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Abstract

Divisible Load Theory (DLT) is an established math-
ematical framework to study Divisible Load Scheduling
(DLS). However, traditional DLT does not comprehensively
deal with the scheduling of results back to source (i.e., re-
sult collection) on heterogeneous systems. In this paper,
the DLSRCHETS (DLS with Result Collection on HETero-
geneous Systems) problem is addressed. The few papers to
date that have dealt with DLSRCHETS, proposed simplistic
LIFO (Last In, First Out) and FIFO (First In, First Out) type
of schedules as solutions to DLSRCHETS. In this paper, a
new heuristic algorithm, ITERLP, is proposed as a solution
to the DLSRCHETS problem. With the help of simulations,
it is proved that the performance of ITERLP is significantly
better than existing algorithms.

1. Introduction

Divisible loads form a special class of parallelizable ap-
plications, which if given a large enough volume, can be ar-
bitrarily partitioned into any number of independently- and
identically-processable load fractions. Examples of appli-
cations that satisfy this divisibility property include massive
dataset processing, image processing, signal processing,
computation of Hough transforms, database search, simu-
lations, and matrix computations. Divisible Load Theory
(DLT) is the mathematical framework established to study
Divisible Load Scheduling (DLS) [1–18, 20–27, 29, 30].

DLT has gained popularity because of its simplicity and
deterministic nature. In a star connected network where the
center of the star acts as the master and holds the entire
load to be distributed, and the points of the star form the
set of slave processors, the basic principle of DLT to de-
termine an optimal schedule is the AFS (All nodes Finish
Simultaneously) policy [3]. This states that in the optimum
schedule, the load is distributed such that all the nodes in-
volved in the computation finish processing their individual
load fractions at the same time.

In the AFS policy, after the nodes finish computing their
individual load fractions, no results are returned to the
source. In most practical applications this is an unrealis-
tic assumption, and the result collection phase contributes
significantly to the total execution time, unless each node
returns a small constant result such as a floating point or
boolean value or a database record. This is not that un-
common, but the other cases need due consideration. All
papers that have addressed result collection to date, have
advocated simplistic LIFO (Last In, First Out) and FIFO
(First In, First Out) sequences or variants thereof as solu-
tions [1, 3, 7–9, 12, 17, 28]. It has been proved in [9] that
LIFO and FIFO are not always optimal, and as this paper
shows, these algorithms result in large errors in execution
time as compared to the optimal schedule when the degree
of node heterogenity is high.

Several papers have dealt with DLS on heterogeneous
systems to date [2, 7–9, 12, 18, 28]. As far as can be judged,
no paper has given a satisfactory solution to the schedul-
ing problem where both the network bandwidth and com-
putation capacities of the nodes are different, and the re-
sult transfer to the source is explicitly considered, i.e., to
the DLS with Result Collection on HETerogeneous Systems
(DLSRCHETS) problem. Along with the AFS policy, there
are two assumptions that have implicitly pervaded DLT lit-
erature to date: (a) load is allocated to all processors, and
(b) processors are never idle. The presence of idle time in
the optimal schedule, which is a very important issue, has
been overlooked in DLT work on result collection and het-
erogeneity. For the first time, [7, 8] proved that the optimal
FIFO schedule can have a single processor with idle time,
and that this processor can always be chosen to be the one
to which load is allocated last.

In this paper, the completely general form of DL-
SRCHETS is tackled, with no assumptions being made re-
garding the number of processors allocated load, the net-
work and node heterogeneity, or on the presence (or ab-
sence) of idle time. The main contribution of this paper is
the new ITERLP algorithm and its rigorous testing through
simulation. ITERLP does not necessarily use all processors
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and determines the number of processors to be used based
on the system parameters (computation and communication
capacities). The complexity of ITERLP is polynomial in the
number of processors (m) though it requires solving O(m3)
linear programs in the worst case.

The rest of the paper is as follows. In Sect. 2, the system
model and the DLSRCHETS problem is described. Section 3
gives the ITERLP algorithm and simulation results are pre-
sented in Sect. 4. Section 5 provides the conclusion and
future work.

