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Abstract—High computational complexity of a fractional 

pixel motion estimation (FME) module can in no way be negli-

gible although the module improves visual quality after the 

integer pixel motion estimation (IME) process. Most of the 

conventional FME methods must include the interpolation 

procedure to form fractional pixel search points from the in-

formation of the integer pixel matching error costs. The inter-

polation, however, requires a considerable memory usage and 

certain amount of processing time. In this paper, therefore, we 

propose interpolation-free fractional pixel motion estimation 

techniques by using the data trend approximation and the 

error cost scaling. The results of our simulation show that the 

proposed methods produce similar or better performances 

compared with the existing FME methods, whereas they do not 

need any additional search points. 

I.  INTRODUCTION 

Nowadays, the mobile network technologies including 3G 
and 4G wireless standards have been showing rapid pro-
gress. Nevertheless, the transmission of a large amount of 
multimedia data such as high definition video content in-
creases traffic dramatically on both wireless and wire-based 
networks. Video compression standards, such as ISO/IEC 
MPEG-1, MPEG-2, MPEG-4, ITU-T H.261, H.263 [1], and 
H.264/AVC [2] by ISO/IEC MPEG and ITU-T VCEG, keep 
evolving accordingly. H.264/AVC is a state of the art video 
compression standard for encoding and decoding video data 
using many advanced features. Although the new features 
allow it to encode video data more effectively than the con-
ventional ways, increased computational complexity re-
quires sufficient CPU power to perform real-time video 
encoding, especially in mobile applications. Recently, high 
efficiency video coding (HEVC) standard has been jointly 
developed by ISO/IEC MPEG and ITU-T VCEG. HEVC is 
being drafted to achieve much higher video coding effi-
ciency compared to H.264/AVC by reducing bitrates by half 
with similar image quality, but is expected to be increased in 
computational complexity. 

The video encoder is generally divided into three units, a 
temporal redundancy eliminator, a spatial redundancy elimi-
nator, and an entropy encoder. As motion estimation (ME) 
is core to the temporal model, it occupies more than 89% of 
the total encoding time [3]. Thus, many researches on fast 
ME have been conducted to reduce the high computational 
complexity of the ME module. 

Motion estimation methods can be classified into pixel-
recursive algorithm and block matching algorithm according 
to the elementary unit, i.e. pixel or block, in motion estima-
tion. Block matching algorithm, in particular, has been 
adopted in many video compression standards due to low 
computational cost with robustness to errors. The diamond 
search (DS) [4], the hexagon-based search (HEXBS) [5], the 
efficient three-step search (E3SS) [6], and the unsymmetri-
cal-cross multi-hexagon-grid search (UMHexagonS) [7] are 
fast block-based ME algorithms, which were developed to 
effectively reduce the computational complexity of the inte-
ger pixel ME (IME) module. 

Fractional pixel motion estimation (FME) improves the 
image quality visibly, whereas it needs the expense of 
higher computational complexity. The runtime of the FME 
module is over 37% of the total encoding time [3]. The 
conventional full fractional pixel search (FFPS) in 
H.264/AVC is wasteful and inefficient because a fixed 
number of search points are used all the time. In addition, 
the interpolation process must be performed to create frac-
tional pixel search area, which requires a large amount of 
memory and high computational complexity. The center 
biased fractional pixel search (CBFPS) [7], the fast sub-
pixel motion estimation techniques having lower computa-
tional complexity [8], the quadratic prediction-based FME 
(QPFPS) [9], and the fast motion estimation with interpola-
tion-free sub-sample accuracy [10] have been developed to 
reduce the computational cost of the FME module. In this 
paper, interpolation-free fractional pixel motion estimation 
techniques based on the data trend approximation and the 
error cost scaling are proposed. Our proposed techniques 
focus on performing FME without using the interpolation 
process. In the experimental results, the performances of our 
algorithm will be evaluated in terms of PSNR and bitrates. 

