複素ウェーブレット変換の疎表現における係数予測手法の検討 A Study for Coefficients Prediction on Sparse Representation of Complex Wavelet Transform

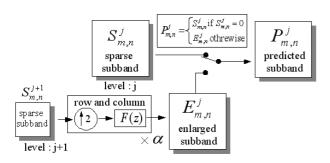
高橋 良知 Hiroshi WATANABE Yoshitomo TAKAHASHI

早稲田大学大学院 国際情報通信研究科

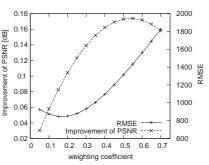
Graduate School of Global Information and Telecommunication Studies, Waseda University.

はじめに

離散ウェーブレット変換 (DWT) は変換係数から得 られる画像の方向情報が乏しい.一方で,複素ウェーブ レット変換 (CWT) は絶対値においてシフト不変性が成 立し,2次元 CWT は ± 15°, ± 45°, ± 75°の6方 向の画像エッジを分離する変換である[1].また,2次 元 CWT は変換後のデータ数が増加する冗長変換でもあ る、冗長変換では疎表現と呼ばれる係数列が存在する、 CWT の疎表現係数列による画像符号化は , 全符号量に おいて DWT の SPIHT 符号化より約 0.5-1.0[dB] 高い 符号化効率が得られている[3].


本稿では,CWT の疎表現係数列において,係数の絶 対値の冗長性を利用し,高域係数の絶対値を低域係数の 絶対値の補間拡大処理より予測する手法を検討する.

ウェーブレット係数予測の従来手法


本手法は低域係数より高域係数を予測するという点で, ウェーブレット空間における画像の高解像度化手法と類 似している、高解像度化手法では低解像度画像のウェー ブレット係数列を対象とし,係数の統計情報より高解像 度画像の最高周波数成分に対応するサブバンド係数を予 |測する [4] . 一方で , 本研究の対象は疎表現系数列である . 疎表現係数列は少数の非ゼロ係数と多数のゼロ係数から なる疎な係数列であり,係数の統計情報も通常のウェー ブレット係数とは異なる.また,本研究では,予測対象 サブバンドが最高周波数サブバンドのみでないため,従 来の予測手法を適用することは難しい.

3 CWT 係数の絶対値予測手法

ステップエッジに対する CWT 係数の絶対値はガウ シアン分布に近似され,その分散は低域サブバンドほど 大きくなる.よって,CWT係数のサブバンドの絶対値 はガウシアンピラミッド構造に近似される.この特性よ り,低域のサブバンドの絶対値を補間拡大したものを高 域の予測サブバンドの絶対値とする手法を提案する.提 案手法の概要を図1に示す.各レベル,各方向のサブバ ンドにおいて,図1の処理を低域側から独立に行う.ま ず,低域のサブバンド $S^{j+1}_{m,n}$ を零補間とローパスフィル タを用いて拡大する.次に,同一のレベル・方向で固定

The flow of coefficients prediction

 \boxtimes 2 PSNR and RMSE in level 4, -75 °

値の重み係数 α を用いてエネルギーを変更し,拡大サブ バンド $E^j_{m,n}$ を得る.レベルjのサブバンド $S^j_{m,n}$ がゼ 口係数である場合,拡大サブバンド $E^j_{m,n}$ の係数値で置 き換え,予測サブバンド $P_{m,n}^{j}$ を生成する.

実験結果

重み係数 α を変化させたときの , CWT 係数の真値と 予測値の RMSE と予測値からの再構成画像の PSNR 向 上値を図2に示す.冗長変換は直交変換と異なり変換係 数間に依存性が存在する.このため,ウェーブレット係 数における最小誤差が再構成画像で最大の PSNR を与 えないという特性がある.

また,適切な重み係数 lpha を用いてレベル 4 とレベル 3 のサブバンドを予測した結果を表 1 に示す . 表 1 は , 真値を用いたときの PSNR 向上に対する提案手法によ る PSNR 向上の割合であり、達成率である、予測した 絶対値の位相には符号情報に相当する 2[bit] を与えてい る.予測を行うことで 35~50[%] 程度の達成率が得ら れており,本予測手法は有効であるといえる.

まとめと今後の課題 5

本稿では,CWT の疎表現係数列の絶対値の冗長性を 利用する一手法として,低域サブバンドから高域サブバ ンドを予測する手法の検討を行った.今後は,CWT の 疎表現における位相係数を予測する手法を検討し,CWT 画像符号化の符号化効率向上を目指す.

参考文献

- [1] I.W. Selesnick, et al., "The dual-tree complex wavelet transform," IEEE Signal Processing Magazine, Nov. 2005.
- L. Mancera, et al., "L0-norm-based sparse representation through alternate projections," IEEE ICIP, Oct. 2006.
- 高橋,渡辺,"複素ウェーブレットの疎表現における係数選択手 法の検討,"情処全大, Mar. 2008.
- [4] D. H. Woo, et al., "Image interpolation based on inter-scale dependency in wavelet domain," IEEE ICIP, Oct. 2004.

表 1 The achievement rate by prediction method

	direction of subband						
predicted level	15 °	45 °	75 °	-15 °	-45 °	-75 °	All
from 5 to 4 (%)	32.9	27.3	48.6	37.1	39.4	40.2	34.7
from 4 to 3 (%)	50.0	50.0	57.1	56.7	59.2	54.4	47.8