 (b). Thus, a preprocessing algorithm is
introduced to correct the one-directional bias.

Proposed Bézier Curve-Based FME

3.1 Proposed Method 1
In this paper, three FME methods based on quadratic
Bézier curves are proposed. The first method differentiates

the quadratic Bézier curve in (10) to give:
P(t)' =2t(p, —2p, + p,) —2(p, — 1) (11)

Let P(#)” be zero. When (py, p1, p2) = (My, My, M), it is
possible to obtain the optimum value of # that minimizes

the matching error cost, as shown below:

P(t) =2t(p, —2p, + p,)—2(p, — p,) =0 (12)
rb :(po _pl)/(po _2p1 +p2)
As described in (13), when (py, p1, p2) = (g, my, m,) = (=1, 0,
1), the best fractional pixel prediction position P (#,) can be
found by substituting the above optimum # for #in (10).

P(t,) = Po(l_fa)z +P12ra(1_£a)+P2ra2 =21, -1 (13)

Table 1 compares the fractional pixel motion vector
(FMV) found by the 1-D parabolic model-based
prediction (1-D_PM) and that found by the proposed
method (BEZIER) at quarter-pixel resolution. The
matching probabilities given refer to the agreement of
the two methods with the best FMV found by FFPS.
In the simulation, it is assumed that the FMV matching
performance of FFPS is always the best. The QCIF
“Salesman” sequence and the CIF “Football” sequence
are used as test input images. Both sequences consist of
100 frames. UMHexagonS is used for IME and returns the
five neighboring IME matching errors. The best fractional
pixel prediction positions determined by the two algorithms
are subjected to quantization operations [16]. Abnormal
cases, such as the IME matching error H, or H, being
unknown or zero, are not allowed, and the FME process
for the macroblock is skipped in exceptional cases. If the x
or y coordinate of the best FMV found by FFPS is equal
to that found by a mathematical model-based prediction, it
counts the number of matching FMVs in position |P|. As
shown in Table 1 (A) and (B), the 1-D parabolic model-
based prediction can produce more accurate FMVs than
the quadratic Bézier curve-based prediction. However,

the 1-D parabolic model-based prediction can never find

55

GITS/GITI Research Bulletin 2013-2014

Table 1 Fractional Pixel Motion Vector Matching
Probability (%)
(a) QCIF “Salesman” Sequence
Method Position [0,+0.75] |p|=0 |p|=0.25 |p|=05 |p|=075
i Fi x-coord. 44928 49969 28606 14598 00.000
T y-coord. 39768 43321 28010 15998 00.000
2 x-coord. 30559 33963 16497 15257 30.711
BEZIER
y-coord. 27320 30046 15285 14616 27.359

(b) CIF “Football” Sequence
Method Position [0,20.75] |p|=0 [p|=025 |p|=05 |p|=075
LD py OO 2673 50725 23179 15063 00000
= y-coord 24502 39588 23874 14763 00.000
_ x-coord. 22465 36714 13049 14273 24193
BEZIER

y-coord. 18278 25977 13483 14364 25.168

the best x; or y; located at |P|> 0.5, unlike the quadratic
Bézier curve-based prediction. That is, compared with the
1-D parabolic model-based prediction, the quadratic Bézier
curve approach provides higher robustness to large motions.
It should be noted that, in general, macroblocks with larger

motions result in higher distortion.

3.2 Proposed Method 2

The second method involves predicting p,' in order to
pass close to all three control points. Thus, p,' should be
predicted such that p, can exist on the Bézier curve. As p, is
equal to P(#=0.5), ,' can be computed as:

1 1 1 1 1
p= p(2)= po(l__)2 +2p'- 1-2) +P, (_)2
2 2 2 2 2 (14)

1
P1=E(4P1_P0_Pz)

If p, in (12) is replaced by p,', then the Bézier curve can
pass through p, as well as p, and p,, as shown below:

t, =(po— ")/ (Po —2pP,"+P5) (15)

Finally, when (o, p1, p2) = (M,, My, M,), (16) is used to
determine the best fractional pixel prediction position P(#,).
The result of the prediction is the same as that of the 1-D
parabolic model-based prediction, although the approach is
different. This second proposed method, however, can easily
be extended to a third method.

P(t,)=2t, —1=(p, _Pz)l(zpo —4p, +2p,) (16)

3.3 Proposed Method 3: Determination of
Adjusting Factors

As shown in Table 2, each location (x, y) corresponds
to the five main IME search points (Hy, Hy, C, ¥, V).