II. MATHEMATICAL MODELS 

A.  Parabolic Models to Calculate Matching Errors 
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As described in Equations 1 [8][10], 2 [8], and 3 [8][9], 
the three equations are used to model the matching error 
F(x,y) at fractional pixel resolution, respectively. Particu-
larly, the two parabolic models in Equations 1 and 2 defi-
nitely require the nine matching error costs at integer pixel 
resolution, as shown in Figure 1, to determine the nine coef-
ficients c1-c9 and the six coefficients c1-c6, respectively. In 
other words, if all the nine matching error costs are not 
provided by the IME process, the estimation can not be 
guaranteed. To fix this problem, each of [8] and [10] uses 
the full search (FS) and the eight neighbor search (ENS) 
[10] for IME, however, FS is very wasteful in computa-
tional complexity and the rectangular search pattern consist-
ing of eight IME search points (matching errors) used in 
ENS is inefficient compared with the small diamond search 
pattern (SDSP) consisting of five IME search points, as 
shown in Figure 1. In addition, most of powerful IME algo-
rithms including UMHexagonS in H.264/AVC terminate the 
search process using SDSP in the final search step. Accord-
ingly, if we should use the FME module based on Equations 
1 and 2, it will cause an increase in the total encoding time 
with some modifications of the fast IME module. The two 
models in Equations 1 and 2 are also unstable on the exten-
sion to the quarter pixel or less than one FME because some 
matching errors at the external half pixel locations can not 
be directly estimated by computing the nine coefficients. 

Contrary to the former two mathematical models, the 
parabolic model in Equation 3 can be applied without any 
difficulty under the state-of-the-art IME techniques because 
it needs only the five IME matching errors, as described in 
Figure 1, to determine the five coefficients c1-c5. The para-
bolic model in Equation 3 can also be decomposed into two 
one-dimensional parabolic models, which approximate the 
horizontal and vertical matching errors separately, as de-
scribed in the following equation: 
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As presented in [9], the minimum matching error cost 

F(p) can easily be found by differentiating F(p) with respect 
to x and y, respectively. When dF/dp(p)=0, the x and y co-
ordinates are regarded as the best prediction position (xb,yb). 
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The 1-D parabolic model uses only the three IME matching 
error costs, which correspond to (H1,C,H2) or (V1,C,V2), to 
compute the three coefficients c1-c3 as derived in Equation 6. 
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The best predicted xb and yb coordinates are estimated inde-
pendently of each other. Here, however, the 1-D parabolic 
model based prediction has a serious fault as shown below: 
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Fig. 1. The five known integer pixel search points (H1,H2,C,V1,V2) and the 
four unknown IME search points (U). 

Equation 7 is an abnormal case and there is a contradic-
tion because the matching error C at the local location (0,0) 
always returns the lowest error cost in IME. That is, the 1-D 
parabolic model based prediction alone is absolutely impos-
sible to find the best prediction position at the location 
greater than 0.5 or less than -0.5. It will have a serious im-
pact on the FME at quarter pixel resolution or less than one. 
Moreover, as H1 or H2 is equal to zero, the 1-D parabolic 
graph tends to be concave down rather than concave up. As 
an alternative solution, to enhance the reconstruction PSNR 
performance, QPFPS proposed by [9] adopted an interpola-
tion based refinement procedure in its final search step, 
whereas it leads to an increase in computational complexity. 

