
SPORT: Extended Simulations and Results for Divisible Load
Scheduling on Heterogeneous Systems

Abhay Ghatpande Hidenori Nakazato Hiroshi Watanabe

Graduate School of Global Information and Telecommunication Studies, Waseda University

1 Introduction

Divisible Load Theory (DLT) [1] is the mathematical

framework to study Divisible Load Scheduling (DLS).

But DLT ignores the result collection phase, and is also

unable to deal with the general case where both the

network links and computing nodes are heterogeneous.

In this paper, after describing the Dlsrchet (DLS

with Result Collection Phase on a Heterogeneous Star

Network) problem in Sect. 2 and the Sport (System

Parameters based Optimized Result Transfer) algo-

rithm in Sect. 3, we present the results of the simu-

lations in Sect. 4. Section 5 gives the conclusion.

2 Problem Description

A divisible load J is to be processed on a heteroge-

neous star network N as shown in Fig. 1. N consists

of m + 1 processors p0, . . . , pm, and m links l1, . . . , lm.

For k = 1, . . . ,m, Ck is the inverse of the bandwidth of

the link lk connecting node pk to source p0, and Ek is

the inverse of the computation speed of pk. The source

p0 splits J into parts α1, . . . , αm, and sends them to

the processors p1, . . . , pm for computation, without re-

taining any part for itself.

p1 p2 pk pk+r pm

p0

l1
l2

lk lk+r

lm

E1 E2 Ek Ek+r Em

E0

C1

C2
Ck Ck+r

Cm

Fig. 1 Heterogeneous star network N
Processors communicate with only one processor at

a time, and cannot compute and communicate simul-

taneously. The execution of divisible load proceeds in

three contiguous phases - distribution, computation,

and result collection. The constant δ is the ratio of

size of generated result data to allocated load. The

time from the point when p0 initiates communication

with pk, to the point when pk completes the result

transfer to p0, is Tk = αkCk + αkEk + δαkCk.

σa and σc are two permutations of order m, and each

member σa[k] and σc[k], k = 1, . . . ,m, denotes the pro-

cessor number that occurs at index k in the allocation

and collection sequence respectively. σa(k) and σc(k),

are lookup functions that return the index of processor

k = 1, . . . ,m in the allocation and collection sequence

respectively. The Dlsrchet problem can be stated as:

Given a heterogeneous network N and a divisible load

J , find an allocation sequence permutation σa, and a col-

lection sequence permutation σc, so that T is minimized,

subject to the constraints:

T =

σa(k)
∑

j=1

ασa[j]Cσa[j] + αkEk

+

m
∑

j=σc(k)

δασc[j]Cσc[j], k=1, . . . ,m (1)

0 < αk < 1, k = 1, . . . ,m (2)
m

∑

k=1

αk = 1 (3)

An exhaustive search of all permutations to find a

solution to Dlsrchet has complexity of O((m!)2).

3 Proposed Algorithm

Algorithm 1 In the heterogeneous star network N ,

let the processors p1, . . . , pm be arranged such that C1 ≤

C2 ≤ . . . ≤ Cm. Define a test condition as:

C1C2(E1 + C2 + E2 + δC2)

(C1 + E1 + δC1)(C2 + E2 + δC2)
≥ (C2 − C1) (4)

Execute the following:

1. σa[]← 1, . . . ,m, σc[1]← σa[1], C ′

1 ← C1, E
′

1 ← E1

2. For k from 2 to m, do:

(a) C ′

2 ← Ck, E′

2 ← Ek

(b) Test (4) with C1 ≡ C ′

1, E1 ≡ E′

1, C2 ≡ C ′

2,

E2 ≡ E′

2. If (4) true, goto 2(c), else, goto 2(d)

(c) i. σc[k]← σa[k]

ii.
C ′

1 ←
C ′

1C
′

2 + C ′

1E
′

2 + C ′

2E
′

1 + δC ′

1C
′

2

E′

1 + E′

2 + δC ′

1 + C ′

2

E′

1 ←
E′

1E
′

2 − δC ′

1C
′

2

E′

1 + E′

2 + δC ′

1 + C ′

2

iii. k ← k + 1, and return to 2.a.

(d) i. for j from 1 to k − 1, do:

σc[j + 1]← σc[j], σc[1]← σa[k]

ii.
C ′

1 ←
C ′

1C
′

2 + C ′

1E
′

2 + C ′

2E
′

1 + δC ′

1C
′

2

E′

1 + E′

2 + δC ′

2 + C ′

2

E′

1 ←
E′

1E
′

2

E′

1 + E′

2 + δC ′

2 + C ′

2

iii. k ← k + 1, and return to 2.a.

3. Using σa and σc obtained above, form m− 1 linear

equations as follows: With u = σa[σa(k) + 1],

∀k =1, . . . ,m− 1 :

αkEk =















































αuCu+αuEu

−

σc(u)−1
∑

j=σc(k)

δασc[j]Cσc[j]
σc(u)≥σc(k)+1

αuCu+αuEu

+

σc(k)−1
∑

j=σc(u)

δασc[j]Cσc[j]
σc(u)≤σc(k)−1

4. Along with (3), solve the complete set of m lin-

ear equations to obtain the respective load fractions

α1, . . . , αm for the m processors. 2

Sport is polynomial in m with complexity of O(m3).