Table 2(a) shows the average matching error costs at the

56

Table 2 Average IME Matching Error Costs

(a) “Claire” (b) “Stefan”
®y) 1 0 1 (xy) -1 0 1
-1 - 122100 - -1 - 311.212 -
0 133955 103513 133174 0 283471 236.197 294.131
it - 121288 - 1 - 308656 -

five IME search points for the QCIF sequence “Claire” (100
frames) and Table 2(b) shows the same information for
the CIF sequence “Stefan” (100 frames) . In the simulation,
the sum of absolute difference (SAD) criterion is used
to calculate the matching errors for a given quantization
parameter (QP) of 28 and rate-distortion optimized mode
(RDO) of 1, based on the H.264/AVC JM version 12.4
reference software [13], [18]. In the case of “Claire,” with
reference to Fig. 3 (a), the prediction curves are almost
symmetric about x = 0. For the “Stefan” sequence, on
the other hand, the horizontal search points (H,, C, H,)
form slightly uneven curves, similar to Fig. 3(b). That
is, the simulation implies that the FMVs for “Claire” are
more center-biased than those for “Stefan.” Actually, since
“Claire” comprises stationary and small-motion objects,
most of the integer pixel motion vectors are distributed
within the central area. Furthermore, for the quadratic

Bézier curve, the following can be assumed:

First, the more similar the matching error H, (V) is
to H, (¥,), the closer the best prediction position is to the
center. The best prediction position will also be similar to
that of the 1-D parabolic model.

Second, the higher or lower H, is compared to H,, the
more the best prediction position is biased in one direction.
That is, the best prediction position will be located farther
away from that of the 1-D parabolic model.

Third, the farther H, and H, are from C, the closer the
best prediction position is to the center. The best prediction
position will also be similar to that of the 1-D parabolic model.

Finally, the closer H, and H, are to C, the more the
best prediction position is biased in one direction. That is,
the best prediction position will be located farther away
from that of the 1-D parabolic model.

In the second proposed method, it is known that the
shape of the quadratic Bézier curve can be determined by
controlling the predicted control point p,', as illustrated
in Fig. 4. The adjusting factors used in the third proposed
method are described by the pseudo-code in Table 3.
Each adjusting factor is composed according to certain
assumptions. Let (pq, g1, p.) = (M,, M,, M,). As shown
in Table 3, the variable D, which represents the original
distance between p; and py', can be obtained by applying
(14), as used in the second method. The adjusting factor

GITS/GITI Research Bulletin 2013-2014

5000 |- K 1-D Parabolic Model = == -
Quadratic Bezier Curve ——
5000 -
g 4000
E w0 — 4
o —
2000 s : e
1000 | N
P
a H
45 1 05] o5 1 15
X

Fig. 4 Determination of the Bézier
curve by controlling p,".

Table 3 Pseudo-Code for the Third Proposed Method

D=(05%(4.0Xp —po—p)) — pn

AF1=if (py > py) then (py/ ps) = 1.0, else (p5/ pp) —1.0
AF2 = (py+py) / (20 % py)

AF3 =if (1.5 > AF2) then AF1 % 10,0, else AF2-1.0
=1+ (DX AF3)

AF1 is based on the assumption that a higher ratio of p,
to p, will lead to a bigger gap between p, and p,". The
ratio of po+p, to 2p, gives AF2, which represents the
relative difference between them. The critical value 1.5 in
the second conditional sentence is used to determine the
adjusting factor AF 3. The critical value is experimentally
selected to be higher than 4F2=1.29 computed by the
matching errors (H,, C, H,) in Table 2 (A).If AF2 s less
than the critical value, the relationship between p,, and p, is
preferred to that between p,+p, and p,, in which case AF3
is AF1 multiplied by 10 determined by many tests. The last
line of the pseudo-code shows that the position of ;' is
determined by applying D adjusted by A4F3. The procedure
of the third proposed method for obtaining the best

prediction position x; or 3, can be summarized as follows:

Step_1) The IME process for a prediction block is
terminated and returns the IME matching error costs.

Step_2) The adjusting factors for controlling p,' are
determined by the pseudo-code described in Table 3.

Step_3) The predicted p,' is entered in (15), and then
the optimum #, is computed.

Step_4) The best prediction position is found by
applying the optimum #, in (13). The best prediction
position is quantized according to a previously reported

method [16].

3.4 Proposed Method 3: Modification for HEVC

HEVC is the latest video compression standard
suitable for high-resolution video formats such as
WQXGA, 4K, and 8K. In place of the 16 X 16 macroblock
adopted in H.264/AVC, HEVC is based on a coding tree
unit (CTU) with a maximum size of 64 X 64. The CTU
consists of three blocks: a luma coding tree block (CTB),
two chroma CTBs, and syntax elements. Since larger CTB

sizes generally produce a lower bitrate, large CTB sizes
have a strong influence on the coding efficiency with high-
resolution video. Each CTB can be split into multiple
coding units (CUs). The CU also consists of three blocks:
a luma coding block (CB), two chroma CBs, and syntax
elements. Each CU is again partitioned into prediction
units (PUs) and a quadtree of transform units (TUs). The
CU level determines the inter or intra prediction mode, and
each CB can be split into prediction blocks (PBs). Larger
blocks tend to lead to higher matching error costs.

Therefore, the adjusting factor 4F3 described in Table 3
is modified to suit the HEVC test model (HM) version
12.0 reference software [14], as shown below:

AF3 =if (4.0 > AF2) then AF1, else AF2 - 2.0 (17

HEVC utilizes 7- or 8-tap interpolation filters for
the motion vector refinement process at quarter-pixel
resolution, whereas H.264/AVC performs a two-step
interpolation: 6-tap interpolation filtering of half-pixel
resolution positions followed by a bilinear interpolation
for quarter-pixel resolution positions. Both HEVC and
H.264/AVC refine the motion vectors at the quarter-
pixel resolution; thus, the quantization process of [16] is
also used in the final prediction step of the third proposed
method in HEVC.