B.  Surface Modeling to Approximate Data Trend 

The above-mentioned parabolic models can be extended 
to higher order polynomial surface models in order to 
achieve more accurate prediction. However, higher order 
polynomial functions require more computational complex-
ity and more IME matching error costs and often result in 
unwanted undulations. Thus, we have considered different 
forms of error surface modeling except the above-mentioned 
parabolic models. Free-form surface modeling is used to 
describe the skin of a 3-D geometric element. They do not 
have rigid radial dimensions, unlike the parabolic surface 
modeling. Free-form splines include the following kinds of 
methods: Cardinal, Hermite, Bézier, and non-uniform ra-
tional B-spline (NURBS). Cardinal spline is a sequence of 
individual curves joined to form a larger curve. Hermite 
spline uses two points and two tangents to model 2-D curve. 
Bézier spline is widely used to model smooth curves. Par-
ticularly, quadratic and cubic Bézier curves are the most 
typical. To model quadratic Bézier curve, only three control 
points are required. Most of fast IME algorithms such as 
UMHexagonS terminate the final search step by using 
SDSP, which is made up of the five search points as shown 
in Figure 1, as the smallest search pattern. Particularly, each 
of the IME search points (H1,C,H2) and (V1,C,V2), as shown 
in Figure 1, corresponds to the three control points of quad-
ratic Bézier curve. A quadratic Bézier curve is also a para-
bolic segment but does not pass by all control points. Al-
though the curve is not an interpolation between the control 
points, it can approximate the data trend. For such a reason, 
we introduce the quadratic Bézier curve based data trend 
approximation method for FME. On the other hand, 
NURBS is one of today’s most popular splines. NURBS can 
be defined by degree, weighted control points, knot vector, 
and evaluation rules. To model a free-form curve based on 
NURBS, the number of control points must be greater than 
or equal to four. NURBS is also generalization of B-spline 
and Bézier spline. 



 

 

 
       (a)                                                                                                                                                (b) 

Fig. 2. Examples of 1-D parabolic model and quadratic Bézier curve. (a) 
The two curves plotted using the three matching errors located at (-1,5759), 
(0,1659), (1,5759). (b) The two curves at (-1,5759), (0,1659), (1,3146). 

C.  Quadratic Bézier Curve 

In the 1-D parabolic model in equation 4, the three IME 
search points (H1,C,H2) or (V1,C,V2), as shown in Figure 1, 
are used to predict the best fractional pixel position at the 
horizontal or vertical location. As already mentioned above, 
quadratic Bézier curve is in accordance with this case be-
cause the three IME search points correspond to the three 
control points of quadratic Bézier curve. The quadratic 
Bézier curve algorithm can be explained as the following 
Equations 8 and 9. Equation 8 shows generalization of Bé-
zier curve. 
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where n denotes degree of Bézier curve, p0, p1, … , pn are 
control points, and nCi is binomial coefficient. While the 
parameter t moves from 0 to 1, the function p(t) traces a 
curve. Let the matching error costs corresponding to the 
local coordinates (xn,0) and (0,yn) be Xn and Yn. Considering 
the coordinates for 1-D surface modeling, the IME matching 
errors (H1,C,H2) and (V1,C,V2) represent {(x0=-1,X0), 
(x1=0,X1), (x2=1,X2)} and {(y0=-1,Y0), (y1=0,Y1), (y2=1,Y2)}, 
respectively. When the control point pn=(xn,Xn) or pn=(yn,Yn), 
each of coordinates xn (yn) and Xn (Yn) is entered separately. 
The quadratic Bézier curve formula using the three control 
points (p0,p1,p2) is described in Equation 9. The following 
Equation 9 will be used as the core of our proposed tech-
niques. 
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Figure 2 shows examples of quadratic Bézier curve and 1-
D parabolic model. As shown in the examples, quadratic 
Bézier curve does not pass by all the three control points but 
two points are always passed. The x or y coordinate with the 
lowest matching error cost will be regarded as the best pre-
diction position xb or yb. The best prediction position found 
by using quadratic Bézier curve, however, tends to be bi-
ased more than that of the 1-D parabolic model in one direc-
tion, as described in Figure 2 (b). Thus, we also introduce a 
preprocessing solution to correct the one direction-biased 
position. 