2. System Model and Problem Definition

The divisible loadJ is to be distributed and processed on
a heterogeneous star network H = (P,L, E , C) as shown in
Fig. 1, where P = {p0, . . . , pm} is the set of m + 1 proces-
sors, andL = {l1, . . . , lm} is the set of m network links that
connect the master scheduler (source) p0 at the center of the
star, to the slave processors p1, . . . , pm. E = {E1, . . . , Em}
is the set of computation parameters of the slave processors,
and C = {C1, . . . , Cm} is the set of communication param-
eters of the network links. Ek is the reciprocal of the speed
of processor pk, and Ck is the reciprocal of the bandwidth
of link lk. Both are defined in time units per unit load, i.e.,
pk takes Ek time units to process a unit load transmitted to
it from p0 in Ck time units over the link lk. It follows that
∀k ∈ {1, . . . ,m} : Ek > 0, Ck > 0.

The values in E and C are deterministic and available at
the source. Based on these parameter values, the source p0

splits J into parts (fractions) α1, . . . ,αm and sends them to
the respective processors p1, . . . , pm for computation. Each
such set of m fractions is known as a load distribution α =
{α1, . . . ,αm}. The source does not retain any part of the
load for computation. If it does, then it can be modeled as
an additional slave processor with computation parameter
E0 and communication parameter C0 = 0.

All processors follow a single-port and no-overlap
model, implying that processors can communicate with
only one other processor at a time, and communication and
computation cannot occur simultaneously. The processors
are continuously and exclusively available during the entire
operation. The time taken for computation and communi-
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Figure 2. A feasible schedule for m = 3

cation is a linearly increasing function of the size of data.
The execution of the divisible load on each processor

comprises of three distinct phases - the allocation phase,
the computation phase, where the data is processed, and the
result collection phase. The computation phase begins only
after the entire load fraction allocated to that processor is
received from the source. Similarly, the result collection
phase begins only after the entire load fraction has been pro-
cessed, and is ready for transmission back to the source (see
Fig. 2). The source receives results from the child proces-
sors only after the entire load is distributed first.

For the divisible loads under consideration, such as im-
age and video processing, Kalman filtering, matrix conver-
sions, etc., the computation phase usually involves simple
linear transformations, and the volume of returned results
can be considered to be proportional to the amount of load
received in the allocation phase. This is the accepted model
for returned results in literature to date, [1,3,7–9,12,18,28,
32]. If the allocated load fraction is αk, then the returned
result is equal to δαk, where 0 ≤ δ ≤ 1. The constant δ is
application specific, and is the same for all processors for a
particular load J . For a load fraction αk, αkCk is the trans-
mission time from p0 to pk, αkEk is the computation time
on pk, and δαkCk is the time it takes pk to finally transmit
the results back to p0.

Though a linear model is considered for computation and
communication times for the sake of simplicity, all results
can be easily extended to other (e.g. affine) cost models. For
example, the computation time and the load allocation time
of a processor pk can be defined as Ek(αk) and Ck(αk),
where Ek(·) and Ck(·) are functions of the allocated load
fraction αk. Similarly, the size of result data can be an
application-dependent function D(·) of αk, giving a result
collection time Ck(D(αk)) for a processor pk.

Usually the functions Ck(·), Ek(·), and D(·) will be con-
cave, monotonically nondecreasing functions of αk such as
linear, affine, and constant functions.

σa and σc are two permutations of order m that represent
the allocation and collection sequences respectively, i.e.,
σa[k] and σc[k] denote the processor number that occurs at
index k ∈ {1, . . . ,m}. σa(l) and σc(l) are two lookup func-



tions that return the index of the processor l ∈ {1, . . . ,m}
in the allocation and collection sequences respectively. DL-
SRCHETS is defined as a linear program as below:
DLSRCHETS (DLS WITH RESULT COLLECTION ON HET-
EROGENEOUS SYSTEMS)
Given a heterogeneous network H = (P,L, E , C), and a
divisible load J , find the sequence pair (σa,σc), and load
distribution α = {α1, . . . ,αm} that

MINIMIZE ζ = 0α1 + . . . + 0αm + T

SUBJECT TO:

σa(k)∑

j=1

ασa[j]Cσa[j] + αkEk +
m∑

j=σc(k)