4 Simulation Results

In the BruteForce algorithm, the optimum σa, σc

are found by evaluating all (m!)2 sequences. Fifoc

and Lifoc distribute load in the order of decreasing

link bandwidth. In Fifoc, the result collection is in

the same order as the distribution, while in Lifoc, it

is in the reverse order of distribution.

For m = 4, 5, 6, and δ = 0.2, 0.5, 0.8, simulations

were carried out for four algorithms: BruteForce,

Sport, Fifoc, and Lifoc. In each simulation run for

the 25 cases in Table 1, the optimum time was found

using BruteForce, and then the deviation of the ex-

ecution time, ∆T , for Sport, Fifoc, and Lifoc from

the optimum was calculated. Mean deviation from op-

timal, 〈∆T 〉, was calculated by averaging ∆T over 1000

simulation runs and plotted. All plots are not shown

to conserve space.

Table 1 Parameters for Simulation

Case Ck ∈ Ek ∈ Case Ck ∈ Ek ∈

1 [1,10] [1,10] 14 [10,100] [1,100]
2 [1,10] [10,100] 15 [10,100] [10,1000]
3 [1,10] [100,1000] 16 [10,1000] [1,10]
4 [1,10] [1,100] 17 [10,1000] [10,100]
5 [1,10] [10,1000] 18 [10,1000] [100,1000]
6 [1,100] [1,10] 19 [10,1000] [1,100]
7 [1,100] [10,100] 20 [10,1000] [10,1000]
8 [1,100] [100,1000] 21 [100,1000] [1,10]
9 [1,100] [1,100] 22 [100,1000] [10,100]
10 [1,100] [10,1000] 23 [100,1000] [100,1000]
11 [10,100] [1,10] 24 [100,1000] [1,100]
12 [10,100] [10,100] 25 [100,1000] [10,1000]
13 [10,100] [100,1000]

From the plots in Figs. 2(a) and 2(b) for m = 5 and

δ = 0.2, 0.8, it is evident that Sport has the lowest

error, and consistently outperforms Fifoc and Lifoc

in all the cases. For δ = 0.2, Lifoc has a high error

percentage, while for δ = 0.8, the error percentage of

Fifoc is increased. However, the error percentage of

Sport always remains below 7%.

Table 2 gives the maximum values of 〈∆T 〉 for Fi-

foc, the case numbers when they occur, and the cor-

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
ve

ra
ge

 D
ev

ia
tio

n
in

 %

Case Number

SPORT
FIFOC
LIFOC

(a) m = 5, δ = 0.2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
ve

ra
ge

 D
ev

ia
tio

n
in

 %

Case Number

SPORT
FIFOC
LIFOC

(b) m = 5, δ = 0.8

Fig. 2 Simulation Results

Table 2 max 〈∆T 〉 of Fifoc

m
δ = 0.2 δ = 0.5 δ = 0.8

Fifoc case Sport Fifoc case Sport Fifoc case Sport

4 3.37 9 0.62 10.38 6 1.40 26.90 17 2.81
5 3.72 18 0.81 12.14 17 2.08 33.55 19 4.83
6 4.33 7 1.11 14.75 7 3.04 38.37 17 6.64

Table 3 max 〈∆T 〉 of Lifoc

m
δ = 0.2 δ = 0.5 δ = 0.8

Lifoc case Sport Lifoc case Sport Lifoc case Sport

4 09.66 21 0.17 15.29 21 1.30 14.23 24 04.31
5 11.30 21 0.85 17.07 21 1.73 15.75 21 07.30
6 12.32 21 1.63 18.27 21 2.64 18.58 21 11.32

Table 4 max 〈∆T 〉 of Sport

m δ = 0.2 case δ = 0.5 case δ = 0.8 case
4 0.62 9 1.69 9 04.31 24
5 0.85 21 2.30 9 07.30 21
6 1.63 21 3.04 7 11.32 21

responding values of 〈∆T 〉 for Sport for those cases.

Table 3 gives similar values for Lifoc. It is observed

that Sport outperforms Fifoc and Lifoc in all the

cases. This proves that Sport is able to generate good

schedules for parameter values that cause Fifoc and

Lifoc to perform poorly.

From Table 4, the maximum value of 〈∆T 〉 of Sport

is 11.32%, and it occurs at case number 21 of m = 6,

δ = 0.8. It can be seen from Table 1 that in this case,

the network links of the processors are much slower

than their computation capacity.

5 Conclusion

We presented new simulation results and found that

Sport delivers near-optimal performance irrespective

of the degree of heterogeneity of the system and value

of δ. The maximum error of Sport was 11.32% for all

the configurations evaluated. To find the values of Ek

and Ck that minimize the error is part of our future

work. We will also work on multi-level trees.

Bibliography

[1] V. Bharadwaj et al.: “Divisible Load Theory: A

New Paradigm for Load Scheduling in Distributed

Systems,” Cluster Computing, vol. 6, no. 1, pp. 7–

17, Jan. 2003

[2] A. Ghatpande et al.: “SPORT: A Near-Optimal

Solution to Divisible Load Scheduling on Hetero-

geneous Systems,” In Proc. IEICE Society Confer-

ence, pp. 7-8, Sep. 2005