Experimental Results
4.1 Simulation Results Based on H.264/AVC

The proposed techniques have been implemented
in H.264/AVC JM 12.4 on the Windows 7 64-bit OS
platform with an Intel i5 CPU@1.80 GHz, and HEVC
HM 12.0 on the Windows 7 64-bit OS platform with
an Intel i7 CPU®@2.80 GHz. Based on the H.264/AVC
JM 12.4, the simulation was conducted using the default
settings, i.e., search range = 16, QPs = 20, 24, 28, and 32,
and RDO = 1 under the baseline profile. As implemented
in JM, UMHexagon$ is used for fast IME. The
performance of the proposed methods (METHOD_1-3)
is evaluated by comparison with that of CBFPS and the
1-D parabolic model-based prediction (1-D_PM) in terms
of PSNR and bitrate. The computational complexity can
be compared in terms of the total motion estimation time
(MET) and the average number of fractional pixel search
points per block (FSP). CBFPS is chosen as one of the
most popular interpolation-based FME algorithms. As
defined in JM, if a macroblock type is less than or equal to
3, UMHexagonS is performed, followed by FFPS rather
than CBFPS for FME. The rule, therefore, is applied to all
the FME methods for fair comparison, and the fractional

pixel search points used in FFPS are not counted. In

57

GITS/GITI Research Bulletin 2013-2014

addition, the mathematical model-based methods have
been implemented in the IME module of JM. However,
because the PSNR and bitrate in IME are measured, the
computational complexity will only be mentioned briefly.
The six sequences used in the test are as follows: QCIF
(176x144) “Claire” and “Salesman,” CIF (352x288)
“Football,” “News,” “Stefan,” and “Table.” Each sequence
includes different types of motion, which can be classified
as small, middling, and large motion. The number of frames
to be encoded is 100 at 30 Hz.

As listed in Tables 4-8, the average quality
performance of METHOD_3 at each QP is better than
that of 1-D_PM. The average PSNR degradation of 0.016
with respect to CBFPS is lower than the 0.025 attained by
1-D_PM. In particular, the average PSNR drop at each QP
= 28 and QP = 32 is 0.003, which means that the quality
is very close to that of CBFPS. In terms of computational
complexity, METHOD_3 has no use for FSPs, whereas
CBFPS requires at least five. METHOD_1-3 and 1-D_
PM achieve an average MET reduction of 17.198%,
17.824%, 16.894%, and 17.033%, respectively, with respect
to CBFPS. The computational load of METHOD_3 can
also be reduced from about 11% to 30% compared with
CBFPS. When METHOD_3 is directly implemented
in the IME module of JM, the average MET reduction
is about 46%, whereas the quality is expected to degrade
a little compared with that in the FME module with the
above simulation conditions. The bitrate comparisons in
Tables 4-8 show that METHOD_3 is competitive with
1-D_PM. The bitrate of METHOD_3 shows an average
increase of less than 0.081% with respect to 1-D_PM. On
the other hand, the average PSNR degradation of 0.022 for
METHOD_1 with respect to CBFPS is lower than that of
1-D_PM, but the bitrate increase compared with 1-D_PM
averages about 0.2%. The performance of METHOD_2
is equal to that of 1-D_PM with similar computational
complexity.

4.2 Simulation Results Based on HEVC
Based on the HEVC HM 12.0, the simulation was
carried out under the main profile using the following
configuration parameters: group of pictures (GOP) size
= 4, intra period = —1, search range = 64, and decoding
refresh type = 0. The four QPs used in this test are 22,
27, 32, and 37. As adopted in HM, TZS is selected as
a fast IME search algorithm. As mentioned above, the
results of the simulation conducted for H.264/AVC JM
12.4 show that the performances of METHOD_1 and
METHOD_2 are very similar or equal to that of 1-D_
PM, whereas METHOQOD_3 is better than 1-D_PM for
most of the test sequences at each QP. In this simulation
based on HM, the performance of METHOD_3 is

58

therefore directly compared with that of 1-D_PM. FFPS
implemented in HM is selected as the anchor FME
algorithm. The performance comparisons are shown in
Tables 9 and 10, where APSNR represents the PSNR
difference between 1-D_PM and FFPS, or METHOD_3
and FFPS, which means a PSNR degradation with
respect to FFPS; A Bitrate denotes the bitrate increase
in percentage with respect to FFPS; and A Encode_T, A
Inter_T,and A FME_T represent the total encoding time
reduction, inter prediction time reduction, and FME time
reduction in percentage with respect to FFPS, respectively.
The Bjentegaard delta (BD) PSNR (BD-PSNR) and
bitrate (BD-Bitrate) [19] are used to evaluate the objective
differences between the two rate-distortion curves. Similar
to METHOD_3 implemented in JM, METHOD_3 was
also implemented without using an interpolation process
(upsampling) in the FME module of HM. Since the HM
module without upsampling does not accurately measure
the PSNR and bitrate, only the complexity reduction is
reported; Table 9 lists these values in parentheses. The eight
sequences used in the test are as follows: WQVGA (416
x 240) “BlowingBubbles” (50 Hz) and “BQSquare”
(60 Hz), WVGA (832 x 480) “BQMall” (60 Hz) and
“PartyScene” (50 Hz), 720p (1280 x 720) “Johnny”
(60 Hz), 1080p (1920 x 1080) “BQTerrace” (60 Hz),
WQXGA (2560 x 1600) “SteamLocomotiveTrain” (60
Hz), and “Traffic” (30 Hz). The number of frames to be
encoded is 100 for each sequence.