δασc[j]Cσc[j] ≤ T

k = 1, . . . ,m (1)

m∑

j=1

ασa[j]Cσa[j] +
m∑

j=1

δασc[j]Cσc[j] ≤ T (2)

m∑

j=1

αj = J (3)

T ≥ 0, αk ≥ 0 k = 1, . . . ,m (4)

In the above formulation, for a triple (σa,σc,α), the
LHS (Left Hand Side) of constraint (1) indicates the total
time spent in transmission of tasks to all the processors that
must receive load before the processor pi can begin process-
ing its allocated task, the computation time on the processor
pi itself, and the time for transmission back to the source of
results of processor pi, and all its subsequent result trans-
fers. For the no-overlap model to be satisfied, the process-
ing time T should be greater than or equal to this time for
all the m processors. The single-port communication model
is enforced by (2) since its LHS represents the lower bound
on the time for distribution and collection under this model.
The fact that the entire load is distributed amongst the pro-
cessors is ensured by (3). This is known as the normaliza-
tion equation. The non-negativity of the decision variables
is ensured by constraint (4).

A linear programming problem in this form for a pair
(σa,σc) can be solved using standard linear programming
techniques in polynomial time [31]. There are m! possible
permutations each of σa and σc, and the linear program has
to be evaluated (m!)2 times to determine the globally op-
timal solution (σ∗

a,σ∗
c ,α∗). Clearly, this is impractical to

perform for more than a few processors. For example, it
takes about 80 minutes for a PowerMac G5, with 2 GB of
memory, to compute the optimal solution for 6 processors.

3. The ITERLP Algorithm

The ITERLP heuristic algorithm finds a solution by iter-
atively solving linear programs as follows. Processors are
first sorted by increasing value of Ck (i.e., decreasing value
of communication link bandwidth). The first two proces-
sors are selected and the optimal (σa,σc) pair (the one with
the lowest processing time for the two processors) is deter-
mined by solving the linear program defined by the con-
straints (1) to (4) four times for each permutation of the al-
location and collection sequence. The next processor in the
sequence is added in the next iteration and the linear pro-
gram is solved again. The new processor can be interleaved
at any position in (σa,σc), but with an additional constraint
that the relative positions of processors already determined
are maintained. By constraining the number of possible se-
quences in this manner, if the number of processors in an
iteration is k, k ≤ m, then k2 linear programs are solved in
that iteration instead of the possible (k!)2.

For example, if the optimal sequences at the end of the
first iteration are σ1

a = {1, 2} and σ1
c = {2, 1}, then in the

second iteration, the set of possible allocation sequences is
Σ2

a = {(3, 1, 2), (1, 3, 2), (1, 2, 3)}, and the set of possible
collection sequences is Σ2

c = {(3, 2, 1), (2, 3, 1), (2, 1, 3)}.
In any iteration, if processor k is allocated zero load,

then the algorithm terminates and does not proceed to the
next iteration with k + 1 processors. In the worst case,∑m

k=1 k2 = O(m3) linear programs have to be solved in
the ITERLP algorithm. To compare performance with OPT
for example, on the same machine as described in Sect. 2,
ITERLP can find the solution for about 65 processors in 80
minutes, but when m is increased to 100, it takes around 15
hours. Of course, this is much too expensive to be practi-
cally used for large values of m. However, it is found that
ITERLP generates significantly better schedules than tradi-
tional algorithms (see Sect. 4) and it can be used as a bench-
mark to compare other heuristic algorithms.

The rationale behind ITERLP is as follows. All optimal-
ity results to date for DLS on heterogeneous systems, those
ignoring result collection [10, 12, 13, 16, 22, 23] as well as
those considering result collection [1, 3, 7–9], have advo-
cated load allocation in the order of decreasing communi-

Table 1. Results for C = {10, 15}, E = {10, 10},
δ = 0.5

Algorithm σa σc α T
OPT {1, 2} {1, 2} {0.625, 0.375} 18.4375
ITERLP {1, 2} {1, 2} {0.625, 0.375} 18.4375
LIFOC {1, 2} {2, 1} {0.765, 0.235} 19.1176
FIFOC {1, 2} {1, 2} {0.625, 0.375} 18.4375