III. PROPOSED BÉZIER CURVE BASED FME 

A.  Proposed Method 1 

In this paper, the three FME methods based on quadratic 
Bézier curve are proposed. The first method applies the 
differential operation on the quadratic Bézier curve formula. 
The differential operation on Equation 9 can be performed 
as follows: 
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Let p(t)′ be zero. When (p0,p1,p2)=(X0,X1,X2) or (Y0,Y1,Y2), it 
is possible to obtain the optimum tb to determine the mini-
mum matching error cost, as shown below: 
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As described in Equation 12, when (p0,p1,p2)=(x0,x1,x2)= 
(y0,y1,y2)=(-1,0,1), we can find the best fractional pixel pre-
diction position p(tb) by substituting the above optimum tb 
for t in Equation 9. 
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Table I shows the factional pixel motion vector (FMV) 
matching probability between the best FMV found by FFPS 
and the best prediction FMV found by the 1-D parabolic 
model based prediction (1-D_PM), and that found by the 
proposed first method (BÉZIER) at quarter pixel resolution. 
In the simulation, we suppose that the FMV matching per-
formance of FFPS is always the best. The CIF sequence 
“Football” is used as test input image and it consists of 100 
frames. UMHexagonS for IME is selected and it returns the 
five neighboring IME matching errors every time. The best 
fractional pixel prediction positions determined by the two 
mathematical model based algorithms are quantized by the 
quantization operations introduced by [9]. Abnormal cases, 
for instance, such as the IME matching error H1 (H2)=0 or 
unknown, are not allowed and the FME process for the 
macroblock in the exceptional case is skipped. If the x or y 
coordinate of the best FMV found by FFPS is equal to that 
found by a mathematical model based prediction, it counts 
the number of the matching FMVs by the position |P|. As 
shown in Table I, the 1-D parabolic model based prediction 
can produce more accurate FMVs compared with the quad-
ratic Bézier curve based prediction. As mentioned above, 
however, the 1-D parabolic model based prediction can 
never find the best xb or yb located at |P|>0.5, whereas the 
quadratic Bézier curve based prediction can do that. That is, 
compared with the 1-D parabolic model based prediction, 
the quadratic Bézier curve based prediction provides higher 
robustness to large motions. We should take note of the fact 
that, in general, the macroblocks having large motions result 
in higher distortion than those having small motions. 

TABLE I 
THE FACTIONAL PIXEL MOTION VECTOR MATCHING PROBABILITY (%) 

Method Position [0,±0.75] |P| = 0 |P| = 0.25 |P| = 0.5 |P| = 0.75 
1-D_PM x-coord. 28.673 50.725 23.179 15.063 00.000 
1-D_PM y-coord. 24.592 39.588 23.874 14.763 00.000 
BÉZIER x-coord. 22.465 36.714 13.949 14.273 24.193 
BÉZIER y-coord. 18.278 25.977 13.483 14.364 25.168 

 



 

 

  
Fig. 3. The determination of the shape of Bézier curve by controlling p1’. 

B.  Proposed Method 2 

The second method is performed by predicting p1’ in or-
der to pass by all the three control points including p1. p1’ 
should be predicted so that p1 can exist on Bézier curve. As 
p1 is equal to p(t=0.5), p1’ can be computed as shown be-
low: 
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If p1 in equation 11 is replaced by p1’, then the Bézier curve 
can pass by p1 as well as p0 and p2, as shown below: 
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Finally, when (p0,p1,p2)=(X0,X1,X2) or (Y0,Y1,Y2), the formula 
in Equation 15 is carried out to determinate the best frac-
tional pixel prediction position p(tb). The result of the pre-
diction is the same with that of the 1-D parabolic model 
based prediction. The proposed second method, however, 
can easily be extended to the following third method. 
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C.  Proposed Method 3: Determination of Adjusting Factors 