As shown in Table 9, the average PSNR and bitrate
performances of METHOD_3 are better than those of
1-D_PM. The PSNR degradation for most of the test
sequences against four QPs is lower compared with 1-D_
PM. The BD-PSNR of METHOD_3 shown in Table
10 is also higher than that of 1-D_PM. In particular, the
PSNR value for “SteamLocomotiveTrain” is considerably
close to that of FFPS, whereas the bitrate increase with
respect to FFPS is negligible and lower than that of 1-D_
PM. The bitrate for the WQVGA and WVGA sequences
shows a much lower increase compared with 1-D_PM.
Fig. 5 shows the rate-distortion (R-D) curves for the eight
sequences with QPs = 22, 27, 32, and 37. The R-D curves
show that the R-D performances for the WQVGA and
WVGA sequences are better than with 1-D_PM, and the
performances for the 720p, 1080p, and WQXGA sequences
are close to that of FFPS. In terms of computational
complexity, METHOD_3 and 1-D_PM do not require
any FSPs, whereas FFPS always uses 16 FSPs. As shown
in Table 9, the total encoding time of METHOD_3 can
be reduced from about 6% to 25%, and the average FME
time reduction is 41.465%, with respect to FFPS. When
METHOD_3 is implemented without upsampling in the

encoder, the encoding time can be dramatically reduced

Table 4 Performance Comparison in H.264/AVC (QP=20)

GITS/GITI Research Bulletin 2013-2014

PSNR

Bitrate = MET

Table 6 Performance Comparison in H.264/AVC (QP=28)

PSNR

Bitrate

MET

Sequence Method (dB) (kbps) Gms) FSP Sequence Method (dB) (kbps) (o) FSP
CBFPS 45.713 109.838 7091 4.904 CBFPS 39716 33.324 8025 4.660

Claire 1-D_PM 45674 116.882 5174 0.000 Claire 1-D_PM 39.676 34.181 6292 0.000
(QCTF) METHOD_1 45.676 116561 5646 0.000 (QCIF) METHOD_1 39701 34135 6369 0.000
METHOD_2 45674 116.882 5340 0.000 METHOD_2 39.676 34.181 6286 0.000
METHOD_3 45672 116225 5918 0.000 METHOD_3 39.741 34351 6656 0.000

CBFPS 42217 180509 7009 5.085 CBFPS 35799 59.638 9463 5.286

Sal 1-D_PM 42175 195919 5679 0.000 g s 1-D_PM 35763 63914 7198 0.000
(QCIF) METHOD_1 42163 195487 5324 0.000 (QCIF) METHOD_1 35790 64.222 7647 0.000
METHOD_2 42175 195919 5990 0.000 METHOD_2 35763 63914 7211 0.000
METHOD_3 42171 195960 5434 0.000 METHOD_3 35789 64.397 6621 0.000

CBFPS 43595 4009.248 62397 8589 CBFPS 37576 1730412 62116 7.493

Football 1-D_PM 43564 4103.251 52649 0.000 Football 1-D_PM 37.563 1772.098 53280 0.000
(CIF) METHOD_1 43575 4110252 52252 0.000 (CIF) METHOD_1 37560 1779.343 53778 0.000
METHOD_2 43564 4103.251 52831 0.000 METHOD_2 37.563 1772.098 54182 0.000
METHOD_3 43578 4103.340 52029 0.000 METHOD_3 37.573 1775998 54539 0.000

CBFPS 43651 669.869 31116 5257 CBFPS 38517 230314 31024 4920

News 1-D_PM 43605 703241 24109 0.000 News 1-D_PM 38500 241.286 26357 0.000
(CIF) METHOD_1 43.601 703435 24599 0.000 (CIF) METHOD_1 38522 242534 26760 0.000
METHOD_2 43605 703.241 24820 0.000 METHOD_2 38500 241.286 25435 0.000
METHOD_3 43.601 701.443 24353 0.000 METHOD_3 38510 240792 27752 0.000

CBFPS 43299 4244916 44922 6.871 CBFPS 36.452 1441.358 46835 6.459

Stefan 1-D_PM 43264 4325671 38559 0.000 Stefan 1-D_PM 36.436 1502.765 39502 0.000
(CIF) METHOD_1 43.259 4330.272 37568 0.000 (CIF) METHOD_1 36439 1506.394 39958 0.000
METHOD_2 43.264 4325671 38189 0.000 METHOD_2 36436 1502766 39168 0.000
METHOD_3 43.265 4324531 38032 0.000 METHOD_3 36.443 1501.999 40728 0.000