Table 2. Results for C = {10, 15, 20}, E = {10, 10, 1}, δ = 0.5
Algorithm σa σc α T
OPT {1, 2, 3} {3, 2, 1} {0.7108, 0.2187, 0.0705} 17.7690
ITERLP {1, 2, 3} {3, 1, 2} {0.6126, 0.3676, 0.0198} 18.0371
LIFOC {1, 2, 3} {3, 2, 1} {0.7108, 0.2187, 0.0705} 17.7690
FIFOC {1, 2, 3} {1, 2, 3} {0.6061, 0.3636, 0.0303} 18.1818

cation link bandwidth. Hence processors are initially sorted
in that order in ITERLP. Since neither LIFO nor FIFO sched-
ules are always optimal, the new processor being introduced
in an iteration could potentially be interleaved in any po-
sition in the optimal sequence. So the ITERLP heuristic
tests all possible positions for the newly introduced proces-
sor. To build the sequences at reasonable (polynomial) cost,
ITERLP assumes that the relative positions of the processors
already determined are not modified by the additional pro-
cessor. The following example with three processors proves
that this is not true in general. Nevertheless, as the sim-
ulation results in the next section prove, ITERLP produces
near-optimal results in general, at a reasonable cost.

Let C = {10, 15, 20}, E = {10, 10, 1}, and δ = 0.5.
The results obtained for the different algorithms are given
in Tables 1 and 2. Details of the algorithms used are given
in Sect 4. It is observed that after the first iteration, the
optimal sequences found by ITERLP are σ1

a = {1, 2} and
σ1

c = {1, 2}. In the second iteration, when processor p3

is added, ITERLP returns the sequences as σ2
a = {1, 2, 3}

and σ2
c = {3, 1, 2}. However, the optimal sequences for the

three processors are σ∗
a = {1, 2, 3} and σ∗

c = {3, 2, 1}.
That is, the optimal collection sequence for the first two
processors is reversed by the addition of the third proces-
sor. However, to date no set of values of C, E , and δ have
been found that reverse the order of processors’ allocation
sequence in the optimal schedule. The allocation sequence
in the order of decreasing communication bandwidth is al-
ways found optimal.

4. Simulation Results and Analysis

In the simulations, all Ek and Ck are defined in the same
time units. On open networks, it is not unusual for proces-
sors to have widely varying values of Ek and Ck, with the
ratios min(Ek) : max(Ek) and min(Ck) : max(Ck) reach-
ing 1:100 [19]. Further, they can appear in any combination.
For example, a fast processor may have a very slow network
connection, while a processor with a fast link may be over-
loaded and not have enough computation speed. Along with
system heterogeneity, it is important to verify the effect of
the application on the algorithms. To rigorously test the per-
formance of ITERLP, several simulations were performed
with different ranges for Ek, Ck, and δ.

The performance of ITERLP was compared to three al-
gorithms, viz. OPT, FIFOC, and LIFOC, which are explained
below. In all, more than 300,000 simulation runs were car-
ried out using parameter values that cover most situations
observed in practice.

The globally optimal schedule OPT is obtained after eval-
uation of the linear program for all possible (m!)2 permu-
tations of (σa,σc). The MATLABTM linear programming
solver linprog is used to determine the optimal solution
(load distribution) for each permutation pair. The process-
ing time for each pair is calculated, and the sequence pair
and load distribution that results in the minimum processing
time is selected as the OPT solution.

FIFOC and LIFOC distribute load fractions in the order of
decreasing communication link bandwidth (i.e., increasing
value of communication parameter, Ck). The sequence of
result collection for FIFOC is the same as the sequence of
allocation, while the result collection sequence of LIFOC is
in the reverse order of the sequence of allocation. For the
pair (σa,σc) so obtained, linprog is used to determine
the optimal solution (load distribution) and processing time.