As shown in Table II, each location (x,y) corresponds to 
the five IME search points (H1,H2,C,V1,V2). Table II (a) 
shows the average matching error costs on the five IME 
search points for the “Claire” sequence and Table II (b) is 
for the “Stefan” sequence. In the “Claire” case, on reference 
to Figure 2 (a), the prediction curves are almost symmetrical 
vertically. In the “Stefan” case, on the other hand, the hori-
zontal search points (H1,C,H2) will form slightly uneven 
curves, on reference to Figure 2 (b). That is, the simulation 
implies that the FMVs for the “Claire” are more center-
biased than those for the “Stefan”. Furthermore, we can 
assume the following: 

TABLE II 
AVG. INTEGER PIXEL MOTION ESTIMATION MATCHING ERROR COSTS 

 (A) ERROR COSTS FOR “CLAIRE”            (B) ERROR COSTS FOR “STEFAN” 
(x, y) -1 0 1  (x, y) -1 0 1 

-1  122.100   -1  311.212  
0 133.955 103.513 133.174  0 283.471 236.197 294.131 
1  121.288   1  308.656  

 

TABLE III 
THE PSEUDO CODE FOR THE PROPOSED METHOD 3 

 D = (0.5 × (4 × p1 - p0 - p2)) - p1 

AF1 = if (p0 > p2) then (p0 / p2) - 1; else (p2 / p0) - 1 

AF2 = (p0 + p2) / (2 × p1) 

AF3 = if (1.5 > AF2) then AF1 × 10; else AF2 - 1 

p1’ = p1 + (D × AF3) 

Fig. 4. Examples of the error cost scaling. The best prediction x coordinate 
of the original curve is almost the same with those of the two distorted 
curves scaled up and down by vertical. 

1) First, in quadratic Bézier curve, the more similar the 
matching error H1 (V1) is to H2 (V2), the closer the best pre-
diction position is to the center. The best prediction position 
will also be similar to that of 1-D parabolic model. 

2) Second, in quadratic Bézier curve, the higher or lower 
H1 is than H2, the more the best prediction position is biased 
in one direction. That is, the best prediction position will be 
located farther away from that of 1-D parabolic model. 

3) Third, in quadratic Bézier curve, the farther H1 and H2 
are away from C, the closer the best prediction position is to 
the center. The best prediction position will also be similar 
to that of 1-D parabolic model. 

4) Finally, in quadratic Bézier curve, the closer H1 and H2 
are to C, the more the best prediction position is biased in 
one direction. That is, the best prediction position will be 
located farther away from that of 1-D parabolic model. 
 

In the proposed second method, we know that the shape 
of quadratic Bézier curve can be determined by controlling 
the predicted control point p1’, as illustrated in Figure 3. The 
adjusting factors used in the proposed third method are 
described in the pseudo code of Table III. Each adjusting 
factor was composed based on the former assumptions. Let 
(p0,p1,p2)=(X0,X1,X2) or (Y0,Y1,Y2). In Table III, the variable 
D, which represents the original distance between p1 and p1’, 
can be obtained by applying Equation 13 in the proposed 
second method. The adjusting factor AF1 is based on the 
assumption as follows: The higher the ratio of p0 to p2 is, the 
bigger the gap between p1 and p1’ is. The ratio of p0+p2 to a 
double p1 is for the adjusting factor AF2, which represents 
how far away they are. The critical value 1.5 in the second 
conditional sentence is used to determine the adjusting fac-
tor AF3. Through many experiments, the critical value was 
selected higher than AF2=1.29 computed by the matching 
errors (H1,C,H2) in Table II (a). The last line of the pseudo 
code shows that the position of p1 is determined by applying 
D adjusted by AF3. 