CBFPS 42,699 2918530 42427 7.370 CBFPS 36.250 861.838 45089 6.591

Table 1-D_PM 42,640 3045521 35257 0.000 Table 1-D_PM 36.225 903982 38780 0.000
(CIF) METHOD_1 42647 3047.391 34504 0.000 (CIF) METHOD_1 36227 903686 37849 0.000
METHOD_2 42640 3045521 34586 0.000 METHOD_2 36.225 903.982 38361 0.000
METHOD_3 42.645 3040.949 34318 0.000 METHOD_3 36.235 902.755 38522 0.000

Table 5 Performance Comparison in H.264/AVC(QP=24)

Table 7 Performance Comparison in H.264/AVC (QP=32)

PSNR Bitrate MET PSNR Bitrate MET
Sequence Method (dB) (kbps) (ms) FSP Sequence Method (dB) (kbps) (ms) FSP
CBFPS 42715 61.224 7324 4,795 CBFPS 36.753 18.552 8261 4535
Claire 1-D_PM 42732 64.267 5822 0.000 Claire 1-D_PM 36.749 18.607 7019 0.000
(QCIF) METHOD_1 42712 64154 5936 0.000 (QCIF) METHOD_1 36.750 18.727 7038 0.000
METHOD_2 42732 64.267 6043 0.000 METHOD_2 36.749 18.607 6511 0.000
METHOD_3 42733 63.845 5842 0.000 METHOD_3 36.785 18.895 6900 0.000
CBFPS 38947 103531 7708 5.193 CBFPS 32700 33643 9604 5.204
Salesman 1-D_PM 38907 113136 6331 0.000 Salesman 1-D_PM 32655 34548 9262 0.000
(QCIF) METHOD_1 38915 113371 6300 0.000 (QCIF) METHOD_1 32670 34735 8663 0.000
METHOD_2 38907 113.136 6635 0.000 METHOD_2 32655 34548 8752 0.000
METHOD_3 38919 113.280 6408 0.000 METHOD_3 32657 34704 8389 0.000
CBFPS 40464 2637.679 62989 8137 CBFPS 34581 1068910 66632 6.921
Football 1-D_PM 40464 2711268 53192 0.000 Football 1-D_PM 34582 1097966 54539 0.000
(CIF) METHOD_1 40456 2714.177 51434 0.000 (CIF) METHOD_1 34578 1097.710 55426 0.000
METHOD_2 40464 2711.268 52990 0.000 METHOD_2 34582 1097966 55270 0.000
METHOD_3 40469 2710956 53893 0.000 METHOD_3 34581 1095737 54461 0.000
CBFPS 41135 390722 31177 5.092 CBFPS 35626 135.864 32857 4.826
News 1-D_PM 41.101 410918 25670 0.000 News 1-D_PM 35627 140616 29296 0.000
(CIF) METHOD_1 41.097 411.953 25824 0.000 (CIF) METHOD_1 35.627 141.439 28093 0.000
METHOD_2 41.101 410918 24434 0.000 METHOD_2 35627 140616 27745 0.000
METHOD_3 41103 410990 25817 0.000 METHOD_3 35638 140976 28484 0.000
CBFPS 39.844 2560536 45628 6.630 CBFPS 32796 671957 47462 6.372
Stefan 1-D_PM 39.810 2631.269 39913 0.000 Stefan 1-D_PM 32787 715,740 41516 0.000
(CIF) METHOD_1 39813 2634.099 38893 0.000 (CIF) METHOD_1 32803 716966 41070 0.000
METHOD_2 39810 2631.269 37830 0.000 METHOD_2 32787 715740 39393 0.000
METHOD_3 39814 2630933 38720 0.000 METHOD_3 32799 715795 40697 0.000
CBFPS 39.253 1591.188 45107 7.075 CBFPS 33252 438204 53105 5.979
Table 1-D_PM 39.212 1667.450 35327 0.000 Table 1-D_PM 33228 455419 40769 0.000
(CIF) METHOD_1 39213 1672877 36076 0.000 (CIF) METHOD_1 33234 458244 41715 0.000
METHOD_2 39212 1667450 36013 0.000 METHOD_2 33228 455419 39176 0.000
METHOD_3 39214 1667462 36696 0.000 METHOD_3 33229 456,706 42093 0.000
Table 8 Average Values with Respect to CBFPS (QP=20, 24, 28, 32)