Preliminary simulations for other heuristic algorithms,
viz. FIFO, LIFO, FIFOE, LIFOE, and SUMCE, revealed such
large errors in favor of ITERLP, that it was decided not to
pursue them further. The solutions to FIFO and LIFO are
calculated similar to FIFOC and LIFOC except for the fact
that the processors are not initially sorted. FIFOE and LIFOE

Table 3. Parameters for Simulation
Case Ck ∈ Ek ∈ Case Ck ∈ Ek ∈

1 [1,10] [1,10] 14 [10,100] [1,100]
2 [1,10] [10,100] 15 [10,100] [10,1000]
3 [1,10] [100,1000] 16 [10,1000] [1,10]
4 [1,10] [1,100] 17 [10,1000] [10,100]
5 [1,10] [10,1000] 18 [10,1000] [100,1000]
6 [1,100] [1,10] 19 [10,1000] [1,100]
7 [1,100] [10,100] 20 [10,1000] [10,1000]
8 [1,100] [100,1000] 21 [100,1000] [1,10]
9 [1,100] [1,100] 22 [100,1000] [10,100]
10 [1,100] [10,1000] 23 [100,1000][100,1000]
11 [10,100] [1,10] 24 [100,1000] [1,100]
12 [10,100] [10,100] 25 [100,1000] [10,1000]
13 [10,100][100,1000]
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Figure 3. Normalized Execution Time for m =
4, δ = 0.2, Case 9

Table 4. max 〈∆T 〉 of FIFOC

m
δ = 0.2 δ = 0.5 δ = 0.8

FIFOC # ITERLP FIFOC # ITERLP FIFOC # ITERLP
4 3.91 9 0.25 10.29 7 0.24 12.31 18 0.35
5 4.40 7 0.32 10.96 7 0.35 14.33 7 0.36

Table 5. max 〈∆T 〉 of LIFOC

m
δ = 0.2 δ = 0.5 δ = 0.8

LIFOC # ITERLP LIFOC # ITERLP LIFOC # ITERLP
4 1.66 1 0.33 1.39 23 0.45 1.13 23 0.53
5 1.24 23 0.37 1.27 4 0.08 1.63 4 0.12

distribute load fractions in the order of decreasing computa-
tion speed (i.e., increasing value of computation parameter,
Ek). SUMCE distributes and collects load fractions in the
order of increasing value of the sum Ck +Ek +δCk (equiv-
alent to sorting by the sum Ck + Ek).

Simulations were carried out for m = 4, 5 and δ =
0.2, 0.5, 0.8. For each variant algorithm, viz. OPT, LIFOC,
FIFOC, and ITERLP, at each value of m and δ, 100 sim-
ulation runs were carried out for the 25 cases in Table 3.
The values of Ek and Ck were obtained by sampling con-
tinuous uniform distributions in the regions specified in Ta-
ble 3. The total processing time for each variant algorithm,
TVARIANT, was calculated in each run. For example, Fig. 3
shows the execution times normalized with respect to TOPT

for m = 4, δ = 0.2, case number 9. The solid line indicates
the performance of ITERLP. As can be observed, ITERLP
has the best performance, followed by LIFOC and FIFOC.

Fig. 3 also distinctly shows the dependence of processing
time on the system parameters. To quantify the performance
of the algorithms, the percentage deviation from the optimal
processing time, ∆TVARIANT, for each variant in each of the
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Figure 4. 〈∆T 〉 for m = 4, δ = 0.2

25 cases was calculated as:

∆TVARIANT =
TVARIANT − TOPT

TOPT
∗ 100% (5)

Mean deviation from optimal, 〈∆T 〉, for each variant was
calculated by averaging ∆T over 100 simulation runs. Val-
ues of 〈∆T 〉 were then plotted.

The plot for m = 4, δ = 0.2 is shown in Fig. 4. It
can be observed that ITERLP consistently outperforms FI-
FOC and LIFOC in all the cases. As the value of δ increases,
it is observed that the performance of LIFOC and ITERLP
becomes very similar, while the error of FIFOC increases,
as the plot for m = 5, δ = 0.8 in Fig. 5 shows. Not only
does the performance become similar, but also it gets very
close to optimal. It can be concluded that for heterogeneous
systems, where result collection time is large (comparable
to the load allocation time), the performance of LIFOC and
ITERLP is almost equal and optimal.

For intermediate values of δ, the performance of ITERLP
is moderately better than LIFOC, and largely better than FI-
FOC as seen in Fig. 6 for m = 5, δ = 0.5.