 

TABLE IV 
THE PSEUDO CODE FOR THE ERROR COST SCALING 

if (p0 < p2) then Max = p2; else Max = p0; 

if (Max < p1) then Max = p1; 

if (Max > 130) then 

{ 

S_Rate = 130 / Max; 

p0 = p0 × S_Rate; 

p1 = p1 × S_Rate; 

p2 = p2 × S_Rate; 

} 



 

 

D.  Proposed Method 3: Error Cost Scaling 

As stated above, the proposed third method determines 
the position of p1’ applying the ratios computed by reusing 
the IME matching error costs. Here, we realize that p1’ is 
seriously affected by the matching error cost level. Particu-
larly, the IME matching errors for the video images includ-
ing large motions, such as “Football” and “Stefan” se-
quences, are very irregular and vigorous. We therefore need 
to scale the error cost level artificially. 

As shown in Figure 4, there are three curves, including 
the two distorted ones minimized by 50% and enlarged by 
200% in matching error cost. Due to this scaling, the error 
cost levels were changed obviously but the positions on x-
axis are not. Although the IME matching errors are distorted 
by the scaling, the best prediction position can still be found 
without any difficulty. That is, the error cost scaling normal-
izes and distorts the irregular matching error costs, whereas 
the characteristic shape of the curve is maintained. 

Based on this observation, the error cost scaling process 
is carried out as described in Table IV. First, it gets the 
highest matching error cost of the three IME matching er-
rors (p0,p1,p2)=(X0,X1,X2) or (Y0,Y1,Y2). Second, if the maxi-
mum error cost is higher than the critical value 130, it 
changes the maximum error cost to the critical value and 
saves the scaling rate S_Rate. The critical value 130 was 
adjusted by carrying out a number of simulations on refer-
ence to the average IME matching errors in Table II (a). In 
the end of the error cost scaling process, it applies the scal-
ing rate to the other matching error costs. After that, the 
prediction process of the proposed third method is started. 

The procedure of the proposed third method can be sum-
marized as follows: 

 

Step 1) If the IME process for a macroblock is terminated 
and returns the five IME matching error costs, the error cost 
scaling of the proposed third method is performed. 

Step 2) The adjusting factors for controlling p1’ are de-
termined by the pseudo code described in Table III. 

Step 3) The predicted p1’ is entered in Equation 14 and 
the optimum tb is computed. 

Step 4) The best prediction position is found by applying 
the optimum tb in Equation 12. The best prediction position 
is quantized by the quantization process in [9]. 

IV. EXPERIMENTAL RESULTS 

The simulations have been performed based on the 
H.264/AVC reference software JM version 12.4 [11]. We 
have conducted them with the default settings of search 
range=16, quantization parameter (QP)=20, 24, 28, 32, and 
rate distortion optimized mode=1 under baseline profile. 
UMHexagonS [7] implemented in JM is used for fast IME. 
The performances of the proposed methods 1-3 
(METHOD_1-3) are evaluated by comparing with those of 
CBFPS [7] and the 1-D parabolic model based prediction 
(1-D_PM). CBFPS was chosen as one of the most popular 
interpolation based FME algorithms. In the final step of the 
proposed methods and 1-D_PM, the best fractional pixel 
prediction position is quantized by the quantization opera-
tions at quarter pixel resolution, as presented by [9]. The six 
popular sequences used in the test are as follows: QCIF 
“Claire” and “Salesman”, CIF “Football”, “News”, “Stefan”, 

and “Table”. Each sequence includes different types of 
motions such as small, middling, and large motion. The 
number of frames to be encoded is 100. 

As listed in Tables V-VIII, the PSNR performance of 
METHOD_3 is better than that of 1-D_PM. Particularly, the 
average PSNR at QP=28 is considerably close to that of 
CBFPS. Considering the computational complexity, 
METHOD_3 has no use for fractional pixel search points 
formed by the interpolation, whereas CBFPS requires at 
least five FME search points per FME on average. The 
bitrates comparisons in Tables V-VIII show that 
METHOD_3 can produce competitive bitrates compared 
with 1-D_PM. On the other hand, the total PSNR drop of 
METHOD_1 with respect to CBFPS is lower compared 
with that of 1-D_PM but the bitrates are a little bit increased. 
METHOD_2 always shows the same results with 1-D_PM. 