Method APSNR (dB) A Bitrate Increase (%) A MET Reduction (%) FSP

1-D_PM -0.025 4.333 17.033 0.000

METHOD_1 -0.022 4537 17.198 0.000

METHOD_2 -0.025 4333 17.824 0.000

METHOD_3 -0.016 4414 16.894 0.000

60

GITS/GITTI Research Bulletin 2013-2014
Table 9 Performance Comparison in HEVC

Sequence QP Method APSNR (dB) A Bitrate (%) AFEncode T (%) Alnter T (%) AFME_T (%) FSP
2 1-D_PM -0.056 4.097 06.605 20.893 45.505 0.000
METHOD_3 -0.051 3.469 06.765 (16.756) 20.278 (45.537) 42.205 (99.451) 0.000
7 1-D_PM -0.096 3.462 09.703 20.395 41.924 0.000
BlowingBubbles METHOD_3 -0.084 3.052 09.443 (22.857) 18.762 (45.533) 39.981 (99.285) 0.000
(WQVGA) 39 1-D_PM -0.095 2.321 12.381 20.065 40.198 0.000
METHOD_3 -0.092 2431 11.627 (28.592) 19.730 (46.861) 42.663 (99.138) 0.000
37 1-D_PM -0.068 1.726 13.844 21.181 39.299 0.000
METHOD_3 -0.080 1.343 12.934 (32.319) 19.909 (49.087) 39.858 (99.049) 0.000
2 1-D_PM -0.065 4.668 06.884 25.533 40.787 0.000
METHOD_3 -0.060 3.545 06.584 (17.505) 21.687 (60.067) 37.350 (99.327) 0.000
97 1-D_PM -0.135 5.812 10.263 25.566 39.626 0.000
BQSquare METHOD_3 -0.115 4.163 09.702 (24.521) 22.496 (61.176) 39.351 (99.323) 0.000
(WQVGA) 39 1-D_PM -0.151 5.310 14.061 26.712 42.459 0.000
METHOD_3 -0.124 3.678 13.287 (33.747) 24.523 (60.762) 39.034 (99.129) 0.000
37 1-D_PM -0.129 3.476 16.015 26.860 42,440 0.000
METHOD_3 -0.119 2.752 14.704 (38.832) 24.476 (62.249) 38.732 (99.005) 0.000
2 1-D_PM -0.033 2973 12.845 22.536 45.810 0.000
METHOD_3 -0.032 2.708 12.780 (20.808) 22.317 (42.460) 44.808 (99.369) 0.000
o 1-D_PM -0.060 2.976 12.151 20.747 43.761 0.000
BQMall METHOD_3 -0.050 2.825 11.163 (21.163) 18.945 (40.792) 42.506 (99.246) 0.000
(WVGA) 39 1-D_PM -0.083 1.853 16.803 23.920 45,141 0.000
METHOD_3 -0.078 2.011 14.133 (28.021) 22.610 (44.749) 42.132 (99.335) 0.000
37 1-D_PM -0.072 1.106 16.885 24,084 44,590 0.000
METHOD_3 -0.073 1.510 15.456 (31.359) 21.009 (47.719) 42.455 (99.301) 0.000
2 1-D_PM -0.041 3.535 06.306 19.727 42,969 0.000
METHOD_3 -0.034 2.786 06.148 (14.509) 18.025 (43.829) 40.476 (99.150) 0.000
7 1-D_PM -0.093 3.591 08.838 20.168 42,282 0.000
PartyScene METHOD_3 -0.072 3.153 08.203 (20.633) 18.994 (45.708) 41.422 (99.279) 0.000
(WVGA) 39 1-D_PM -0.095 2.954 11.329 20.805 41,967 0.000
METHOD_3 -0.080 2.686 10.749 (26.422) 20.057 (48.203) 41.220 (99.288) 0.000
37 1-D_PM -0.087 1.759 13.289 21.779 42,206 0.000
METHOD_3 -0.085 1.782 12.174 (31.077) 20.179 (50.052) 40.470 (99.249) 0.000
2 1-D_PM -0.030 2525 14.021 24,924 40.944 0.000
METHOD_3 -0.029 2.563 13.301 (34.201) 23.849 (59.671) 40.169 (99.205) 0.000
7 1-D_PM -0.050 2.336 17.115 25.626 40.499 0.000
Johnny METHOD_3 -0.046 2.530 16.176 (41.398) 24.738 (61.997) 39.776 (99.289) 0.000
(720p) 39 1-D_PM -0.058 1.577 18.715 26.707 40.819 0.000
METHOD_3 -0.056 1.488 17.334 (45.036) 24.926 (63.460) 39.834 (99.268) 0.000
37 1-D_PM -0.022 1.303 18.926 26.828 40.157 0.000
METHOD_3 -0.033 1.456 18.176 (46.667) 26.091 (64.623) 40.137 (99.251) 0.000
2 1-D_PM -0.011 1.767 07.428 21.562 42,372 0.000
METHOD_3 -0.011 1.529 07.282 (18.115) 19.925 (47.629) 41.117 (99.257) 0.000
o 1-D_PM -0.060 1.541 11.554 21.636 41,939 0.000
BQTerrace METHOD_3 -0.057 1.341 10.995 (27.627) 20.980 (50.914) 40.930 (99.259) 0.000
(1080p) 39 1-D_PM -0.057 0.815 15.118 22,935 41.049 0.000
METHOD_3 -0.053 0.609 14.169 (36.615) 21.584 (54.212) 39.726 (99.211) 0.000
37 1-D_PM -0.038 0.666 16.384 22,928 40.776 0.000
METHOD_3 -0.040 0.343 15.568 (39.882) 22.061 (55.330) 40.004 (99.252) 0.000
2 1-D_PM -0.011 0.432 16.058 26.174 47.748 0.000
METHOD_3 -0.007 0.598 15.937 (26.895) 25.701 (43.724) 47.356 (99.345) 0.000
Steam 7 1-D_PM -0.029 0.382 22.268 28.674 48.868 0.000
LocomotiveTrain METHOD_3 -0.029 0.292 21.594 (33.623) 27.634 (50.679) 47.773 (99.380) 0.000
1-D_PM -0.022 0.450 24.757 30.214 49.250 0.000
(WQXGA) 32
METHOD_3 -0.021 0.237 23.020 (37.768) 28.176 (54.539) 47.700 (99.350) 0.000
37 1-D_PM -0.013 0.055 27.138 31.814 49.184 0.000
METHOD_3 -0.015 0.380 25.568 (41.814) 30.052 (60.733) 48.135 (99.426) 0.000
2 1-D_PM -0.058 3.015 11.738 24.647 42.238 0.000
METHOD_3 -0.054 2.831 10.496 (28.169) 22.646 (56.529) 40.334 (99.294) 0.000
7 1-D_PM -0.066 2571 13.944 23.933 40.968 0.000
Traffic METHOD_3 -0.065 2,575 12.992 (33.434) 22.841 (56.353) 40.343 (99.270) 0.000
(WQXGA) 39 1-D_PM -0.064 1.720 15.977 24.365 40.406 0.000
METHOD_3 -0.066 1.945 15.075 (38.689) 23.223 (57.887) 39.343 (99.282) 0.000
37 1-D_PM -0.052 0.761 17.013 24,701 40.708 0.000
METHOD_3 -0.059 1.046 16.116 (40.947) 23.390 (58.350) 39.531 (99.281) 0.000
Average 1-D_PM -0.063 2.298 14.263 24.020 42,778 0.000
METHOD_3 -0.059 2.051 13.427 (30.625) 22.557 (52.857) 41.465 (99.267) 0.000