Though the algorithms show a clear dependence on the
value of δ, the reason for the variation in performance can
only be hypothesized at this juncture. In the case of LIFOC
for example, when δ is large (δ >> 1), and especially when
δ → +∞, the load allocation and result collection looks
similar to the case when δ = 0, only in the reverse. LIFOC
is still optimal in this case (if it was optimal earlier), while
for FIFOC it would be the worst possible sequence. For the
case when δ = 1, by using the schedule transformation ex-
plained in [9], it can be seen that LIFOC processes exactly
twice the amount of load in half the time, as would be pro-
cessed if there would not have been any result collection
phase. No such statement can be made about FIFOC.

Table 4 gives the maximum values of 〈∆T 〉 for FIFOC,
the case numbers when they occur, and the corresponding
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Figure 5. 〈∆T 〉 for m = 5, δ = 0.8
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Figure 6. 〈∆T 〉 for m = 5, δ = 0.5

values of 〈∆T 〉 for ITERLP for those cases. Table 5 gives
similar values for LIFOC. The value of 〈∆T 〉 for FIFOC
for m = 4, δ = 0.5, case number 7, is 43 times that of
ITERLP for that case. Similarly, 〈∆T 〉 for LIFOC for m = 5,
δ = 0.8, case number 4, is 13.5 times that of ITERLP for that
case. That is, ITERLP generates good schedules for cases
that cause FIFOC and LIFOC to perform poorly.

The maximum values of 〈∆T 〉 of ITERLP and the case
numbers when they occur are given in Table 6. The maxi-
mum 〈∆T 〉 of ITERLP is 0.68%, and it occurs at case num-
ber 1 of m = 5, δ = 0.5. It is observed that the error
remains below 1% irrespective of the value of m or δ.

To evaluate the performance of the algorithms with the
increase in number of nodes, the processing times of FIFOC
and LIFOC were compared with ITERLP. This is because,
OPT cannot be practically carried out beyond m = 5. 100
simulation runs were carried out for m = 10, 20, 30, δ =
0.2, 0.5, 0.8 for each of the 25 cases listed in Table 3.

As the number of processors and the value of δ increase,
the performance of ITERLP and LIFOC becomes very sim-
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Figure 8. 〈∆T 〉 w.r.t. ITERLP, m = 20, δ = 0.5

ilar, while there is an increase in the error of FIFOC. The
95% confidence interval bars indicate that the 〈∆T 〉 of FI-
FOC with respect to ITERLP varies widely. The progression
of performance is clearly reflected in Figs. 7 to 9 that plot
the values of 〈∆T 〉 with respect to ITERLP for (m, δ) pairs
(10, 0.2), (20, 0.5), and (30, 0.8) respectively.

However, at small values of δ, ITERLP performs better
than both LIFOC and FIFOC even with large number of pro-
cessors as can be seen in Fig. 10 that plots the value of 〈∆T 〉
with respect to ITERLP for m = 30, δ = 0.2.

5. Conclusion

In this paper, a new heuristic algorithm, ITERLP, for the
scheduling of divisible loads on heterogeneous systems and
considering the result collection phase is presented. A large
number of simulations are performed and it is found that
ITERLP consistently delivers near-optimal performance ir-
respective of the degree of heterogeneity of the system, the
number of nodes, or the size of result data. Instead of having



Table 6. max 〈∆T 〉 of ITERLP

m
δ = 0.2 δ = 0.5 δ = 0.8

ITERLP case LIFOC FIFOC ITERLP case LIFOC FIFOC ITERLP case LIFOC FIFOC
4 0.33 1 1.66 2.14 0.45 23 1.39 5.81 0.53 23 1.13 7.35
5 0.51 12 1.13 2.41 0.68 1 0.90 5.99 0.58 18 0.82 12.06
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Figure 9. 〈∆T 〉 w.r.t. ITERLP, m = 30, δ = 0.8
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Figure 10. 〈∆T 〉 w.r.t. ITERLP, m = 30, δ = 0.2

a single predefined sequence, ITERLP iteratively builds a lo-
cally optimal solution leading to a low error value. ITERLP
is much too expensive to be practically used for large val-
ues of m. But as it generates significantly better schedules
than traditional algorithms in general, it can be used as a
benchmark to compare other heuristic algorithms.

As future work, an algorithm with similar performance,
but with better cost characteristics than ITERLP needs to be
found. Another important area would be to extend the re-
sults to multi-level processor trees.
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