V. CONCLUSION 

In this paper, the quadratic Bézier curve based fast FME 
was introduced to reduce the high computational complexity 
of the FME module. Although the parabolic models have 
generally been applied to speed up the FME module, ac-
cording to an analysis conducted by us, each of them has 
some problems. The proposed techniques without using 
additional search points were developed to achieve similar 
quality performance with the interpolation based FME. The 
simulation results show that the PSNR performance of 
METHOD_3 is close to CBFPS, whereas the proposed 
method is interpolation-free. Moreover, the simplicity of the 
algorithm will make it suitable for hardware implementation, 
it can directly be implemented in the IME module, and eas-
ily be extended to 1/8 or 1/16 pixel ME. 
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TABLE V 

PERFORMANCE COMPARISON (QP=20) 
Sequence Method PSNR (dB) Bitrates (kbps) Search points 

CBFPS 45.713 109.838 4.904 
1-D_PM 45.674 116.882 0.000 

METHOD_1 45.676 116.561 0.000 
METHOD_2 45.674 116.882 0.000 

Claire 

METHOD_3 45.672 116.225 0.000 
CBFPS 42.217 180.509 5.085 
1-D_PM 42.175 195.919 0.000 

METHOD_1 42.163 195.487 0.000 
METHOD_2 42.175 195.919 0.000 

Salesman 

METHOD_3 42.177 195.746 0.000 
CBFPS 43.595 4009.248 8.589 
1-D_PM 43.564 4103.251 0.000 

METHOD_1 43.575 4110.252 0.000 
METHOD_2 43.564 4103.251 0.000 

Football 

METHOD_3 43.564 4098.579 0.000 
CBFPS 43.651 669.869 5.257 
1-D_PM 43.605 703.241 0.000 

METHOD_1 43.601 703.435 0.000 
METHOD_2 43.605 703.241 0.000 

News 

METHOD_3 43.602 701.683 0.000 
CBFPS 43.299 4244.916 6.871 
1-D_PM 43.264 4325.671 0.000 

METHOD_1 43.259 4330.272 0.000 
METHOD_2 43.264 4325.671 0.000 

Stefan 

METHOD_3 43.263 4322.832 0.000 
CBFPS 42.699 2918.530 7.370 
1-D_PM 42.640 3045.521 0.000 

METHOD_1 42.647 3047.391 0.000 
METHOD_2 42.640 3045.521 0.000 

Table 

METHOD_3 42.642 3041.230 0.000 

 
 
 
 

TABLE VI 
PERFORMANCE COMPARISON (QP=24) 

Sequence Method PSNR (dB) Bitrates (kbps) Search points 
CBFPS 42.715 61.224 4.795 
1-D_PM 42.732 64.267 0.000 

METHOD_1 42.712 64.154 0.000 
METHOD_2 42.732 64.267 0.000 

Claire 

METHOD_3 42.733 63.845 0.000 
CBFPS 38.947 103.531 5.193 
1-D_PM 38.907 113.136 0.000 

METHOD_1 38.915 113.371 0.000 
METHOD_2 38.907 113.136 0.000 

Salesman 

METHOD_3 38.909 113.287 0.000 
CBFPS 40.464 2637.679 8.137 
1-D_PM 40.464 2711.268 0.000 

METHOD_1 40.456 2714.177 0.000 
METHOD_2 40.464 2711.268 0.000 

Football 

METHOD_3 40.455 2706.036 0.000 
CBFPS 41.135 390.722 5.092 
1-D_PM 41.101 410.918 0.000 

METHOD_1 41.097 411.953 0.000 
METHOD_2 41.101 410.918 0.000 

News 

METHOD_3 41.103 410.904 0.000 
CBFPS 39.844 2560.536 6.630 
1-D_PM 39.810 2631.269 0.000 

METHOD_1 39.813 2634.099 0.000 
METHOD_2 39.810 2631.269 0.000 

Stefan 

METHOD_3 39.814 2630.662 0.000 
CBFPS 39.253 1591.188 7.075 
1-D_PM 39.212 1667.450 0.000 

METHOD_1 39.213 1672.877 0.000 
METHOD_2 39.212 1667.450 0.000 

Table 

METHOD_3 39.214 1667.462 0.000 
 

 
TABLE VII 

PERFORMANCE COMPARISON (QP=28) 
Sequence Method PSNR (dB) Bitrates (kbps) Search points 