GITS/GITI Research Bulletin 2013-2014

Table 10 Bjgntegaard Delta Performance Comparison
in HEVC

BD-PSNR (dB) BD-Bitrate (%)
I-D PM METHOD.3 1-D_PM METHOD_3
BlowingBubbles -0.197 -0.183 5432 4.992

BQSquare -0.323 -0.252 8.902 6.874
BQMall -0.160 -0.154 4.030 3.890
PartyScene -0.218 -0.188 5.314 4.560
Johnny -0.087 -0.088 3.969 3.959
BQTerrace -0.075 -0.069 4.285 3.941
SteamLocomoti_ -0.030 -0.030 1.549 1.496
Traffic -0.126 -0.129 4213 4332
Average -0.152 -0.137 4.712 4,255

Squ.lBﬂCe

] “ T T T T
» i
1 B ——
® //
=y -] =
g2 g -
% n 5 # i
H] &y,
n "
» »
= T s we o
0 W0 WD G0 00 000 1200 1H0) 1000 £500 2000 20] @0 Wl W1 M8 20 W
Bitrate (ko) Bzt (kops)
(a) “BlowingBubbles” (b) “BQSquare”
o ©
“]
»
i »
Ew Bu
[[
= FE
g 2
n]
=
. nl
3
0 . . ;] * . 1
0 ;) e A0 0D 00 T 0)
Birnta (kbos) Birate (kops)
(c) “BQMall” (d) “PartyScene”
¢ ! ! 'J;J._cx_u
] -
r_,_ﬂ"/
“
1 - 1
2a 2
& &
[N . @
b | e o
w | -
o me s
N s N/ =
[@0 Wel W1 M8 20 WM 0 N0 2O KO W00 SN0 00D 7
Birate (kogs) Bzt (kogs)
(e) “Johnny” (f) “BQTerrace”
] @ T T T
“ @ =
= “© ‘.;,s“'é
=
g® g” e
g, -
= = —
L& HES af
[& ox
H » q
ulf w .
- M . n
01000 2000 M0N0 40000 0000 G0N0 000 HONC 020 M0 00 00 000 TN 10 00
Birate (kbos) Birate (kbos)
(g) “SteamLocomotiveTrain” (h) “Traffic”

Fig. 5 Rate-distortion curves for the sequences with
QPs =22, 27, 32, and 37 in HEVC.

from about 14% to 46% with an FME time reduction of
about 99%. METHOD_3 with and without upsampling
achieves an average encoding time of 13.427% and
30.625%, respectively. METHOD_3 also has a similar
complexity as 1-D_PM.

Conclusion
The recently released HEVC standard will achieve a

much more efficient compression performance for high-

resolution video formats beyond HDTV, as compared
to H.264/AVC. Owing to a significantly increased
computational complexity, however, additional costs will be
incurred because the real-time encoder is implemented on
consumer electronics devices, particularly mobile devices. In
this paper, the proposed techniques focus on reducing the
complexity. The proposed low-complexity interpolation-
free techniques were developed to achieve a similar rate-
distortion performance as interpolation-based FME.
Moreover, the simplicity of the algorithm will make it
suitable for hardware implementation. It can be directly
implemented in the IME module, and easily extended to
1/8 or 1/16 pixel-resolution ME.

Acknowledgement

This paper is a part of the outcome of research
performed under a Waseda University Grant for Special
Research Projects (Project number: 2013A-6324).

References

[11 K.R.Rao and J.]. Hwang, Techniques and Standards for
Image, Video and Audio Coding, Englewood Cliffs, NJ:
Prentice Hall, 1996.

[2] T. Wiegand, G. J. Sullivan, and A. Luthra, Draft ITU-T
Recommendation and Final Draft International Standard
of Joint Video Specification (ITU-T Rec. H 264 | ISO/IEC
74496-70 AVC), Joint Video Team (JVT) of ISO/IEC
MPEG and ITU-T VCEG, document JVT-G050r1, 8th
Meeting, Geneva, Switzerland, May 2003.

[3] T. Wiegand, G.]. Sullivan, G. Bjentegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,”
IEEE Trans. Circuits Syst. Video Technol,, vol. 13, no. 7, pp.
560-576, Jul. 2003.

[4]1 B.Bross, W.-]. Han, J.-R. Ohm, G. J. Sullivan, Y.-K. Wang,
and T. Wiegand, High Efficiency Video Coding (HEVC)
Text Specification Draft 10 (for FDIS & Last Call), Joint
Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG 16 WP 3 and ISO/IEC JTC 1/5C 29/WG 11,
document JCTVC-L1003, 12th Meeting, Geneva, CH, Jan.
2013.

[5] G.]. Sullivan, J.-R. Ohm, W.-]. Han, and T. Wiegand,
“Overview of the High Efficiency Video Coding (HEVC)
standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1649-1668, Dec. 2012.

[6] F. Bossen, B. Bross, K. Siihring, and D. Flynn, "HEVC
complexity and implementation analysis,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, pp. 16851696,
Dec. 2012.

[7] Y.-W. Huang, B.-Y. Hsieh, S.-Y. Chien, S.-Y. Ma, and L.-
G. Chen, “Analysis and complexity reduction of multiple
reference frames motion estimation in H.264/AVC,” IEEE
Trans. Circuits Syst. Video Technol., vol. 16, no. 4, pp. 507-522,
Apr. 2006.

[8] S.Zhuand K.-K. Ma, “A new diamond search algorithm for
fast block matching motion estimation,” IEEE Trans. Image
Process., vol. 9, no. 2, pp. 287-290, Feb. 2000.

[9] C.Zhu, X. Lin, and L.-P. Chau, “Hexagon-based search

61

62

GITS/GITI Research Bulletin 2013-2014

pattern for fast block motion estimation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 12, pp. 349-355, May 2002.

[10] X. Jing and L.-P. Chau, “An efficient three-step search
algorithm for block motion estimation,” IEEE Trans.
Multimedia., vol. 6, no. 3, pp. 435438, Jun. 2004.

[11] C.-H. Cheung and L.-M. Po, “Novel cross-diamond-
hexagonal search algorithms for fast block motion
estimation,” IEEE Trans. Multimedia., vol. 7, no. 1, pp.
16-22, Feb. 2005.

[12] Z. Chen,]. Xu, Y. He, and J. Zheng, “Fast integer-pel and
fractional-pel motion estimation for H.264/AVC,” J. Vis.
Commun. Image R., vol. 17, pp. 264-290, Apr. 2006.

[13] Reference Software for ITU-T H.264 Advanced Video Coding,
ITU-T Rec. H.264.2, ITU-T and ISO/IEC JTC 1, Edition
1: Mar. 2005, Edition 2: Jun. 2008, Edition 3: Jun. 2010,
Edition 4: Jan. 2012.

[14] F. Bossen, D. Flynn, and K. Siihring, High Efficiency Video
Coding Test Moel 12 (HM 12) Reference Software, Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG11, document
JCTVC-N1010, 14th Meeting, Vienna, AT, Jul. 2013.

[15] J. W. Suh and]. Jeong, “Fast sub-pixel motion estimation
techniques having lower computational complexity,” IEEE
Trans. Consumer Electron.,vol. 50, pp. 968-973, Aug. 2004.

[16]]J.-F. Chang and J.-J. Leou, “A quadratic prediction based
fractional-pixel motion estimation algorithm for H.264," J.
Vis. Commun. Image R.,vol. 17, pp. 1074-1089, Oct. 2006.

[17] S. Dikbas, T. Arici, and Y. Altunbasak, “Fast motion
estimation with interpolation-free sub-sample accuracy,”
IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 7, pp.
1047-1051, Jul. 2010.

[18] A. M. Tourapis, A. Leontaris, K. Sithring, and G. J. Sullivan,
H.264/MPEG-# AVC Reference Software Manual, 1SO/
IEC JTC1/8C29/WG11 and ITU-T SG16 Q.6, document
JVT-X072, 24th Meeting, Geneva, CH, Jun. 2007.

[19] G. Bjentegaard, Calculation of Average PSNR Differences
between RD Curves, ITU-T SG16 Q.6, document
VCEG-M33, 13th Meeting, Austin, TX, Apr. 2001.