CBFPS 39.716 33.324 4.660 
1-D_PM 39.676 34.181 0.000 

METHOD_1 39.701 34.135 0.000 
METHOD_2 39.676 34.181 0.000 

Claire 

METHOD_3 39.741 34.351 0.000 
CBFPS 35.799 59.638 5.286 
1-D_PM 35.763 63.914 0.000 

METHOD_1 35.790 64.222 0.000 
METHOD_2 35.763 63.914 0.000 

Salesman 

METHOD_3 35.789 64.397 0.000 
CBFPS 37.576 1730.412 7.493 
1-D_PM 37.563 1772.098 0.000 

METHOD_1 37.560 1779.343 0.000 
METHOD_2 37.563 1772.098 0.000 

Football 

METHOD_3 37.573 1775.998 0.000 
CBFPS 38.517 230.314 4.920 
1-D_PM 38.500 241.286 0.000 

METHOD_1 38.522 242.534 0.000 
METHOD_2 38.500 241.286 0.000 

News 

METHOD_3 38.510 240.792 0.000 
CBFPS 36.452 1441.358 6.459 
1-D_PM 36.436 1502.765 0.000 

METHOD_1 36.439 1506.394 0.000 
METHOD_2 36.436 1502.765 0.000 

Stefan 

METHOD_3 36.443 1501.999 0.000 
CBFPS 36.250 861.838 6.591 
1-D_PM 36.225 903.982 0.000 

METHOD_1 36.227 903.686 0.000 
METHOD_2 36.225 903.982 0.000 

Table 

METHOD_3 36.235 902.755 0.000 

 
 
 
 

TABLE VIII 
PERFORMANCE COMPARISON (QP=32) 

Sequence Method PSNR (dB) Bitrates (kbps) Search points 
CBFPS 36.753 18.552 4.535 
1-D_PM 36.749 18.607 0.000 

METHOD_1 36.750 18.727 0.000 
METHOD_2 36.749 18.607 0.000 

Claire 

METHOD_3 36.785 18.895 0.000 
CBFPS 32.700 33.643 5.294 
1-D_PM 32.655 34.548 0.000 

METHOD_1 32.670 34.735 0.000 
METHOD_2 32.655 34.548 0.000 

Salesman 

METHOD_3 32.657 34.704 0.000 
CBFPS 34.581 1068.910 6.921 
1-D_PM 34.582 1097.966 0.000 

METHOD_1 34.578 1097.710 0.000 
METHOD_2 34.582 1097.966 0.000 

Football 

METHOD_3 34.581 1095.737 0.000 
CBFPS 35.626 135.864 4.826 
1-D_PM 35.627 140.616 0.000 

METHOD_1 35.627 141.439 0.000 
METHOD_2 35.627 140.616 0.000 

News 

METHOD_3 35.638 140.976 0.000 
CBFPS 32.796 671.957 6.372 
1-D_PM 32.787 715.740 0.000 

METHOD_1 32.803 716.966 0.000 
METHOD_2 32.787 715.740 0.000 

Stefan 

METHOD_3 32.799 715.795 0.000 
CBFPS 33.252 438.204 5.979 
1-D_PM 33.228 455.419 0.000 

METHOD_1 33.234 458.244 0.000 
METHOD_2 33.228 455.419 0.000 

Table 

METHOD_3 33.229 456.706 0.000 
 


